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Abstract—We discuss shaping with continuous and discrete in-
put distributions for the Stokes vector receiver (SVR). We use
the Forney method to derive tight analytical approximations to
the optimal continuous input distribution at high signal-to-noise
ratio (SNR). The Forney method analysis finds that an exponential
distribution in the intensity (corresponding to the Stokes parameter
S0) is the optimal continuous input distribution for thermal noise-
limited and amplifier noise-limited SVRs, providing ultimate shape
gains of 1.056 dB and πe/6 ≈ 1.533 dB, respectively. We also
perform numerical studies of discrete input distributions obtained
using the Blahut-Arimoto method or by sampling analytically de-
rived continuous distributions. We find that a sampled exponential
distribution in the intensity provides 0.078 dB and 0.165 dB
higher shape gains than a sampled Gaussian distribution of the SV
in the thermal noise-limited and amplifier noise-limited regimes,
respectively. We also compare the performance of the SVR to that
of a dual-polarization coherent receiver. We show that, owing to
noise enhancement, the SVR incurs an SNR penalty of about5.5dB
with respect to a coherent system that modulates three of the four
available degrees of freedom.

Index Terms—Fiber optic communication, probabilistic shaping,
stokes vector receiver.

I. INTRODUCTION

A STOKES vector receiver (SVR) decodes information by
detecting the Stokes parameters of a received electric field.

While a local oscillator (LO) can be used to detect the Stokes
parameters of optical signals [1], this paper studies a receiver that
does not employ an LO [2]. The SVR provides up to three inde-
pendent degrees of freedom per symbol [3], [4] and is a hybrid of
noncoherent and differentially coherent detection [5]. The SVR
provides an intermediate solution between one-dimensional
(1-D) intensity modulation with direct detection (IM/DD) and
four-dimensional (4-D) standard coherent detection (SCD), as
the SVR enables more degrees of freedom than IM/DD while
avoiding the complexity associated with an LO at the receiver.
These performance and complexity tradeoffs have led the SVR
to be considered for short-reach, high-capacity links, such as
inter- or intra-data center interconnects [6].

Probabilistic shaping (PS) involves the optimization of an
input distribution to maximize the achievable information rate

Manuscript received 23 February 2023; revised 13 June 2023 and 18 July
2023; accepted 20 July 2023. Date of publication 27 July 2023; date of current
version 16 November 2023. This work was supported by the National Science
Foundation under Grant DGE-1656518. (Hongxiang Jia and Ethan Liang con-
tributed equally to this work.) (Corresponding author: Ethan Liang.)

The authors are with the E. L. Ginzton Laboratory, Department of Elec-
trical Engineering, Stanford University, Stanford, CA 94305 USA (e-mail:
jiahx20@stanford.edu; emliang@stanford.edu; jmk@ee.stanford.edu).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/JLT.2023.3299306.

Digital Object Identifier 10.1109/JLT.2023.3299306

on a given channel. Shannon analyzed the average power-
constrained additive white Gaussian noise (AWGN) channel and
found that the channel capacity is achieved using a Gaussian
input distribution [7]. Forney introduced an alternate method
for computing the optimal input distribution based on con-
structing a high-dimensional lattice code and choosing the set
of minimal energy signal points [8]. Forney’s method yields
an analytical approximation to the optimal continuous input
distribution in the high signal-to-noise (SNR) regime. For the
average power-constrained AWGN channel, Forney’s method
finds the optimized input distribution to be Gaussian.

Shaping for optical communications has been studied since
the late 1990s. Some early works used the Forney method to find
the optimal input distributions for IM/DD channels subject to
constraints on the average transmitted power. For thermal noise-
limited IM/DD channels, the optimal distribution at high SNR is
an exponential distribution in the intensity [9], while for ampli-
fier noise-limited IM/DD channels, it is a half-Gaussian distri-
bution in the electric field magnitude [10]. Another early work
studied lattice codes and average power-minimizing bounding
regions for thermal noise-limited IM/DD channels [11]. In
coherent optical systems using digital signal processing, effi-
cient joint shaping and error correction encoding enabled by
probabilistic amplitude shaping (PAS) [12] has facilitated the
widespread adoption of shaping [13].

Shaping for SVR systems that encode information in the three
Stokes parameters {S1, S2, S3}, which is the most common
practice, was studied in [2], [14]. The thermal noise-limited
regime was considered in [2] and the amplifier noise-limited
regime was considered in [14]. These two papers found the
optimal input distribution considering a constraint on the trace
of the covariance matrix of the transmitted Stokes vector (SV),
which is equivalent to a constraint on the average detected
electrical power. A multivariate Gaussian distribution of the
transmitted SV was found to be the optimal input distribution in
both noise regimes.

In this paper, we study shaping for systems that encode
information in the three Stokes parameters {S1, S2, S3}, under
constraints on the average transmitted optical power, for both
thermal noise-limited and amplifier noise-limited SVRs. Using
the Forney method, we derive tight analytical approximations
to the optimal continuous input distribution at high SNR. We
find that an exponential distribution in the intensity (corre-
sponding to the Stokes parameter S0) is the optimal continuous
input distribution for both thermal noise-limited and amplifier
noise-limited SVRs, providing ultimate shape gains of 1.056 dB
and πe/6 ≈ 1.533 dB, respectively. We also perform numer-
ical studies of finite discrete input distributions obtained by
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Fig. 1. Block diagram of an optical communication system that modulates and detects symbols using a Stokes vector modulator and Stokes vector receiver,
respectively. The components in the dashed box are used only in the amplifier noise-limited case and are omitted in the thermal noise-limited case. The symbols
with the “(th)” and “(amp)” superscripts denote the symbols for the thermal and amplifier noise-limited cases, respectively. FEC: forward error correction, PS:
probabilistic shaping, SV: Stokes vector, OA: optical amplifier, BPF: bandpass filter, MIMO: multiple-input multiple-output.

the Blahut-Arimoto (BA) method or by sampling analytically
derived continuous distributions. We find that a sampled ex-
ponential distribution in the intensity provides 0.078 dB and
0.165 dB higher shape gain than a sampled multivariate Gaus-
sian distribution in {S1, S2, S3} in the thermal noise-limited
and amplifier noise-limited regimes, respectively. We compare
the performance of the SVR to a reference dual-polarization
coherent receiver, showing that because of noise enhancement,
the SVR incurs an SNR penalty of about 5.5 dB with respect to
a coherent system that modulates only three of the four available
degrees of freedom. Noise enhancement in the SVR occurs
because each detected output contains beat-noise terms from
both quadratures in both polarizations, whereas each output of
the reference coherent receiver is corrupted only by noise in the
corresponding quadrature and polarization.

While we study systems that modulate information onto all
three Stokes parameters {S1, S2, S3}, alternative SVR encoding
and detection strategies have been studied. Some system archi-
tectures transmit an unmodulated carrier on one of the polariza-
tions and modulate information onto the other polarization. The
carrier is used to recover the transmitted electric field on the other
polarization, achieving 2-D modulation and enabling techniques
such as electronic compensation of group velocity dispersion
(GVD) [3], [15], [16]. An additional degree of freedom can
be achieved by differentially encoding and decoding successive
three-dimensional (3-D) Stokes symbols [17]. These alternative
schemes are beyond the scope of this work.

The remainder of this paper is organized as follows. Section II
presents the SVR system architecture with shaping and derives
discrete-time channel models for the thermal noise-limited and
amplifier noise-limited regimes. Section III uses the Forney
method to analytically approximate the optimal continuous
input distribution in both noise regimes. Section IV presents
numerical results on finite input constellations for the optimal
input distribution and various sampled analytical distributions.
Section V analyzes the properties of the optimized discrete input
distribution and compares the SVR against a reference coherent
receiver. Section VI concludes the paper.

II. SVR SYSTEM ARCHITECTURE WITH SHAPING

This section presents our model for optical communication
systems employing SVRs. Section II-A provides an overview of
the model while Section II-B derives the discrete-time channel
model and introduces the associated notation.

Fig. 2. Architecture of the (a) transmitter and (b) receiver for the SVR. IQ:
in-phase and quadrature, PBS/PBC: polarization beam splitter/combiner, B-PD:
balanced photodetector.

A. Overview of the Stokes Vector Receiver

Fig. 1 shows a block diagram of a generic optical communi-
cation system that transmits and receives information using the
Stokes parameters. The system begins by performing forward
error correction (FEC) and PS encoding. Constant composition
distribution matching and sphere shaping are two commonly
used shaping methods for mapping information bits into a se-
quence of symbols with a specified target probability distribu-
tion [18]. This paper does not presume the use of a particular
shaping architecture but assumes that the PS encoder can achieve
any desired target probability distribution.

The sequence of shaped symbols is encoded onto the
Stokes parameters of the electric field using the SV modulator.
Fig. 2(a) shows the structure of the SV modulator. The SV
S = [S1, S2, S3]

T is modulated by setting the corresponding
Jones vectorE = [E1, E2]

T = [E1I , E1Q, E2I , E2Q]
T . The SV

can be expressed in terms of its corresponding Jones vector by

S0 = |E1|2 + |E2|2, (1)

S1 = |E1|2 − |E2|2, (2)

S2 = 2Re (E1E
∗
2) , (3)

S3 = 2Im (E1E
∗
2) . (4)
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Only three components of the SV are independent, providing
up to three degrees of freedom for modulation. {S1, S2, S3} are
real, bipolar parameters and are used for modulation [2].S0 is the
optical power of the SV, and is related to the other three Stokes
parameters by S0 =

√
S2
1 + S2

2 + S2
3 . S0 is assumed to be non-

negative throughout the paper, i.e.,S0 ≥ 0. The three modulated
SV parameters are encoded onto minimum-bandwidth pulses in
the optical electric field and therefore occupy a bandwidth B
about the carrier frequency. The modulated signal is coupled
into the single-mode fiber and is transmitted to the receiver. The
received signal is optionally amplified by an optical amplifier
(OA), followed by an optical bandpass filter (BPF) with band-
width B about the carrier frequency.

The SV receiver transforms the Stokes parameters of the
received electric field into three currents. Fig. 2(b) shows the
structure of the SV receiver. In the absence of noise, this specific
SV receiver configuration generates three currents proportional
to the three received Stokes parameters. While alternative SVR
architectures exist [2], [15], [17], we analyze the structure in
Fig. 2(b) for the following reasons. This receiver configura-
tion has the fewest electrical outputs and consequently uses
the fewest analog-to-digital converters. This configuration also
directly outputs the received SV without additional processing,
resulting in identical noise distributions on each of the detected
Stokes parameters. The other SV receivers analyzed in [2], [15],
[17] do not directly output signals proportional to the received
Stokes parameters or may have different noise distributions.

The currents generated by the SV receiver are subsequently
converted to voltages by a transimpedance amplifier (TIA),
which is typically the dominant source of thermal noise. Each
electrical current is filtered by an electrical low-pass filter
with cutoff frequency B and sampled at the symbol rate. A
memoryless multiple-input multiple-output (MIMO) equalizer
compensates for the effects of the fiber. The equalizer output
is transformed to the decoded bit sequence by the FEC & PS
decoder.

The model does not include distortion arising from GVD,
polarization mode dispersion, Kerr nonlinearity, polarization-
dependent loss, or polarization-dependent gain. The SVR system
model does not transmit a carrier and is therefore especially
suited to short-reach links that do not require equalization of
GVD. We study the regimes in which the dominant noise is either
(a) thermal noise from the TIA or (b) amplified spontaneous
emission (ASE) from the optical amplifier.

B. Channel Model and SNR Definition

In the continuous-time thermal noise-limited model, the TIA
output voltage includes a continuous-time Gaussian noise with
one-sided power spectral density N0. The electrical signal is
filtered by an ideal low-pass filter with a cutoff frequency equal to
the symbol rate B and sampled at the symbol rate. The variance
of the discrete-time noise sample is σ2

th = N0B. The discrete-

time thermal noise-limited model for the received SV S
(th)
R is

given by

S(th)
R = HS+N(th), (5)

where H is a 3× 3 orthogonal rotation matrix, S = [S1, S2,

S3]
T is the transmitted SV, and N(th) = [N

(th)
1 , N

(th)
2 , N

(th)
3 ]T is

an AWGN vector with covariance matrix cov{N(th)} = σ2
thI3.

H is assumed to have channel gain factor ς , which is defined by
HHH = ςI3.

The effects of the channel gain and rotation matrix can be
inverted by left multiplying the detected signal by HH/ς . It is
assumed that the receiver has perfect knowledge of H, which
can be obtained in practice by blind channel estimation [2].
After scaling and de-rotation, the demodulated vector S(th)

D =

[S(th)
D,1, S

(th)
D,2, S

(th)
D,3]

T is given by

S(th)
D =

1

ς
HHS(th)

R = S+
1

ς
HHN(th). (6)

The SNR in the thermal noise-limited regime, SNR(th), is
defined as the ratio of the average detected electrical signal
power to average noise power per real dimension. The average
received electrical signal power is 〈‖S‖22〉 = 〈S2

0〉, where 〈·〉
denotes the expected value operator. The average noise power
per real dimension is 1

3 tr{cov{ 1
ςH

HN(th)}} = 1
ς σ

2
th, resulting

in

SNR(th) =
ς〈S2

0〉
σ2

th
. (7)

We now define the discrete-time channel model in the ampli-
fier noise-limited regime. A similar derivation of the discrete-
time channel model in the amplifier noise-limited regime is given
in [14]. The dominant noise source is ASE noise at the output
of the optical amplifier, which is modeled by a complex white
Gaussian noise process with one-sided power spectral density
SASE in each of the two polarizations. Suppose an optical signal
with optical power Pin and ASE noise are input to the SVR
depicted in Fig. 2(b). Using the monochromatic signal approxi-
mation, one can show that the signal-spontaneous beat noise at
the output of each balanced photodetector has a one-sided power
spectral density 4R2

dPin
SASE
2 and is uniform over the frequency

interval [0, B/2] [19]. Rd is the responsivity of the photodetec-
tor, Pin is the power of the signal input to the photodetector, and
B is the bandwidth of the optical bandpass filter following the
amplifier. We assume throughout this paper that Rd = 1A/W.
The current generated by the photodetector is filtered using an
ideal electrical low-pass filter with cutoff frequencyB. The total
power of the signal-spontaneous beat-noise after the electrical
low-pass filter is given by 4R2

dPin
SASE
2

B
2 .

Now suppose a discrete-time optical signal with power Pin

and a circularly symmetric Gaussian random vector with vari-
ance σ2

amp in each real dimension are input to the SVR de-
picted in Fig. 2(b). The power of the discrete-time signal-
spontaneous beat noise at the output of each photodetector
would be 4R2

dPinσ
2
amp. Equating the powers of the signal-

spontaneous beat noise under the monochromatic approxima-
tion in the continuous-time and discrete-time models, we set
σ2

amp = 1
4SASEB.

In the amplifier noise-limited discrete-time model, the ASE
noise is modeled as a circularly symmetric complex AWGN vec-
tor N(amp) = [N1, N2]

T = [N1I + jN1Q, N2I + jN2Q] with
cov{N(amp)} = 2σ2

ampI2. The received electric field vector
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E
(amp)
R is given by

E
(amp)
R = UE+N(amp) (8)

= E′ +N(amp), (9)

where E = [E1, E2]
T is the transmitted electric field, E′ =

[E ′
1, E

′
2]

T is the noiseless received electric field, and U is a
scaled unitary matrix satisfying UUH =

√
ςI2.

The SNR in the amplifier noise-limited regime SNR(amp) is
defined as the average received optical power divided by optical
noise power in one polarization and is given by

SNR(amp) =

√
ς
〈√

S2
1 + S2

2 + S2
3

〉
2σ2

amp
=

√
ς〈S0〉
2σ2

amp
. (10)

After detection, the received Stokes parameters are

S(amp)
R = HS+ Ň(amp) (11)

= S′ + Ň(amp), (12)

where S′ = [S ′
1, S

′
2, S

′
3]

T is the SV of the noiseless re-
ceived electric field after transformation by U and Ň(amp) =

[Ň
(amp)
1 , Ň

(amp)
2 , Ň

(amp)
3 ]T is the noise vector after passing both

the signal and the noise through the 90◦ optical hybrid. Unitary
matrices scaled by gain factor

√
ς transform to Muller matrices

H with channel gain factor ς [20].
To derive an expression for Ň(amp), we examine how the

additive noise beats with the received signal electric field. Let
[E ′

1, E
′
2]

T = [E ′
1I + jE ′

1Q, E
′
2I + jE ′

2Q]
T . Expanding S(amp)

R

as S(amp)
R = [S(amp)

R,1 , S(amp)
R,2 , S(amp)

R,3 ]T , we have

S(amp)
R,1 = S ′

1 + Ň
(amp)
1 , (13)

S(amp)
R,2 = S ′

2 + Ň
(amp)
2 , (14)

S(amp)
R,3 = S ′

3 + Ň
(amp)
3 , (15)

where

Ň
(amp)
1 = 2N1IE

′
1I + 2N1QE

′
1Q − 2N2IE

′
2I

− 2N2QE
′
2I +N2

1I +N2
1Q −N2

2I −N2
2Q, (16)

Ň
(amp)
2 = 2N1IE

′
2I + 2N1QE

′
2Q + 2N2IE

′
1I

+ 2N2QE
′
1Q + 2N1IN2I + 2N1QN2Q, (17)

Ň
(amp)
3 = −2N1IE

′
2Q + 2N1QE

′
2I + 2N2IE

′
1Q

− 2N2QE
′
1I + 2N1QN2I − 2N1IN2Q, (18)

S ′
1 = E ′2

1I + E ′2
1Q − E ′2

2I − E ′2
2Q, (19)

S ′
2 = 2E ′

1IE
′
2I + 2E ′

1QE
′
2Q, (20)

S ′
3 = 2E ′

1IE
′
2Q + 2E ′

1QE
′
2I . (21)

The random variables Ň (amp)
1 , Ň

(amp)
2 , and Ň

(amp)
3 each con-

tain terms consisting of the product of two Gaussian random vari-
ables, which results in a non-Gaussian noise distribution. In prac-
tical optically amplified IM/DD systems, the signal-spontaneous

beat noise dominates and the spontaneous-spontaneous beat
noise can often be ignored. Under this assumption, the noise
vector Ň(amp) can be approximated by the noise vector Ñ(amp) =

[Ñ
(amp)
1 , Ñ

(amp)
2 , Ñ

(amp)
3 ]T , where

Ñ
(amp)
1 = 2N1IE

′
1I + 2N1QE

′
1Q − 2N2IE

′
2I

− 2N2QE
′
2I , (22)

Ñ
(amp)
2 = 2N1IE

′
2I + 2N1QE

′
2Q + 2N2IE

′
1I

+ 2N2QE
′
1Q, (23)

Ñ
(amp)
3 = −2N1IE

′
2Q + 2N1QE

′
2I + 2N2IE

′
1Q

− 2N2QE
′
1I . (24)

Computing the covariance matrix of Ñ(amp), we get

cov
{
Ñ(amp)

}
= 4σ2

amp〈‖UE‖22〉I3
= 4σ2

amp
√
ς〈S0〉I3, (25)

where S0 = E2
1I + E2

1Q + E2
2I + E2

2Q and I3 is the 3× 3 iden-
tity matrix. Including the effects of spontaneous-spontaneous
beat noise and after compensating for the rotation matrix, the
demodulated vectorS(amp)

D = [S(amp)
D,1 , S(amp)

D,2 , S(amp)
D,3 ]T is given by

S(amp)
D =

1

ς
HHS(amp)

R = S+
1

ς
HHŇ(amp). (26)

In the high-SNR regime, Ň(amp) ≈ Ñ(amp). The covariance ma-
trix of the approximate noise vector 1

ςH
HÑ(amp) is

cov

{
1

ς
HHÑ(amp)

}
= 4

σ2
amp〈S0〉√

ς
I3. (27)

III. SHAPING WITH CONTINUOUS UNCONSTRAINED

CONSTELLATIONS

In this section, we use the Forney method [8] to derive analyt-
ical approximations to the optimal continuous input distribution
in the thermal noise-limited and amplifier noise-limited regimes.
We begin with a brief overview of the Forney method. More
thorough presentations can be found in [8] and [10]. We then
apply the technique to the discrete-time SVR channel models
derived in Section II-B in both noise regimes.

A. Forney Method Overview

The Forney method yields tight analytical approximations to
the optimal continuous input distribution at high SNR [8]. The
first step of the method is to choose the coordinate system in
which to construct a high-dimensional lattice code. The signal
points that constitute the lattice code are the N -fold Cartesian
product of N symbols from consecutive, disjoint time intervals.
The set of possible symbols in any one symbol interval is
described in a set of natural coordinates [10]. This is a coordinate
system in which the binary error probability between adjacent
signal points is a decreasing function of the Euclidean distance
between them, at least asymptotically at high SNR. Signal points
are uniformly spaced in the natural coordinates to equalize the
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binary error probabilities between pairs of nearest neighbors.
Since the points are equally spaced, when we describe a sequence
of N symbols by an N -fold Cartesian product of the natural
coordinates, each point occupies an equal volume.

The natural coordinates are typically determined by the phys-
ical signal attribute being detected and by the noise statistics
and their dependence on the signal. In the coherent AWGN
channel, the natural coordinate for a symbol interval is the
(complex-valued) field amplitude [8], since the noise is Gaussian
and signal-independent. In the thermal noise-limited IM/DD
channel, the natural coordinate for a symbol interval is the
(non-negative) intensity [9], since the noise is Gaussian and
signal-independent in the domain of photocurrent, which is pro-
portional to the intensity. In the amplifier noise-limited IM/DD
channel, the dominant noise at high SNR is signal-spontaneous
beat noise, whose variance scales linearly with signal intensity.
The binary error probabilities between neighboring signals are
equalized if the intensities form a quadratic progression, i.e.,
if the field magnitudes form a linear progression. Hence, the
natural coordinate for a symbol interval is the (non-negative)
field magnitude [10].

After constructing an infinite lattice, the code is constrained
to include only points lying within a bounding region chosen
to minimize the average physical energy of the enclosed signal
points. The physical energy associated with a signal point is a
function of its coordinates. For example, in the thermal noise-
limited IM/DD channel, the physical energy corresponds to the
L1 norm of the intensity [9], while in the amplifier noise-limited
IM/DD channel, it corresponds to the squared L2 norm of the
field magnitude [10]. An optimal bounding region encloses a set
of signal points with the property that the energy of each point
within or on the bounding region is no greater than any point
outside the bounding region.

The continuous approximation replaces a finite-dimensional
lattice code enclosed by a bounding region with a uniform
continuous distribution over the region enclosed by the same
bounding region [8]. The number of points enclosed in the lattice
code is approximated by the volume enclosed by the bounding
region and determines the maximum achievable information
rate. The average power of the lattice code can also be approxi-
mated by a function of the enclosed continuous region.

Under the continuous approximation, the total coding gain of
the lattice code can be written as the product of a coding gain and
a shape gain [8]. The shape gain is a measure of the improvement
in energy efficiency obtained by constellation shaping and is
defined as the ratio of the average power of a shaped constellation
to a reference constellation under the constraint that the volumes
occupied by the two constellations are equal. We compute the
shape gain using the continuous approximation in the limitN →
∞, where the lattice code describes an infinitely long symbol
sequence.

B. Thermal Noise-Limited Regime

In the thermal noise-limited regime, the natural coordinates
for a symbol interval are [S1, S2, S3]

T , since the noise in this
domain is signal-independent and additive, and the binary error

probability for a maximum-likelihood (ML) receiver can be
expressed as a function of the Euclidean distance:

Pe(S1,S2) = Q

(
‖S1 − S2‖22

2σ2
th

)
, (28)

where S1 and S2 are two arbitrary 3-D Stokes symbols.
Let S(N) be a length-3N vector of Stokes parameters formed

by concatenating N time-disjoint 3-D Stokes symbols, i.e.,
S(N) = [S1,1, S1,2, S1,3, S2,1, . . . , SN,2, SN,3]. In addition, let
C(th) be a 3N -D lattice of signal points embedded in a 3N -D
vector space with Stokes parameters coordinates. The total op-
tical power of S(N) is

∑N
i=1 Si,0. The optimal bounding region

encloses all signal points with power at most P
(th)
peak. The set

of minimum-power signal points is the subset of signal points
{S(N) ⊆ C(th)} enclosed by the bounding region

R(th)
shaped

(
N,P

(th)
peak

)
=

{
S(N)

∣∣∣∣∣
N∑
i=1

Si,0 = P
(th)
peak

}
. (29)

For a fixed N and P
(th)
peak, the set of signal points enclosed by

R(th)
shaped(N,P

(th)
peak) can be partitioned by conditioning on SN,0 =

s0. The volume of the 3N -D space bounded byR(th)
shaped(N,P

(th)
peak)

can therefore be recursively computed by

V
(th)

shaped

(
N,P

(th)
peak

)

=

∫ P
(th)
peak

0

V
(th)

shaped

(
N − 1, P

(th)
peak − s0

)
4πs20ds0. (30)

The closed-form solution for (30) is given by

V
(th)

shaped

(
N,P

(th)
peak

)
=

(
P

(th)
peak

)3N
(4π)N

N∏
i=1

B(3, 3i− 2)

=
(
P

(th)
peak

)3N (8π)N

Γ(3N + 1)
, (31)

where B is the beta function (also sometimes called the Euler
integral of the first kind).

The induced probability density function (PDF) in f
S

(N)
1,0

(s0)

is given by f
S

(N)
1,0

(s0) =
V

(th)
shaped(N−1,P−s0)4πs

2
0

V
(th)

shaped(N,P )
. By symmetry,

f
S

(N)
1,0

(s0) = f
S

(N)
2,0

(s0) = · · · = f
S

(N)
N,0

(s0). The average power

per basic 3-D SV symbol is calculated to be

P
(th)
shaped =

∫ P
(th)
peak

0 V
(th)

shaped

(
N − 1, P

(th)
peak − s0

)
4πs30 ds0

V
(th)

shaped

(
N,P

(th)
peak

)

=
3

3N + 1
P

(th)
peak. (32)

We now proceed to compute the induced marginal distribu-
tion of each basic 3-D SV symbol. Let f

S
(N)
i

(s1, s2, s3), i =

1, . . . , N be the induced marginal distribution of S(N)
i , where

S
(N)
i = [Si,1, Si,2, Si,3]. Due to the symmetry of each 3-D

Stokes symbol in S(N), f
S

(N)
1

(s1, s2, s3) = f
S

(N)
2

(s1, s2, s3) =
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· · · = f
S

(N)
N

(s1, s2, s3). To simply the notation, the following

analysis focuses on f
S

(N)
1

(s1, s2, s3), but the results apply

equally to all 3-D symbols, S(N)
i ∈ S(N), i = 1, . . . , N .

Conditioned on a fixed optical power for a basic 3-D SV
symbol, the probability density assigned to 3-D symbols
with the same optical power must be equal. This can be
seen from the recursive construction in (30). We therefore
have f

S
(N)
1 |S(N)

1,0
(s1, s2, s3|s0) = f

S
(N)
1 |S(N)

1,0
(s′1, s

′
2, s

′
3|s0) =

1/4πs20. Expanding f
S

(N)
1

(s1, s2, s3), we get

f
S

(N)
1

(s1, s2, s3) = f
S

(N)
1 |S(N)

1,0
(s1, s2, s3|s0)fS(N)

1,0
(s0)

=
V

(th)
shaped

(
N − 1, P

(th)
peak − s0

)
V

(th)
shaped

(
N,P

(th)
peak

) . (33)

Multiplying (33) by the normalization constant
V

(th)
shaped(N,P

(th)
peak)/V

(th)
shaped(N − 1, P

(th)
peak) and substituting in

(32), we get

f
S

(N)
1

(s1, s2, s3) ∝
V

(th)
shaped

(
N − 1, P

(th)
peak − s0

)
V

(th)
shaped

(
N − 1, P

(th)
peak

)

=

(
1− 3s0

P
(th)
shaped × (3N + 1)

)3N−3

. (34)

As N → ∞, the induced probability f
S

(N)
1

(s1, s2, s3) ∝
exp(−3s0/P

(th)
shaped). The induced marginal distribution is there-

fore an exponential distribution in S0, and is given by

f
S

(N)
1

(s1, s2, s3) ∝ exp

(
−s0

β

)
. (35)

The shape parameter β is a constant that modifies the PDF by
dividing the argument of the exponent, enabling the generation
of a family of PDFs that converge to the uniform distribution as
β increases.

1) Shape Gain: In the absence of shaping, the distribution
of the constituent 3-D constellation is a discrete uniform distri-
bution. Under the continuous approximation, this corresponds
to a continuous uniform distribution in Stokes spaces on each
dimension of the transmitted vector, i.e., Si,j ∼ U(−A,A), i =
1, . . . , N, j = 1, 2, 3. The reference bounding region in the ther-
mal noise-limited case is given by

R(th)
ref (N,A) =

⎧⎪⎨
⎪⎩S(N)

∣∣ max
i∈{i,...,N}
j∈{1,2,3}

|Si,j | = A

⎫⎪⎬
⎪⎭ , (36)

where A is the largest absolute value taken by any of the Stokes
parameters. The volume enclosed by R(th)

ref (N,A) is

V
(th)

ref (N,A) = (2A)3N . (37)

Equating (31) and (37) and using Stirling’s approximation
(Γ(3N + 1))1/3N ∼ (6πN)1/6N ( 3N

e ) yields

P
(th)
peak = 2A

(6πN)1/6N
(

3N
e

)
3
√
8π

. (38)

The optical power per 3-D SV symbol of a length-3N vector
of Stokes parameters is given by

P
(th)
ref = E

[√
S2
1,1 + S2

1,2 + S2
1,3

]
. (39)

We were unable to find a simple, closed-form expression for
(39) [21], [22]. Using Jensen’s inequality to compute an upper
bound yields

P
(th)
ref ≤

√
E
[
S2
1,1 + S2

1,2 + S2
1,3

]
= A. (40)

In addition to this upper bound, we estimated P
(th)
ref by nu-

merically approximating the distribution of S2
1,1 + S2

1,2 + S2
1,3

and computing the expectation and by performing a Monte
Carlo simulation. The results of both methods coincided with
P

(th)
ref ≈ 0.961A. Using (32) and (38), the ratio ofP (th)

ref toP (th)
shaped

as N → ∞ yields

lim
N→∞

P
(th)
ref

P
(th)
shaped

≈ 0.961
3
√
πe

3
= 1.056 dB (41)

≤
3
√
πe

3
= 1.23 dB. (42)

(41) results from the numerical approximation of P
(th)
ref while

(42) uses (40).

C. Amplifier Noise-Limited Regime

We begin by defining a nonlinear transformation from 3-D SV
space to a 3-D scaled SV space. Our analysis assumes operation
at high SNR and that the Gaussian noise approximation holds,
i.e., Ň(amp) ≈ Ñ(amp). We show that the 3-D scaled SV space
is the natural coordinate system in the amplifier noise-limited
regime. We then find the induced distribution in 3-D scaled SV
space, derive the induced distribution in the original SV space,
and compute the ultimate shape gain.

1) Natural Coordinates: We define X = [X1, X2, X3] to be
a 3-D scaled Stokes symbol, where X1, X2, X3 are the corre-
sponding scaled Stokes parameters. X is defined in terms of S
by the following transformation:

[X1, X2, X3]
T =

[S1, S2, S3]
T

√
S0

=
[S1, S2, S3]

T

4
√

S2
1 + S2

2 + S2
3

. (43)

Consider two arbitrary 3-D scaled Stokes symbolsX1 andX2

that correspond to the 3-D Stokes symbols S1 and S2. Using a
correlation receiver with the equal-crossover error-probability
decision threshold

‖S2‖1/22

(
ST
2 S1 − ‖S1‖22

)
+ ‖S1‖1/22

(
‖S2‖22 − ST

1 S2

)
‖S1‖1/22 + ‖S2‖1/22

,

(44)
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the binary error probability is given by

Pe (S1,S2) = Q

(
‖S1 − S2‖2

2σamp(
√

S1,0 +
√

S2,0)

)
. (45)

We further assume that the signal points are sufficiently far
from the origin that the square roots of the transmitted optical
powers of S1 and S2 are approximately equal, i.e.,

√
S1,0 ≈√

S2,0. Using this approximation, we get

Pe (S1,S2) ≈ Q

(
1

4σamp
‖X1 −X2‖2

)
. (46)

The binary error probability (46) depends on S1 and S2 in terms
of the Euclidean distance between the corresponding scaled
symbols X1 and X2. We conclude that [X1, X2, X3]

T are the
natural coordinates to employ in the Forney method.

2) Induced 3-D Distribution: Let X(N) be a length-3N
vector of scaled Stokes parameters formed by concatenating
N time-disjoint 3-D scaled SV symbols, i.e., X(N) = [X

(N)
1 ,

X
(N)
2 , . . . ,X

(N)
N ] = [X1,1, X1,2, X1,3, X2,1, . . . , XN,2, XN,3].

The total optical power of X(N) is
∑N

i=1 X
2
i,0, where

Xi,0 =
√

X2
i,1 +X2

i,2 +X2
i,3.

Let C(amp) be a 3N -D lattice of signal points embedded in a
3N -D vector space with scaled Stokes parameters coordinates.
The set of length-3N vectors of scaled Stokes parameters with
peak optical power at most P (amp)

peak is the subset of signal points

{X ⊆ C(amp)} enclosed by the bounding region

R(amp)
shaped

(
N,P

(amp)
peak

)
=

{
X(N)

∣∣∣ ∥∥∥X(N)
∥∥∥2

2
= P

(amp)
peak

}
. (47)

The spherical bounding region described in (47) is analogous
to the bounding region described in [10], except for the nonnega-
tive orthant constraint. Slightly adapting the procedure described
in [10], one can show that the induced marginal distribution on
X

(N)
1 is a Gaussian distribution as N → ∞.
The transformation from Stokes space to the natural coordi-

nates defined in (43) has an inverse transformation

[S1, S2, S3]
T =

√
X2

1 +X2
2 +X2

3 [X1, X2, X3]
T . (48)

Using (48), the induced marginal PDF in Stokes space can be
computed as

f
S

(N)
1

(s1, s2, s3) = fX1,X2,X3

(
1

s0
[s1, s2, s3]

T

)
|J| , (49)

where |J| is the Jacobian determinant of (43). Using the matrix
determinant lemma, it can be shown that

|J| = 1

s
3/2
0

∣∣∣∣I3 − 1

2s20
S(N)

(
S(N)

)T
∣∣∣∣ = 1

2s
3/2
0

. (50)

The induced distribution on the basic 3-D SV symbol is given
by

f
S

(N)
1

(s1, s2, s3) ∝ exp(−s0/β)

s03/2
. (51)

We note that the previous analysis uses the approximations
given in (25) and (46), which are valid in the high-SNR regime.

In this regime, the exponential factor in (51) dominates. We
therefore conclude that the induced distribution is closely ap-
proximated by an exponential distribution of S0.

3) Shape Gain: Without shaping, each Stokes symbol is
chosen uniformly and independently along each dimension in
the natural coordinates over the interval [−A,A]. The reference
bounding region in the amplifier noise-limited case is given by

R(th)
ref (N,A) =

⎧⎪⎨
⎪⎩X(N)

∣∣∣ max
i∈{i,...,N}
j∈{1,2,3}

|Xi,j | = A

⎫⎪⎬
⎪⎭ . (52)

The volume enclosed by the reference constellation bounded
by (52) is given by

V
(amp)

ref (N,A) = (2A)3N . (53)

The volume enclosed by the shaped constellation bounded by
(47) is given by [10]

V
(amp)

shaped

(
N,P

(amp)
peak

)
=

π3N/2

Γ(3N/2 + 1)

(
P

(amp)
peak

)3N/2

. (54)

Equating (53) and (54) and using Stirling’s approximation
(Γ(3N/2 + 1))2/3N ∼ (3πN)1/3N 3N

2e , we get

P
(amp)
peak =

6N
πe

A2(3πN)1/3N . (55)

The average power per basic 3-D symbol of a 3N -D
vector drawn uniformly from the signal points enclosed by
R(amp)

shaped(N,P
(amp)
peak ) is given by

P
(amp)
shaped =

3

3N + 2
P

(amp)
peak . (56)

The average power per basic 3-D symbol of a3N -D vector drawn
uniformly from the signal points enclosed by R(amp)

ref (N,A) is

P
(amp)
ref = A2. Taking the ratio of P (amp)

ref to P
(amp)
shaped, substituting

in (55), and taking the limit, we get

lim
N→∞

P
(amp)
ref

P
(amp)
shaped

=
πe

6
≈ 1.533 dB, (57)

which coincides with the ultimate shape gain in [10].

IV. SHAPING WITH DISCRETE FINITE CONSTELLATIONS

The Forney method analysis in Section III presumes the use
of high-density discrete constellations that can be approximated
well by continuous distributions. In practice, however, many
optical links are subject to strong complexity constraints and use
constellations with a limited number of points. In this section,
we conduct numerical studies of PS on finite input distributions.
We begin by explaining the fundamentals of the BA method. We
then distinguish 3-D PS from independent 1-D PS and present
several different shaping schemes. We conclude the section with
a presentation of the shape gain achieved under various input
distribution and encoding schemes.
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A. Numerical Computation of the Optimal Input Distribution

The BA method is a numerical algorithm to compute an
input distribution that maximizes the mutual information (MI)
for arbitrary discrete memoryless channels [23], [24]. The BA
method can be extended to include an average power constraint
and subsequent references to the BA method presume an average
power constraint.

The BA method requires a discrete-time channel model.
Equations (6) and (26) are used as the models for the thermal
noise-limited and amplifier noise-limited cases, respectively.
Under the use of a finite input constellation, each of the two
channels is described by a conditional PDF. An (8× 8× 8) input
constellation is adopted for all numerical simulations using 3-D
modulation, resulting in a maximum MI of 9 bits per 3-D SV
symbol.

We quantize the continuous-valued output of the channel
using a (24× 24× 24) grid. The number of intervals in the grid
is obtained using the optimization procedure described in [25]
to reduce estimation error. With a fixed input and output constel-
lation, the corresponding conditional probability mass function
(PMF) is estimated by performing a Monte Carlo simulation
with 218 3-D SV symbols.

The coded modulation capacity under a uniformly spaced
constellation is defined as the maximum MI over (a) the set
of all input PMFs and (b) the distance between input constel-
lation points subject to a fixed average power constraint [12].
We assume the signal points of the input constellation are
uniformly spaced when described in terms of the natural co-
ordinates in thermal noise-limited and amplifier noise-limited
cases. The set of possible input constellations is parameter-
ized by a scale factor λ, which scales a reference constella-
tion to set the spacing between the constellation points. Let
S(m) = {−3.5,−2.5,−1.5,−0.5, 0.5, 1.5, 2.5, 3.5}

⊗
m be the

reference input constellation, where
⊗

m denotes the m-fold
Cartesian product. The set of possible input constellations is
given by {λS(m), λ ∈ R

+}.
The power-limited BA method computes the input distribu-

tion that maximizes the MI for a fixed λ, and is subject to
an average power constraint. The coded modulation capacity
can be expressed as the joint optimization over the input PMF
PS(s1, s2, s3) and scale factor λ. The optimized input PMF
P ∗
S(s1, s2, s3) and optimized scale factor λ∗ that achieve the

coded modulation capacity are given by

P ∗
S(s1, s2, s3), λ

∗ = argmax
PS,λ

I(S,SD)

subject to λ 〈[‖S‖2〉 ≤ P. (58)

Here, P is the average power per 3-D SV symbol, I denotes
the MI, and SD = S(th)

D and SD = S(amp)
D in the thermal noise-

limited and amplifier noise-limited cases, respectively. All MI
values using the BA method presented in this paper were ob-
tained by a joint optimization of the input distribution and scale
factor.

Fig. 3. Joint PS/FEC encoders architectures for (a) 3-D encoding and
(b) independent 1-D encoding, respectively. PS: probabilistic shaping, FEC:
forward error correction.

B. Sampling Continuous Distributions to Obtain Optimized
Discrete Distribution

While the BA method numerically computes the optimal input
distribution, for several reasons it is often desirable to generate
the input distributions using an analytic expression. The relative
simplicity of an analytic expression facilitates a performance
comparison among several analytic distributions and against the
distribution found using the BA method. Some of these analytic
distributions can be derived from the continuous distributions
found in Section III, providing a complementary analysis of the
distributions.

The Gaussian and exponential distributions can be expressed
in terms of the scale parameter λ and shape parameter β. A
fixed constellation of points is required to transform a 3-D PDF
in SV space fS(s1, s2, s3;β) to a discrete PMF PS[s1, s2, s3].
The set of possible input constellations in 3-D SV space can be
parameterized by λ and reference constellation S(3). For a fixed
λ, β controls the probability density assigned to each point in
the constellation. For fixed λ and β, the induced PMF is given
by

PS[s1, s2, s3] =
fS(s1, s2, s3;β)∑

(ṡ1,ṡ2,ṡ3)∈λS(3) fS(ṡ1, ṡ2, ṡ3;β)
. (59)

The scale and shape parameters that optimize the MI are
{λ∗, β∗}, which are given by

{λ∗, β∗} = argmax
λ,β

I(S,SD). (60)

SD = S(th)
D and SD = S(amp)

D in the thermal noise-limited and
amplifier noise-limited cases, respectively.

All MI values using an input distribution derived from an
analytical PDF are obtained by joint optimization of λ and β
at each SNR. The MI of the continuous-valued output of the
channel is estimated using a (24× 24× 24) grid of uniformly
spaced intervals whenever 3-D modulation is used.

C. 3-D vs. 1-D Probabilistic Shaping Encoders

Two different PAS-based architectures for FEC/PS encoders
are shown in Fig. 3. Each FEC/PS module consists of a PS
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encoder, an FEC encoder, and a symbol mapper. The PS encoder
maps a subset of the information bits to a sequence of bits
that index output symbols with a desired target probability
distribution. The output of the PS encoder and the subset of
information bits not used by the PS encoder are input to an FEC
encoder. The information bits input to the FEC encoder and the
parity bits generated by the FEC encoder encode the sign of the
output symbols.

In Fig. 3(a), the output of the FEC/PS module is a sequence of
3-D symbols. By contrast, the output of each of the three FEC
encoders in Fig. 3(b) is mapped to an independent sequence
of 1-D symbols. An additional symbol mapper is required to
transform the three independent sequences of 1-D symbols into
a single 3-D symbol sequence. The 1-D to 3-D symbol mapper
performs this transformation by mapping each of the three input
sequences to a different SV parameter.

The encoder shown in Fig. 3(a) is assumed capable of gen-
erating a sequence of SV symbols with an arbitrary 3-D PMF.
The encoder in Fig. 3(b) generates a sequence of SV symbols
whose PMF can be described as the product of 3 independent
1-D distributions. The structure of Fig. 3(b) may be preferred in
some cases due to its lower complexity.

The constraint on the output distribution in Fig. 3(b) implies
that the independent architecture can only generate a subset of
the distributions that can be generated using the architecture
in Fig. 3(a). This implies the achievable MI using Fig. 3(a)
is lower bounded by the MI achievable using Fig. 3(b). The
relative performance degradation resulting from independent
shaping of the SV parameters depends on the design of the input
distribution.

We now list the 1-D and 3-D distributions used in our numer-
ical analyses. We use italicized font to provide unique labels for
each of the probability distributions that appear in the Figs. of
Sections IV and V.

1) Sampling the Gaussian Distribution: The joint PDF of
three uncorrelated Gaussian random variables can be written as a
product of the marginal PDFs of the three independent Gaussian
random variables. This property is preserved under the sampling
process described in (59) and the reference constellation S(3) is
symmetric with respect to the three SV parameters. The 1-D and
3-D Gaussian input PMFs are equivalent and are labeled using
the term Gaussian.

2) Sampling the Exponential Distribution: The 3-D contin-
uous distribution described in (35) or (51) cannot be written
as a product of three independent 1-D continuous exponential
distributions. This property extends to the 3-D PMF induced
via the sampling process in (59), as the non-separability of the
continuous function is not affected by the discrete nature of the
sampled points or the normalization factor.

The induced PDF given in (51) is proportional to an exponen-
tial distribution in S0 multiplied by a factor of 1/S3/2

0 . Because
the Forney method assumes a high SNR, the exponential factor in
(51) is dominant, and we drop the factor 1/S3/2

0 in the amplifier
noise-limited case. Dropping the factor 1/S3/2

0 in (51) results
in the same 3-D PDF for both the thermal noise-limited and
amplifier noise-limited cases. We use the term 3-D exponential
to identify an input PMF that is obtained by sampling (35).

We can alternatively design an input distribution by sampling
the product exponential PDF. The term 1-D exponential identi-
fies a joint PMF that is designed by sampling the 3-D product
exponential PDF.

3) Blahut-Arimoto Method: As previously explained in Sec-
tion IV-A, the BA method can numerically compute the capacity-
achieving distribution for an average power-limited discrete
memoryless channel. The term 3-D optimal is used to refer to a
3-D PMF of the transmitted SV designed using the BA method
where a nonzero probability can be assigned to each of the values
in the input constellation.

For any 3-D optimal distribution, we can compute the
marginal PMF inS1. We can marginalize overS1 without loss of
generality because the marginal distribution for any of the three
SV parameters is the same. Using this marginal distribution, we
can generate a 3-D product PMF by assuming S2 and S3 have
the same distribution as S1 and computing the product of the
three 1-D PMFs. We use the term marginal of 3-D optimal to
refer to any 3-D product PMF where the distributions of the
SV parameters are equal and computed by marginalizing a 3-D
optimal PMF.

We can directly compute a 1-D PMF using the BA method.
During the design of the 1-D PMF, we set S2 = S3 = 0 and
optimize the 1-D PMF of S1. The average power constraint
for the 1-D PMF is set to 1/3 of the target average power
constraint of the 3-D PMF. The optimized 1-D PMF of S1 is
then transformed to a 3-D product PMF by choosing the 1-D
PMFs of S2 and S3 to be identical to the optimized 1-D PMF of
S1 and then computing the product of the three PMFs. The term
1-D Optimal refers to a 3-D product PMF of the transmitted SV
designed by using the BA method on a single SV component.

D. Reference Systems

We analyze two additional systems to compare the perfor-
mance of the aforementioned shaped distributions. In a system
not using PS, all signal points in the 1-D constituent constellation
are transmitted with equal probability. The term uniform denotes
an SVR-based system that uses a uniform input distribution.

We also compare the performance of the SVR under various
shaping distributions against a reference communication system
employing shaping and standard coherent detection (SCD) [5].
The term 4-D Coherent denotes the MI achieved by a system
employing SCD and PS using the optimal input distribution. We
assume the standard coherent system is LO-spontaneous beat
noise-limited and uses an optical phase-locked loop, homodyne
detection, active polarization control, and two 90◦ optical hy-
brids for simultaneous detection of the in-phase and quadrature
components of the two polarizations. The received electric field
vector E(co)

R is given by

E
(co)
R =

√
ςE+UHN(co), (61)

where N(co) = [N
(co)
1I , N

(co)
1Q , N

(co)
2I , N

(co)
2Q ]T is a Gaussian ran-

dom vector with covariance matrix

cov
{
N(co)

}
= σ2

coI4. (62)
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Similar to Section II-B, we analyze the dominant noise source
in the continuous-time model to derive the noise covariance
matrix in the discrete-time model. The analysis of the LO-
spontaneous beat noise is identical to the analysis of the signal-
spontaneous beat noise in Section II-B under the monochro-
matic signal and noise approximation [19]. The power of the
LO-spontaneous beat noise after an ideal electrical low-pass
filter with bandwidth B/2 is therefore given by 4R2

dPLOSASE
B
2 ,

where PLO is the LO power. To equate the noise powers of
the discrete-time and continuous-time models at the output of
the photodetector, we have σ2

co = SASE
B
4 . Because expressions

for σ2
co andσ2

amp are identical, the standard coherent reference
system uses the same definition of SNR as the amplifier noise-
limited SVR, which is given by

√
ς〈S0〉
2σ2

co
.

The BA method is used to find the optimal input distribution
for the standard coherent reference system. An input constella-
tion of (8× 8× 8× 8) is used, providing a maximum MI of 12
bits per symbol.

E. Hard-Decision Decoding

Hard-decision (HD) FEC is widely used in optical links owing
to its low complexity as compared to soft-decision (SD) FEC. It
is therefore of interest to analyze the MI achievable using HD
decoding at the receiver.

The design procedures described in Sections IV-A or IV-B
can be straightforwardly adapted to accomodate HD decoders
by mapping the continuous-valued output of the channel to a
discrete set of ML decision thresholds. The conditional noise
distribution is recomputed at each SNR analyzed. For a fixed
value of σth or σamp, the variance of the noise conditioned
on the transmission of a specific signal point is numerically
estimated using a Monte Carlo simulation. A separate estimate
is performed for each signal point in the transmitted constella-
tion. The noise distribution is then approximated as a Gaussian
random vector using the conditional variances from the Monte
Carlo simulations. In our simulations, we employ quasi-ML
decoding by performing ML decoding only using the transmitted
constellation point and its nearest neighbors (at most eight other
points).

Under quasi-ML decoding, the discrete-input continuous-
output channel is transformed into a discrete-input discrete-
output channel. The MI can then be computed without using
histogram-based techniques. Thus, the optimization procedures
described in Sections IV-A and IV-B can be adopted to de-
sign input distributions for HD-based systems by replacing
the continuous-valued channel output with the output of the
quasi-ML decoder. The phrase HD is added to each of the terms
introduced in Section IV-C to refer to input distributions that
were designed for systems using an HD decoder.

F. 3-D Shaping Under Soft-Decision Decoding

In this section, we study the performance of SVR systems
that perform joint shaping of the three SV parameters in each
SV symbol, comparing them to SVR systems using uniform
distributions and to SCD systems using optimized shaping. Fig. 4
shows MI vs. SNR in (a) the thermal noise-limited regime and

Fig. 4. Mutual information (MI) vs. SNR for several 3-D input distributions
for SVR using soft-decision decoding in the (a) thermal noise-limited regime
and (b) amplifier noise-limited regime. Plots in the bottom row are restricted to
the rectangular regions indicated in the top row. The MI vs. SNR of the reference
coherent receiver using standard coherent detection and soft-decision decoding
is also included.

(b) the amplifier noise-limited regime. Numerical results for the
3-D optimal distribution, the 3-D exponential distribution, the
Gaussian distribution, the uniform distribution, and the standard
coherent system are provided.

Fig. 4(a) and (b) clearly show that the Gaussian distribution
is not the optimal sampled input distribution. The exponential
distribution provides higher MI than the Gaussian distribution
over the entire SNR range studied. This is consistent with the
analysis in Section III.

The exponential distribution is within 0.01 bits/symbol of
the optimal distribution in the thermal noise-limited regime.
By contrast, the gap between the exponential distribution and
the optimal distribution is larger in the amplifier noise-limited
regime. We attribute this gap, in part, to the approximation in
(46) and to the dropped multiplicative factor in (51).

The shape gains of the 3-D optimal distribution at MI values of
5.5 bits/symbol and 4.4 bits/symbol are 1.105 dB and 1.178 dB
in the thermal noise-limited and amplifier noise-limited regimes,
respectively. The relative magnitudes of the shape gain are
consistent with the analytical values (41) and (57). There is a
substantial MI gap between the SVR using the optimal input
distribution and the SCD system, due to the additional degrees
of freedom of SCD and different noise statistics. We further
compare SVR and SCD systems in Section V-B.

G. 1-D Shaping Under Soft-Decision Decoding

In this section, we analyze the performance of PS in SVR-
based systems that perform independent shaping of the three
SV parameters. These 1-D distributions can be generated by the
independent encoder structure shown in Fig. 3(b). Fig. 5(a) and
(b) show the MI vs. SNR for four different 1-D distributions
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Fig. 5. Mutual information (MI) vs. SNR for the 3-D optimal input distribution
and several 1-D input distributions for SVR using soft-decision decoding in the
(a) thermal noise-limited regime and (b) amplifier noise-limited regime. Plots
in the bottom row are restricted to the rectangular regions indicated in the top
row.

in the thermal noise-limited and amplifier noise-limited cases,
respectively. The 3-D optimal input distribution is also included
for comparison.

The 1-D exponential distribution outperforms the Gaussian
distribution under independent encoding in both the thermal
noise-limited and amplifier noise-limited cases over the range
of SNRs analyzed. At MI values of 5.5 and 4.4 bits/symbol,
the SNR gaps between the 1-D exponential distribution and
Gaussian distribution are 0.078 dB and 0.165 dB in the thermal
noise-limited and amplifier noise-limited cases, respectively.
This mirrors the result under 3-D encoding and shows that
the Gaussian distribution is not the optimal sampled analytic
distribution under a product distribution constraint.

A higher SNR is required to achieve a target MI under inde-
pendent encoding as compared to the joint encoding shown in
Fig. 4. The SNR gaps at 5.5 bits/symbol and 4.4 bits/symbol be-
tween the optimal 3-D distribution and optimal 1-D distribution
are 0.148 dB and 0.214 dB in the thermal noise-limited regime
and amplifier noise-limited regime, respectively. We note that the
1-D optimal distribution does not necessarily provide the highest
MI among all 1-D distributions in the thermal noise-limited
regime. While the 1-D optimal distribution provides the highest
MI at low SNR, the 1-D distribution is outperformed by the
1-D exponential and marginal of 3-D optimal distributions at
SNR = 15 dB.

The marginal of 3-D optimal distribution is more closely
matched by a different 1-D distribution depending on the noise
regime. The MI of the 1-D exponential distribution is within
0.01 bits/symbol of the marginal of 3-D optimal distribution for
SNR ≥ 15 dB in the thermal noise-limited regime. There is also
a visible gap in MI between the marginal of 3-D optimal distri-
bution and 1-D optimal distribution for the thermal noise-limited

Fig. 6. Mutual information (MI) vs. SNR for several 3-D input distributions
for SVR using hard-decision decoding in the (a) thermal noise-limited regime
and (b) amplifier noise-limited regime. Plots in the bottom row are restricted to
the rectangular regions indicated in the top row.

regime. By contrast, the MI of the 1-D optimal distribution is
within 0.01 bits/symbol of the marginal of 3-D optimal distri-
bution for SNR ≥ 15 dB for the amplifier noise-limited regime.
The larger gap in the amplifier noise-limited regime is between
the 1-D exponential distribution and marginal of 3-D optimal
distribution.

H. Shaping Under Hard-Decision Decoding

We now study the shape gain for an SVR using HD decoding
at the receiver. Fig. 6 compares the MI achieved for the 3-D
HD optimal, 3-D HD exponential, and 3-D HD Gaussian dis-
tributions. We also provide the MI achieved by the 3-D optimal
distribution using SD decoding and uniform signaling using HD
decoding as references.

The MI achieved using HD decoding is less than that achieved
using SD decoding. There are 1.22 dB and 0.98 dB SNR gaps at
an MI of 5 bits/symbol between the 3-D optimal distribution us-
ing SD decoding and the 3-D optimal distribution using HD de-
coding in the thermal noise-limited and amplifier noise-limited
cases, respectively. This is expected, as quantization at the
receiver results in an information loss. Despite this information
loss, the 3-D HD optimal distribution still provides shape gains
of 0.686 dB and 1.068 dB at an MI of 5 bits/symbol over the HD
uniform distribution in the thermal noise-limited and amplifier
noise-limited cases, respectively.

The relative ordering of the distributions at fixed SNR does
not change when using HD decoding. The 3-D HD optimal dis-
tribution provides the highest performance at all SNRs analyzed
and is most closely approached by the 3-D HD exponential
distribution in both the thermal noise-limited regime and am-
plifier noise-limited regime. The MI gap between the 3-D HD
exponential distribution and 3-D HD optimal is larger in the
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Fig. 7. Probability mass function of S1 vs. the amplitude of S1 when S2 =
S3 = 0.5, SNR = 20 dB, and λ = 1 in (a) thermal noise-limited regime and
(b) amplifier noise-limited regime. The exponential and Gaussian probability
density functions are fitted to the 8 probability masses to minimize the L1 norm
of the error.

amplifier noise-limited case than in the thermal noise-limited
case at SNR = 15.5 dB, which mirrors the result found for SD
decoding. The HD exponential distribution outperforms the HD
Gaussian distribution over the range of SNRs analyzed in both
the thermal noise-limited and amplifier noise-limited cases.

V. DISCUSSION OF OPTIMIZED DISCRETE DISTRIBUTIONS

In previous sections, we presented analytic results for shaping
with continuous, unconstrained constellations and numerical
results for shaping with discrete, constrained constellations. Our
results for discrete constellations have focused on comparing the
MI achieved using different input PMFs. We now study other
important properties of the SVR and various optimized discrete
input distributions.

A. Exponential vs. Gaussian Distribution

In this section, we compare the PMF designed using the BA
method to fitted exponential or Gaussian distributions. Fig. 7
shows the probability mass of the eight-point PMF of S1 with
SNR = 20 dB and S2 = S3 = 0.5. Fig. 7(a) and (b) describe the
thermal noise-limited and amplifier noise-limited cases, respec-
tively. The scale parameter is fixed by the procedure described
in Section IV-A. A single-parameter search over β yields the
minimum L1-norm fit (in dB) of the exponential distribution
and Gaussian distribution.

The exponential distribution produces an L1-norm fit of the
probability masses with lower residual error than the Gaussian
distribution. In addition, the general shape of the 8 probability
masses more closely follows the straight lines given by the
exponential fit than the quadratic shape of the Gaussian dis-
tribution. We observe that the exponential distribution better
fits the optimal distribution in the thermal noise-limited regime
than in the amplifier noise-limited regime. This arises, in part,
from the factor of 1/S3/2

0 in (51) that is missing in the standard
exponential distribution. The results in Fig. 7(a) and (b) are
consistent with the Forney method analysis for continuous,
unconstrained constellations in Sections III-B and III-C.

Fig. 8. Mutual information (MI) vs. SNR(amp) for the reference coherent
receiver and for the SVR using 3-D input distributions optimized for SCD and
SVR, respectively, in the amplifier noise-limited regime.

B. Noise Enhancement in the Stokes Vector Receiver

We previously compared the MI obtained using the 3-D
optimal distribution to the MI achieved by the SCD reference
receiver in Fig. 4. We now proceed to limit the degrees of
freedom achievable by the SCD receiver to match the SVR in
order to study the impact of noise enhancement in the SVR. This
study is confined to the amplifier noise-limited regime.

Fig. 8 shows the MI vs. SNR for two different systems. The
SVR system uses the 3-D optimal input distribution. The SCD
reference system uses the BA method to compute the optimal
input distribution subject to the constraint that E2Q = 0. We re-
fer to the resulting input distribution as the 3-D optimal coherent
distribution. This optimization equates the number of degrees of
freedom for the two systems. Any SNR penalty remaining for
the SVR must therefore arise from noise enhancement. In Fig. 8,
there is roughly a 5.5 dB SNR penalty for the SVR employing
the 3-D optimal distribution in comparison to a coherent system
employing the 3-D optimal coherent distribution. The SNR gap
is 4.56 dB at an MI of 4.5 bits/symbol and reaches a maximum
of 5.75 dB at an MI of 8.8 bits/symbol.

In order to explain this SNR gap, we consider the following
discrete-time model for a 3-D reference coherent system, which
is derived from the 4-D reference coherent system described in
Section IV-D. The vector of currents output by the first three
of the four balanced photodetectors I = [I1I , I1Q, I2I ]

T , after
compensating for the channel loss, is given by

I =
√
PL [E1I , E1Q, E2I ]

T + Ñ(co). (63)

Ñ(co) = [Ñ
(co)
1I , Ñ

(co)
1Q , Ñ

(co)
2I ]T is the noise vector added to the

detected currents, which has covariance matrix

cov
{
Ñ(co)

}
=

1

ς
PL cov

{
UHN(co)

}
=

1√
ς
PLσ

2
coI3. (64)

We have assumed E2Q = 0 to limit the number of degrees of
freedom to 3.

We model the SVR system using the discrete-time model (26).
We assume Ň(amp) ≈ Ñ(amp).

In comparing the SVR system and the 3-D coherent system,
we focus on a single dimension in each system, as in each
system, the noise statistics are identical for all three available
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degrees of freedom. For the SVR and 3-D reference systems,
the dimensions we analyze are S1 and the in-phase quadrature
of the first polarization, respectively.

The average electrical signal powers in one dimension of
the SVR and 3-D coherent systems are 〈S2

0〉/3 and PL〈S0〉/3,
respectively. The electrical noise powers in the SVR and 3-D co-
herent systems are 4σ2

amp〈S0〉/√ς and PLσ
2
co/

√
ς , respectively.

The resulting ratios of the electrical signal and noise powers in
the SVR and 3-D coherent systems are

√
ς〈S2

0〉/(12〈S0〉σ2
amp)

and
√
ς〈S0〉/(3σ2

co), respectively. Assuming the two systems
have the same optical SNR, i.e., σ2

amp = σ2
co, and using Jensen’s

inequality, the ratio of the electrical signal-to-noise power ratios
in the two systems is upper-bounded as follows:

〈
I21I

〉
/

〈(
Ñ

(co)
1I

)2
〉

〈S2
1〉 /

〈(
Ñ

(amp)
1

)2
〉 = 4

〈S0〉2
〈S2

0〉
≤ 4 ≈ 6.02 dB. (65)

The 6.02 dB upper bound in (65) is consistent with the SNR gap
of about 5.5 dB shown in Fig. 8.

The physical basis for the SNR gap is as follows. In the
SVR, the signal and noise in both polarizations are input into
a balanced photodetector to generate S1 and input into the 90◦

optical hybrid to generate S2 and S3. Each of the resulting SV
noise components (22), (23), and (24) includes contributions
from both quadratures in both polarizations. The SCD reference
system, by contrast, separates the two received polarizations and
inputs them into separate 90◦ hybrids. Each component of the
detected current [I1I , I1Q, I2I ]T is only corrupted by the optical
noise present in the corresponding polarization and quadrature
[N

(co)
1I , N

(co)
1Q , N

(co)
2I ]T . The SNR gap for the SVR is analogous

to the SNR gaps for non-coherent and differentially coherent
detection schemes relative to coherent detection [5], [26].

C. Optimal Scale Factor and Peak Power Constraint

Explicit peak power constraints were not considered in the
PMFs analyzed in Section IV. However, the optimization of
the scale factor in the BA method from Section IV-A and the
sampling procedure from Section IV-B produces an implicit
peak power constraint on the finite constellation. We therefore
study how the optimized scale factor λ∗ changes with SNR.

Fig. 9 shows the optimal scale factor vs. SNR for SNRs
between 10 and 30 dB. An initial scale factor of 1 is used and
the noise power is chosen to achieve the target SNR assuming a
uniform input distribution. The 3-D optimal input distribution is
then computed using the BA method. The optimized scale factor
is highest at SNRs toward the lower end of the range examined.
At the higher SNRs, the scale factor converges to 1 and the input
distribution converges to the uniform distribution.

The maximum scale factors are 1.88 and 1.26 in the thermal
noise-limited and amplifier noise-limited regimes, respectively.
The larger value in the thermal noise-limited regime is due, in
part, to the signal dependence of the noise in (25). Increasing
the scale factor favors constellation points closer to the origin to
reduce the impact of signal-dependent noise.

Fig. 9. Optimal scale factor vs. SNR for SVR for the 3-D optimal input
distribution. The SNR corresponds to SNR(th) and SNR(amp) in the thermal
noise-limited and amplifier noise-limited regimes, respectively.

VI. CONCLUSION

We discussed shaping for the SVR for continuous and discrete
input distributions. The Forney method analysis found that an
exponential distribution in the intensity is the optimal continuous
input distribution in both the thermal noise-limited and amplifier
noise-limited regimes at high SNR. Numerical analysis using
discrete input constellations found that a sampled exponential
distribution in the intensity outperformed a sampled Gaussian
input distribution of the transmitted SV in both noise regimes.
The optimized discrete input distribution designed using the BA
method outperformed both a sampled exponential distribution
in the intensity and a sampled Gaussian distribution of the
transmitted SV. Comparison of the SVR to a reference coherent
system modulating three of the four available degrees of freedom
shows that the SVR is subject to an optical power penalty of
approximately 5.5 dB. This power penalty arises from noise
enhancement due to the beating of signal and noise components
from different polarizations in the SVR.
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