
I S R A E L  J O U R N A L  OF M A T H E M A T I C S  91 (1995) ,  3 9 3 - 4 0 7  

AN EXTENSION OF A THEOREM 
OF GEHRING AND POMMERENKE 

BY 

M .  CHUAQUI 

Department of Matheamtics 
Pontifica Universidad Cat61iea, Casilla 6177, Santiago, Chile 

AND 

B. OSGOOD 

Department of Mathematics 

Stanford University, Stanford, CA, 94305-~125, USA 
and 

Department of Mathematics 

Institute des Hautes Etudes Sciences 
35 Route de Chartres, 91440 Bures-sur-Yvette, France 

A B S T R A C T  

Gehring and Pommerenke have shown that  if the Schwarzian deriva- 

tive S f  of an analytic function f in the unit disk D satisfies ISf(z)] ~_ 
2(1 - I z [2 )  -2,  then f (D)  is a Jordan domain except when f (D) is the 

image under a M6bius transformation of an infinite parallel strip. The 

condition ISf(z)l <_ 2(1 - lzl2) -2  is the classical sufficient condition for 

univalence of Nehari. In this paper we show that the same type of phe- 

nomenon established by Gehring and Pommerenke holds for a wider class 

of univalence criteria of the form [Sf(z)[ ~_ p([z[) also introduced by Ne- 

hari. These include [Sf(z)[ <_ lr2/2 and [Sf(z)[ (_ 4(1 -[z12) -1.  We also 

obtain results on H61der continuity and quasiconformal extensions. 
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1. I n t r o d u c t i o n  and  r e su l t s  

Let f be analytic and locally univalent in the unit disc D. It is well known that 

the size of its Schwarzian derivative S f  = ( f " / f ' ) '  - (1 /2) ( f " / f ' )  2 is intimately 

related to the global univalence of f in D, and to homeomorphic extensions of 

f to C. In important cases this extension will be quasiconformal in C\ /9 .  A 

classical instance of this is Nehari's condition 

2 
(1) ISf(z)l <_ 

(1 -Iz12) 2' 

which implies the univalence of f in D, 

(2) IS f(z)l _< 

[11]. If the stronger inequality 

2t 

(1 -IZ12) ~ 

holds for some 0 < t < 1, then f (D)  is a quasidisk, and hence f has a quasi- 

conformal extension to the C, [1]; see also [6]. A quasidisk is the image of D 

under a quasiconformal mapping of C. Nehari's univalence criterion was closely 

studied in [8], where the authors showed that if 

2 
ISf(z)l < (1 - l z t2)  2' 

then f (D)  is a Jordan domain. It follows that f has a homeomorphic extension to 

the plane. This result was also obtained by Epstein [7] by quite different methods, 

and in [5] we give a construction of a conformally natural homeomorphic extension 

which is related to critical points of the Poincar~ metric. In [8], the fact that y 
has a homeomorphic extension follows from the rather surprising phenomenon 

that if f satisfies (1.1), then f (D)  fails to be a Jordan domain in essentially one 

case. To state the result, let us first introduce the function 

1 l + z  
Fo(Z) = -~ log 1 - z" 

Then Fo satisfies (1), with equality along the real interval, and Fo(D) is an 

infinite parallel strip. We say that f is M5bius conjugate to Fo if it is of the 

form Tx o F0 o T2, with Ta,T2 MSbius, T2(D) = D. It follows that such an f 

will also satisfy (1), with equality now along some hyperbolic geodesic. This is a 

consequence of the chain rule for the Schwarzian 

s ( f  o g) = ( s I  o g)(9') + sg ,  
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the fact that  MSbius transformations have identically vanishing Schwarzians, and 

that T2 is a hyperbolic isometry of the disk. 

THEOREM 1 (Gehring-Pommerenke): 

(A) If f is analytic and locally univalent in D with 

2 
ISf(z){ <_ 

(1 -Izt ) 

then f is univalent in D and has a spherically continuous extension to the 

closed disk D. Either f is M6bius conjugate to Fo or else f (D)  is a Jordan 

domain. 

(B) U 

limsup(1 -[z[2)2[Sf(z)[ < 2 
Izl--.1 

and if f (D) is a Jordan domain, then f (D)  is a quasidisk. 

The continuous extension to /) follows from explicit estimates on the modu- 

lus of continuity. We have written Theorem 1 so it is roughly in parallel with 

Theorem 2 below. For the last part of the theorem the authors actually show 

(Theorem 4 in [8]) that, under just the limsup condition, f has a spherically 

continuous extension t o / )  and that there exists a number m < c~ such that f 

assumes every value at most m times in / ) .  If m = 1, then f (D) is a quasidisk. 

The purpose of this paper is to observe that Theorem 1 can be extended to a 

wider class of univalence criteria introduced by Nehari. Let p(z) be analytic and 

even in D, and satisfy the following three conditions: 

(i) Ip(z)l < p(lzl), 

(ii) (1 - x2)2p(x) is non-increasing on (0, 1), 

(iii) the differential equation u" + pu = 0 has a real, non-vanishing solution on 

(-1 ,1) .  

Nehari showed that if 

(3) ISf(z)l <_ 2p(Izl) 

then f is univalent in D, [12], [13]. This result encompasses (1) as well as the 

conditions 
71-2 

(4) ISf(z)l <_ 

4 
(5) ISf(z)[-< 1 - [z [  -------~ ' 
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and 
(6) iSf(z) I < 2s(1 - ( s -  1)N ~) 1 < s < 2. 

- ( i  - I z 1 2 )  2 ' 

The condition (4) was in Nehari's first paper on the subject [11]; (5) was stated by 

Pokornyi in [14] and a proof was published by Nehari in [12]. The interpolating 

criterion (6) was given in [13]. See also [3] for a study of general univalence 

criteria. 

In (4), (5) and (6) the extremals (determined up to a Mhbius transformation) 

are, respectively, 

Fl(z) = ~1 tanh(~rz), F2(z) = (1 --~2)2 , Fa(z) = (1 - (2)8 " 

Let p an analytic function in the disk satisfying the three conditions above, and 

let 

F ( z )  = a( ,  

where the function y satisfies 

(7) y " + p y = 0 ,  y ( 0 ) = l ,  y ' ( 0 ) = 0 ,  

in the disk. Then SF(z) = 2p(z), and F(0) = 0, F ' (0)  = 1 and F"(0)  = 0. The 

functions F0 through F3 are also normalized in this way. As defined, F is known 

only to be meromorphic. We will show that it is always analytic in the disk. By 

(i), F will satisfy (3) and hence will be univalent by Nehari's theorem. Note that  

F is real-valued on the real axis. 

The univalence theorem in [13] only required p to be a real-valued, continuous 

function defined on ( -1 ,  1), but then there need not be an analytic, univalent 

extremal. The fact that the analytic extremals F share properties with the 

logarithmic extremal F0 is one of the points of this paper. However, to draw a 

distinction, whereas F0 becomes infinite at +1, the general F need not, and there 

is an interesting difference between the cases F(1) finite or infinite. In the case 

when F(1) < oo, for any function ] satisfying ISf(z)l < 2R(H) one knows from 

the results in [2] that f(D) is a quasidisk. This includes F(D). We are therefore 

interested here in the case when F(1) = co. In this case F(D) clearly fails to be 

a Jordan domain as F is odd, so F ( - 1 )  = F(1) = cc as a point on the sphere. 

But this is the only way that F(D) fails to be a Jordan domain. Our main result 

is thus in several parts. 
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THEOREM 2: Suppose f is analytic and locally univalent in D with 

ISf(z)[ ~ 2p(Izl) 

and that F(1)  = c~. 

(A) f is univalent in D and admits a spherically continuous extension to D. 

Either f is M6bius conjugate to the extremal F or else f ( D )  is a Jordan 

domain. 

(B) I f  

lira(1 - x 2 ) 2 p ( x )  < 1, 
: r ~ l  

and if  f (D) is a Jo rdan  domain,  then f (D)  is a quasidisk. 

(C) F is univalent o n / ) \ { - 1 ,  1}. 

After  this work was comple ted  we learned of two interesting papers  by Stein- 

metz ,  [15], [16]. In the second pape r  the au thor  also considers Nehar i ' s  p-cri terion 

and,  by different me thods  than  we use here, he obtains  Par t s  (A) and (C) above. 

C O R O L L A R Y  1:  I f  

then f ( D ) is a Jordan domain. 

Let 

ISf(z)l < 2p(lzl) 

(8) p -- l im(1 - x2)2p(x). 
x---} 1 

We will show tha t  p < 1, and tha t  p = 1 if and only if p(x) = (1 - x2) -2.  Both  

facts will be a consequence of (iii). Thus # = 1 corresponds to the case t rea ted  

by Gehring and Pommerenke ,  while p < 1 includes (4), (5) and (6). To prove 

Theorem 2 we will use the fact tha t  

limsup(1 - I z l 2 ) 2 1 S f ( z ) l  ~ 2~. 
Izl~X 

Next  we have two results on HSlder continuity for functions satisfying ISf(z)l  <_ 

2p([z D. Again the case of interest  is when F(1)  = ec. 

THEOREM 3: Suppose F(1)  = oc, p < 1, that f satisfies ISf(z)[ <_ 2p(Iz[) with 

f " ( 0 )  = 0, and that f is not M6bius conjugate to F. Then f is H61der continuous 

for any exponent a > lx~- p. I f  x = 1 is a regular singular point of (7), then f 

is H61der continuous with exponent a = v/1 - p. 
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Recall that  x = 1 is a regular singular point of (7) when ( 1 - x ) 2 p ( x )  is analytic 

at x = 1. Such is the case for the functions p as in (4), (5) and (6). It  follows 

from (7) that  the solution y is concave down, and because of its initial conditions, 

y is decreasing on (0, 1). Hence limx--.1 y(x) exists, and the assumption that  

F(1) = c~ implies that  this limit must be 0. The further assumption that  x = 1 

is a regular singular point gives enough information on the order of vanishing of 

F to improve the H51der exponent. 

The assumption that  f " (0)  = 0 is not restrictive at all since, as we shall 

see, it can always be achieved by taking a suitable M5bius transformation of 

f without introducing a pole. The same techniques will also show that  the 

extremal F is locally HSlder continuous on O D \ { - 1 ,  1}, in the sense that  for 

each w �9 O D \ { - 1 ,  1} there exist c, e > 0 such that  

IF(z1) - F(z2)l _< c[zl - z2l" 

for all Zl, z 2 � 9  1}, IZl - w[, Iz2 - wl < 

For a similar result on HSlder continuity, see [15]. 

2. P r o o f s  

We begin by showing that  the extremal functions are always analytic as a 

consequence of a general lemma to that  effect. Recall that  the conditions (i), 

(ii) and (iii) on p are in force. 

LEMMA 1: I f  f is meromorphic in D with [Sf(z)[ <_ 2p(]z[) and f"(O) = O, then 

f is analytic in D. 

Proof'. As above, we let y be the solution of the initial value problem (7), 

y"+py=0, y(0)=l, V(0)=0, 

and 

f ( z )  = 

First observe that  on ( -1 ,  1) the real, even function y cannot vanish. For other- 

wise it would have at least two zeros there, which then, by the Sturm oscillation- 

comparison theorem, would force every solution of the differential equation to 

vanish at least once in ( -1 ,  1), contradicting condition (iii). Hence F is analytic 

on a neighborhood of ( -1 ,  1) in D. 
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where 

Without loss of generality we may next assume that f (0)  = 0, f '(O) = 1. Then 

~0 z f ( z )  = v-~(()d~ 

1 
V I I  + 2 ( S f ) v  = 0, v(0) = 1, v'(0) = 0. 

Since ]Sf(z)l  < 2p(Izl), it follows from Lemma 2 in [4] that 

Iv(z)l > y(Izl) 

in the largest disk Izl < r _< 1 on which f is analytic. Hence If(z)l _< F(Izl) 

there, which shows that f cannot have a pole in D. 

In particular, since ISF(z)I = 21p(z)l _< 2p(Izl) by condition (i), we conclude 

that the extremals themselves satisfy I F(z)l  <_ F(Izl) and are analytic in the disk. 

Then they are also univalent by Nehari's p-theorem. II 

Remark: If f is analytic in D with f ( z )  = z + a2z 2 + --., then the function 

f t  = f / ( 1  + a2f)  has i f ( z )  = z + O(z3). If f satisfies ISf(z) l  <_ 2p(Izl) , then 

so does f t .  It cannot have a pole in D because, again, it will be subject to the 

bound Ift(z)l _< F(Izl) on the largest disk Izl < r _< 1 on which it is analytic, 

and F is analytic in all of D. The point is that,  when the Schwarzian is bounded 

in this way, it is possible to normalize an analytic function to get f " (0)  = 0 and 

still be analytic. 

Actually, using the arguments in [4] one can prove sharp distortion theorems for 

functions satisfying the hypotheses of Lemma 1. If G is the solution of SG = - 2 p  

with G(0) = 0, G'(0) = 1 and G"(0) = 0 then 

G'(lzl) < If '(z)l < F'(lz]), 

G(Izl) _< If(z)l _< F(Izl)  

If equality holds at any point other than the origin in any of the inequalities, 

then f is equal to the corrresponding function F or G. We will not  prove these 

facts here, nor will we make any use of them. 

Note also that  if F(1) < ~ then F(D) ,  and hence f ( D ) ,  will be bounded. Even 

when F(1) = oo, f ( D )  will be bounded as long as f is not Mhbius conjugate to 

F. We show this in Lemma 4, below. 

Next, recall that # = l imx_l(1 - x 2 ) 2 p ( x ) .  The following lemma makes 

Theorem 1 applicable to the proof of Theorem 2. 
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LEMMA 2: # ~ 1 and # = 1 if  and only ifp(x) = (1 - x2) -2. 

Proof Suppose first that  # > 1. Then p(x) > #(1 - x2) -2, which we shall show 

implies that  the solution y of 

y " + p y = 0 ,  y ( 0 ) = l ,  y ' ( 0 ) = 0  

vanishes somewhere on ( -1 ,1 ) .  This will contradict (iii). Let v be the solution 

on ( - 1 , 1 )  of 

v" + # (1-x2)  2 v = O '  v(O)= l ,  v'(O)=O. 

The function v is given by 

l+xk 
v(x) = X/1 - x 2 cos ~ ,og ~ } 

where ~ = Vrfi - 1, see [10], p. 492. In particular, v vanishes on ( - 1 ,  1) (infinitely 

often). A standard application of the Sturm comparison theorem shows that  

v > y as long as y > 0 on a centered interval about  the origin. It  follows that  y 

must vanish somewhere on ( - 1 ,  1) as well. 

Hence p _< 1, and if p(x) = (1 - x 2 )  -2 then obviously # = 1. Suppose then 

that  # = 1. This t ime let v(x) = x/1 - x 2 be the solution of 

so that  

1 
v" + ( 1 -  x2.  j = o ,  v(O) = 1,  v'(o) : o ,  

Since y is positive, the comparison theorem gives v > y. We let 

F(x) = y-2(t) dt 

as before, and put  H = F -1.  Since Fo( -1 ,  1) = R already, then v > y implies 

that  F takes ( - 1 ,  1) onto R too. (Note that  in this lemma we are not assuming 

at the outset that  F(1) = oc.) Let 

(1) ~ ( s ) -  v(H(s)) 
y(H(s)) ' 

where s E R.  This function is defined so that  

(Fo o H)(s) = ~-2( t )  dt. 

~0 ~ Fo(x) = ~ log  1 - x l  + x = v-2(t) dt. 
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A straightforward computation shows that 

( 1)  
~"(s) = p ( x ) -  ( 1 -  x2) 2 y4(x)~(s) '  x = H(s).  

Hence qo is convex, as p(x) >_ (1 - x2) -2. In addition, qo(0) = 1, ~ ( 0 )  = 0. 

Suppose p(x) 7~ (1 - x2) -2, say p(xo) > (1 - x2) -2 for some Xo > 0. Because 

s = 0 gives an absolute minimum of ~ it follows from the convexity that  

~(s) >_ a + b(s - So), Xo = H(so), 

for some constants a, b with b > 0. Therefore 

fo ~ ~-2(s)d s < ( x )  , 

which contradicts the fact that  (F0 o H)(ee)  = oe. This completes the proof of 

the lemma. | 

We begin the proof of Theorem 2. According to Lemma 2, # = 1 is taken care of 

by Theorem 1, so we may now assume that  # < 1. Let f satisfy ISf(z)[ <_ 2p([z[). 

By Nehari's theorem f is univalent, and since 

limsup(1 -[z]2)2[Sf(z)] ~ 2# < 2, 
Izl~l 

another application of Theorem 1 (more properly, the remarks following Theorem 

1) implies that  f admits a spherically continuous extension t o / ) .  Assuming also 

that F(1) = c~, in order to complete the proofs of Parts (A) and (B) of Theorem 

2 it suffices to show that  either f is MSbius conjugate to F or else f is 1:1 on OD, 

in which case f ( D )  will actually be a quasidisk. For this we need an observation 

due to Nehari [12]. We state it here as a separate lemma. 

LEMMA 3: Let zl, z2 E OD, zi r z2, and let "r be the hyperbolic geodesic in D 

joining Zl and z2. Then there exists a M6bius selfmap T of D such that: 

(a) T ( - 1 ,  1) = % 

(b) IS(I o T)(x)[ _< 2p([x[) for all x �9 ( -1 ,  1). 

Proof'. If Zl, z2 lie on a diameter then T can be chosen to be a rotation. If not, 

using a rotation we may assume that the points Zl, z2 lie in the upper half-plane 

and that  ~, is symmetric with respect to the imaginary axis. Then for suitable 

0 < p < l ,  
z + i p  

T(z)  - 1 - ipz 
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takes ( -1 ,  1) to % We also have 

S ( f  o T) ( z )  = S f ( T z ) ( T ' z )  2, 

hence 

(1 - Izl=)~lS(f o T)(z)l  = (1  -Izl2)21(Sf)(Tz)llT'zl 2 

= I ( S f ) ( T z ) l ( 1 - I T z l 2 )  2 

< 2(1-ITzl2)2p(ITzl).  

Therefore it suffices to show that Ix[ < ITxl for x ~ ( -1 ,1 ) .  But 

x2 + p2 
]Tx[2 - 1 + p2x---------~ > x2" II 

Isr. J. Math. 

Returning to the proof of Theorem 2, suppose f ( z l )  = f(z2) for distinct points 

on OD. Let g = f o T with T as in Lemma 3. Then g(1) = g ( -1 ) ,  and by taking 

a M5bius transformation of g, we may assume that this common value is oo. An 

affine change allows us to normalize further so that g(0) = 0. We write 

// g(z) = v-2(r162 

where 
v I! + 2(Sg)v  = O. 

1 

As in the proof of Lemma 2, (1), we let 

(2) ~p(s) = v (H(s ) )  H = F -1. 
y (H(s ) )  ' 

This is defined on F ( - 1 ,  1) = R, and 

// (g o G)(s) = ~-2(t)  dt .  

The chain rule for the Schwarzian yields 

S(g o G)(s) = (Sg(z)  - SF(z ) ) (G ' ( s ) )  2, z = G(s). 

Hence for s E R,  Re{S(g o G)(s)} < 0, and a direct calculation gives 

I~(s) I" = q(s)~(s)  
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where 

q(s) : -~Re{S(g~  (~Im { (g~ o G) - - - - - -~(s)  } ) 2  >> 0 

(see [8]). We conclude that ]~1 is convex on R. Unless it is constant, it will be 

bounded below by a non-horizontal line, which, as in the prooof of Lemma 2, will 

imply that either (g o G)(oo) or (g o G) ( -oo )  is finite. This contradicts the fact 

that g(1) = g ( - 1 )  = oo. For this last double equality to happen the function I~1 

must be constant on R. But then q(s) - 0, which implies that 

~ I m { ( g ~  - 0 .  
(g  o a ) , "  ' j  

On the other hand, for s E ti., 

and we conclude that 

I~l' 1 {(goa)" } 
1~1 (s) = - ~ R e  (go~7)~(s) , 

(g o G)" (~ o o~) - - - - - - z  (~)  - o 

on R, hence everywhere on F(D). It follows that goG is an affine transformation 
and therefore g is Mhbius conjugate to F. This finishes the proof of Parts (A) 

and (B). 

To prove part (C) we proceed similarly. Suppose zl, z2 are distinct points on 

OD such that F(z l )  = F(z2). Let T2 be the Mhbius transformation provided by 

Lemma 3, and let T1 be a second Mhbius transformation such that TI(F(zl)) = 
TI(F(z2)) = oo. We conclude from Part  (A) that 7"1 oFoT2 is of the form ToE,  
T Mhbius. By taking Schwarzian derivatives we obtain 

S(T1 o F o T2) = S(F o T2) = ((SF) o T2)(T~) 2 = S(T o F) = SF , 

o r  

Hence for z = x0 real 

p(z) =p(T~(z))(T~z) ~ 

= I(1 - Xo~)2p(xo) l  

= I(1 - x~)2p(T2(xo))(T~(xo))~l 
= ( 1 - [ T 2 ( x o ) [ 2 ) 2 [ p ( T 2 ( x o ) ) [ .  
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Next ,  we saw in the proof  of L e m m a  3 tha t  unless T2 is a rota t ion,  IT2(xo)[ > 

Ixol, which by the monotonic i ty  p roper ty  (ii) implies t ha t  (1-x2)2p(x)  is constant  

for IXol < x _< IT2(xo)[. Thus  (1 - x2)2p(x) is constant  on ( - 1 ,  1) and therefore 

everywhere.  In other  words, 

# 
p(z) - (1 - z2) 2 

In this case the ex t remal  F can be computed  explicitly [4]: 

1 (1 + z ) '  - (1 - z )  v 
F ( z ) = ~ ( 1 + z ) , 7 7 ( 1  z ) ' '  

where ~ = lx/1-:--~- p. This  function satisfies the Ahlfors-Weil l  condit ion (2) and 

F(D)  is a bounded  quasidisk. In par t icular ,  F (1)  ~ ~ and F is not  of the form 

considered here. 

The  remaining case is when T2 is a rotat ion,  z ~ cz, with [c[ = 1. The  equat ion 

(2.5) yields 

; ( z )  = c p(cz) 

which, evaluated a t  z = 0, gives p(0) = 0 or c 2 = 1. If  p(0) = 0 then  p(z) =- O, 

and all maps  are MSbius. If  c 2 = 1 then c = -t-1, which implies tha t  the points  

Zl, z2 were +1  to begin with. This  finishes the proof  of Theorem 2. | 

Corol lary 1 is a direct consequence of Theorem 2. We now prove Theo rem 3 

on HSlder continuity. For this we first require an extension of L e m m a  1. 

LEMMA 4: Suppose F(1)  = co. It" [Sf(z)[ <_ 2p([z[), f " ( 0 )  = 0 and f is not 

MSbius conjugate to F, then f is bounded on D. 

Proof: I f  If(w)[ = oo for some w E OD, then  the function [qa(s)[ defined in (2) 

would have to be  constant  on a half  line, and hence S ( f  o F -1) = 0 there.  Thus  

S ( f  o F -1) - 0 on all of F ( D ) ,  so f o F -1 is a MSbius t r ans fo rmat ion  (in fact 

the identi ty),  a contradict ion.  | 

For the H51der continuity in the first pa r t  of Theo rem 3, let 5 > 0 be  such t ha t  

# + 25 < 1, and let e > 0 be small  enough so t ha t  

2(t, + 5) 
IS f (z ) l  _< ( i  - - iz l=)= 

for all 1 - e _< [z[ < 1. Let  w E cOD. Gehring and P o m m e r e n k e  produced  

a conformal  mapp ing  r of D onto a circular wedge ft C D, wi th  an arc of 
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OD centered at  w as one if its sides, and such tha t  1 - e < Izl for all z E f L  

Fur thermore ,  if the wedge is sufficiently narrow then  

2(p + 26) 
I s ( :  o ~')(~)1 -< 

(1 - I C I 2 )  2 

for all ( E D. 

Let T be a M6bius t r ans fo rmat ion  such tha t  the nmp g = T o f o r has 

g(0) = 0, g ' (0)  = 1 and g"(0) = 0. Corol lary 1 in [4] implies t ha t  g is HSlder 

continuous wi th  exponent  

(2.7) a = X/1 - (V + 25). 

We want  to conclude from here tha t  f is H51der continuous in ft wi th  the same 

exponent .  The  reflection principle implies tha t  r is analyt ic  in a ne ighborhood 

of r  hence it suffices to show tha t  f l  = f o ~b is H51der continuous. We 

write g = (a f l  + b ) / ( c f l  + d), ad - bc = 1, or 

dg - b 
(3) f l  -= 

ag - c " 

But  f l  is bounded  on b by L e m m a  4, which shows tha t  c / a  is not in the closure 

of g(D) .  I t  follows f rom (3) tha t  f l  is HSlder continuous in ~ as well. To conclude 

the HSlder cont inui ty everywhere,  just  observe tha t  a finite number  of wedges ft 

cover a ne ighborhood in D of OD. 

Next,  suppose tha t  x = 1 is a regular  singular point  of (7). To improve the 

HSlder exponent  for f we need the following l e m m a  on the order of vanishing of 

the solution at  1. 

LEMMA 5: Suppose  x = 1 is a regular singular po in t  o f  (7). Then the solut ion y 

o f  (7) satisfies 

y ( x )  ,~ (1 - x) ~, as x --~ 1, 

where ~ = (1 + Ix /T-~-  p ) /2 .  

Proo~ The  possible orders of vanishing at  x = 1 of the solutions of u" + pu = 0 

are given by the roots  of the initial equat ion 

which are 

tt m2 - m+-~ =0, 

7~1 -- , ' / ' / ' / 2  - -  
2 

1 -  v / i - -  # 

2 
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(see, e.g., [9]). Notice that 0 < m2 < 1/2 < ml _< 1. Since F(1) = f~ y -2 (x )dx  = 

oo, we conclude that y(1) vanishes to order ml.  II 

To finish the proof of Theorem 3 we go back to the proof of Theorem 2. There 

we saw that f ( D )  was a Jordan domain precisely when the convex function [qo(s)[ 

was non-constant. Thus for s > so there exist constants a, b with b > 0 such that 

]~(s)l > a + b ( s -  So). 

Hence 

or 

It follows that 

I(f o F-1) ' (s)[  
( a + b ( s - s o ) )  2 

F'(x) 
If(x)[ _ (a § b ( F ( x )  - So))  2 '  x = F ( s ) .  

[f'(x)[ = O(1 - x) lvq~-" -1 x ~ 1 

The same argument applied to f (e i~  gives 

l f ' (z)l  = O(1 - I z l )  - 1  tZl---~ 1. 

Now a standard technique of integrating along hyperbolic geodesics (see e.g. [8] 

or [4]) gives the desired conclusion. II 

Finally, since the extension of F to b is finite on OD \ { - 1 ,  1}, the same proof 

as before gives the local HSlder continuity of F in OD \ { - 1 ,  1}. 

Notice also that the H61der continuity is Lipschitz when # = 0, such as in (1.5) 

and (1.6). When F(1) < c~ the second part of Theorem 3 was obtained in [2] 

(Theorems 2 and 3). 
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