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Abstract—Probabilistic shaping is widely employed in local
oscillator-based coherent optical systems to improve receiver sen-
sitivity and provide rate adaptation. This widespread adoption
has been enabled, in part, by simple closed-form solutions for the
optimal input distribution and channel capacity for these standard
coherent channels. By contrast, the optimal input distributions
and channel capacities for many direct-detection optical channels
remain open problems. The lack of non-negative root-Nyquist
pulses, signal-dependent noise, and the possible discreteness of the
capacity-achieving input distribution have historically prevented
standard information-theoretic techniques from obtaining simple
closed-form solutions for these channels. In this tutorial, we review
a high-rate continuous approximation (HCA) for analytically ap-
proximating the optimal input distribution. HCA, which was first
developed for source coding, approximates the input constellation
by a dense high-dimensional coset code that can be approximated
well by a continuum, transforming the problem of computing the
optimal input distribution subject to an average-power constraint
to a problem of finding a minimum-energy shaping region in a high-
dimensional continuous space. HCA yields closed-form continuous
approximations to the capacity-achieving input distributions and
shaping gains at high signal-to-noise ratio. We explain how enu-
merating a coset code in natural coordinates enables extension of
HCA to direct-detection optical channels, allowing one to obtain
closed-form approximations for the capacity-achieving input distri-
butions and shaping gains for a variety of direct-detection systems
that detect the intensity or Stokes vector and are limited by thermal
or optical amplifier noise. We also discuss the implementation of
probabilistic shaping in direct-detection systems.

Index Terms—Direct detection, fiber optic communication,
probabilistic shaping, stokes vector receiver.

I. INTRODUCTION

PROBABILISTIC shaping for channels using coherent de-
tection with additive Gaussian noise has been studied ex-

tensively since Shannon derived the optimal input distribution
and capacity for these standard coherent (SC) channels [1].
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Much of the work on probabilistic shaping for SC channels can
be categorized into one of two areas: 1) algorithmic methods for
achieving a target discrete-valued input distribution or 2) analyt-
ical and numerical methods for computing optimal continuous-
or discrete-valued input distributions and the resulting channel
capacities under various constraints.

A key advance in the algorithmic implementation of proba-
bilistic shaping was the probabilistic amplitude shaping (PAS)
architecture [2]. PAS provides a flexible framework in which
a fixed distribution matcher (DM) can be combined with an
independently designed forward error-correction (FEC) code
to achieve a target discrete input distribution. This architec-
ture was first demonstrated using a constant-composition DM
(CCDM) [3], but alternative schemes yielding superior perfor-
mance at finite block lengths have also been developed [4]. Work
on algorithmic approaches that do not use PAS is summarized
in [5].

On the analytical front, since Shannon’s seminal work, sub-
stantial progress has been made in obtaining closed-form so-
lutions for the optimal input distributions and capacities of
various electrical channels using coherent detection. Examples
of channels studied include statistically parameterized wireless
channels [6], multi-input multi-output channels [7], [8], and
multi-user channels [9], [10]. On the numerical front, methods
for computing the capacity-achieving input distribution were
pioneered in [11], [12].

Local oscillator (LO)-based coherent optical systems are well-
modeled as SC channels, and have extensively employed the
aforementioned theories and algorithms, most of which were
first developed for electrical channels. (A notable exception is
the PAS architecture [2], which was first motivated, in part, by
applications in coherent optical systems [5].)

By contrast, the capacities and capacity-achieving input dis-
tributions for several important direct-detection (DD) optical
methods remain open problems. The most common DD scheme
simply uses a photodetector to detect an intensity-modulated
signal. We refer to this method as standard direct (SD) detection
(it is often called intensity modulation/direct detection, IM/DD).
Closed-form solutions for the capacity and capacity-achieving
input distributions for SD optical channels are not known [13],
[14], although tight lower and upper bounds for the capacity
under average power constraints [15], [16] or peak and average
power constraints [17], [18], [19] have been derived. There
has also been substantial progress in deriving properties of

0733-8724 © 2025 IEEE. All rights reserved, including rights for text and data mining, and training of artificial intelligence and similar technologies.
Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Stanford University Libraries. Downloaded on February 21,2025 at 20:59:16 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-6851-6981
https://orcid.org/0009-0000-3354-1637
mailto:emliang@stanford.edu
mailto:jmk@ee.stanford.edu
https://doi.org/10.1109/JLT.2025.3528835


1502 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 43, NO. 4, FEBRUARY 15, 2025

the capacity-achieving input distribution under various chan-
nel constraints. The capacity-achieving input distribution under
peak and average power constraints was proven to be both
discrete and finite [20], and an algorithm to numerically compute
the capacity-achieving input distribution has been given [14].
The capacity-achieving input distribution for average power-
constrained SD channels with signal-dependent Gaussian noise
has been shown to be discrete with a countably infinite support
set [14], [21]. While the form of the capacity-achieving input
distribution for average power-constrained SD channels with
only signal-independent Gaussian noise is not known, the best
schemes to date used finite, discrete input distributions [16].

Beyond simple SD detection, Stokes vector (SV) detec-
tion [22], [23], [24] and Kramers Kronig (KK) detection [25]
are alternative DD-based methods that are actively studied for
possible use in next-generation short-reach optical links. These
methods provide higher signal dimensionalities than traditional
SD detection, enabling scaling up of per-wavelength data rates
without necessarily increasing the symbol rate. Previous work on
the optimal input distributions and capacities of these methods
included study of thermal noise-limited SV detection under
constraints on detected electrical power [24], amplifier noise-
limited SV detection under constraints on detected electrical
power [26], and amplifier noise-limited KK detection in the high
carrier-to-signal power ratio regime [27]. While we would like to
derive closed-form analytic solutions for the capacity-achieving
input distributions and capacities for SD, SV, and KK detection
in the thermal noise-limited and amplifier noise-limited regimes,
these remain open problems. In the absence of exact solutions, it
is desirable to have a framework in which to derive approximate
capacity-achieving input distributions for these receivers, at least
at high signal-to-noise ratios (SNRs).

In this tutorial paper, we review the high-rate continuous
approximation (HCA) and its application to DD optical meth-
ods. HCA was originally developed to analytically estimate the
distortion in scalar [28] and vector source coding [29], [30] in
the high-resolution regime. HCA was later extended by G. D.
Forney and L.-F. Wei to channel coding for SC channels [31].
In this paper, we use HCA to compute closed-form analytic ap-
proximations to the capacity-achieving input distribution at high
SNR.1 In the context of capacity-approaching high-dimensional
lattice codes, HCA approximates the input constellation as a
continuum contained within a geometric shaping region. HCA
reduces the problem of probabilistic shaping to determination of
the minimum-energy shaping region in a high-dimensional con-
tinuous geometric space. The distribution induced in the basic
signaling dimensions and the shaping gain become properties
of the minimum-energy shaping region. HCA was subsequently
applied to thermal noise-limited SD detection [32], [33], am-
plifier noise-limited SD detection [34], and SV detection in the
thermal noise-limited and amplifier noise-limited regimes [35],

1In this paper, we neglect memory effects in all channels, which may arise
from uncompensated channel dispersion or transmit pulses that are not orthogo-
nal to time translates by all nonzero integer multiples of the symbol period (see
Section II-B). In a channel with memory, our analysis approximates the optimal
input distribution for a memoryless channel with the same marginal statistics as
the actual channel.

yielding closed-form analytical approximations for the optimal
input distribution and shaping gain for each method.

There are several previous tutorial and review papers covering
various aspects of probabilistic shaping for optical commu-
nications. PAS and CCDM with a focus on algorithmic im-
plementation are presented in [5]. Another tutorial paper on
PAS and CCDM with a comprehensive presentation of relevant
information-theoretic concepts and metrics is presented in [36].
An alternative DM approach using enumerative sphere shaping
is presented in [4]. A tutorial on practical hardware implemen-
tation of probabilistic shaping is presented in [37]. Numerical
computation of the optimal input distribution of the thermal
noise-limited SD receiver under peak-power constraints is pre-
sented in [38]. Comprehensive overviews of capacity results for
the SD receiver are presented in [13], [14].

By contrast, this tutorial paper focuses on deriving closed-
form continuous approximations to the capacity-achieving input
distributions and shaping gains at high SNR for a variety of
DD-based methods, which detect different physical variables,
including optical intensity, SV, and optical electric field, in both
the thermal noise-limited and amplifier noise-limited regimes.
This paper studies a total of six different discrete-time channel
models, each resulting in a different input distribution.

The remainder of this paper is structured as follows. In Sec-
tion II, we distinguish between LO-based and direct detection,
provide an overview of the DD methods covered in this tutorial,
and list our assumptions and performance metrics. In Section III,
we briefly cover Shannon’s derivation of the SC detection chan-
nel capacity before presenting an overview of HCA. We then
apply HCA to SC detection and show that the results exactly
match those obtained by Shannon. In Section IV, we introduce
the concept of natural coordinates, allowing us to extend HCA
to DD-based methods. We then use HCA to derive continuous
approximations to the optimal input distribution and shaping
gain for the SD detection and SV detection in the thermal noise-
limited and amplifier noise-limited regimes. We also consider
probabilistic shaping for KK detection in the amplifier noise-
limited regime. In Section V, we discuss the implementation of
shaping for DD-based methods. In Section VI, we conclude the
paper.

II. PRELIMINARIES

A. Detection Methods

Table I lists the major detection methods used in optical
communications following the classification scheme in [22]. The
first three columns enumerate and describe five fundamentally
different classes of detection methods, while the fourth and fifth
columns specify, respectively, an LO-based implementation and
a DD-based implementation for each class. Canonical receiver
structures for most of these can be found in [22]. As defined
here, an LO-based scheme injects an unmodulated carrier into
the receiver to aid in detection, while a DD-based scheme does
not (a DD-based scheme may transmit an unmodulated carrier
along with the modulated signal to aid in detection). It should be
evident from Table I that an LO-based scheme is not necessarily
coherent; and, conversely, a DD-based scheme is not necessarily
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TABLE I
MAJOR DETECTION METHODS IN OPTICAL COMMUNICATIONS

noncoherent. For brevity, the discussion here is simplified from
that in [22]; for example, frequency-shift keying and its variants
are not discussed here.

It is instructive to discuss Table I row-by-row.
Noncoherent detection measures the intensity of signals (pro-

portional to their energy or squaredL2-norm of the electric field)
in one or more orthogonal dimensions of a signal space, yielding
one real decision statistic per dimension. Accordingly, single- or
dual-polarization intensity-modulated signals respectively con-
vey one or two real dimensions per symbol interval. Noncoher-
ent detection can be achieved using LO-based downconversion
followed by envelope detection [22], but is most commonly
implemented using simple SD detection.

Differentially coherent detection measures phase differences
between different orthogonal dimensions of a signal space,
yielding one real decision statistic per pair of dimensions. It is
typically used to detect differential phase-shift keying (DPSK),
which encodes information in phase changes between successive
symbols. Single- or dual-polarization DPSK signals respectively
convey one or two real dimensions per symbol interval. Dif-
ferentially coherent detection can be achieved using LO-based
downconversion followed by delay-and-multiply detection [22],
but is most commonly implemented using delay interferometers
and DD.

The third row of Table I considers modulation of information
in the SV [23], which can convey three real dimensions per
symbol interval. Three-dimensional (3-D) SV modulation can be
detected using LO-based polarization-shift keying detection or
by DD-based SV detection [22], [23]. These detection methods
are a hybrid between noncoherent and differentially coherent de-
tection, since they measure intensities in, and phase differences
between, two orthogonal polarizations [22]. As depicted in the
fourth row, SV modulation can encode a fourth dimension per
symbol by modulating the phase difference between successive
symbols [39]. Methods for detecting 4-D SV modulation can
also be considered hybrids between noncoherent and differen-
tially coherent detection.

Coherent detection can measure the two electric field quadra-
tures in each of the two polarizations, which can convey four
real dimensions per symbol. It is typically implemented using
LO-based downconversion with some means to synchronize the
signal and LO carrier phases, which we refer to as SC detection.
KK detection achieves coherent detection without requiring a
LO [25], typically by transmitting a strong unmodulated carrier
along with a modulated signal, detecting the received intensity
and performing digital phase retrieval to obtain the received elec-
tric field. A dual-polarization system employing KK detection
can convey nearly four real dimensions per symbol [27].

This tutorial paper studies the shaping distributions only for
the four specific methods in shaded boxes in Table I. The only
LO-based method studied is SC detection, which is studied in
Section III. Three DD-based methods are studied: SD detection,
3-D SV detection and Kramers Kronig detection, which are
studied in Section IV. Hereafter, 3-D SV detection is referred to
simply as “SV detection”.

B. Assumptions and Performance Metrics

In this tutorial, we consider systems subject to average power
constraints, which are relevant for a wide variety of system
designs. In short-reach intra-data center fiber links [40] and
in indoor free-space optical links [41], eye safety constrains
average transmitted power. Likewise, in long-haul fiber links,
fiber nonlinearity and optical amplifier pump power limitations
can constrain average transmitted power [42].

Other works on shaping for DD systems consider other impor-
tant constraints, such as peak power constraints or constraints
on the average detected electrical power [24], [26], [43]. Indeed,
these are important considerations for a wide range of systems.
Our constraint on average optical power, however, is consistent
with other fundamental studies of channel capacity, which start
by considering average power constraints [14], [15], [16], [17],
[18], [19], [33].
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Fig. 1. Discrete-time channel model for single-polarization SC detection in
the amplifier noise- or local oscillator shot noise-limited regime. The additive
noiseN is independent ofX . ASE: Amplified spontaneous emission, LO: Local
oscillator. Adapted from [45].

We study discrete-time channel models that consider one
dominant additive noise in the thermal noise-limited or amplifier
noise-limited regimes. A discrete-time channel model is explic-
itly presented for each receiver and noise regime combination
studied. For simplicity, we do not consider cases where both
thermal and amplifier noises are significant.

Our primary performance metric is achievable spectral effi-
ciency given in terms of bits/symbol. We estimate the achievable
spectral efficiency using mutual information, which implies no
limits on encoding or decoding complexity, consistent with our
focus on fundamental limits. We present results in terms of
bits/symbol instead of bits/s/Hz, in part, due to the nonexis-
tence of non-negative root-Nyquist pulses, which precludes the
use of minimum-bandwidth pulses in SD systems [44]. This
nonexistence may cause intersymbol interference, leading to
dependence between successive uses of the discrete-time chan-
nel. We ignore these memory effects for analytical tractability
and assume that each use of the discrete-time channel model is
independent. While SV, KK and SC detection can detect bipolar
signals, enabling use of root-Nyquist pulses that approach one
bit/s/Hz, we use bits/symbol for all systems for the sake of
consistency.

III. STANDARD COHERENT DETECTION

SC detection denotes LO-based coherent detection with ad-
ditive white Gaussian noise (AWGN). In systems using optical
amplifiers, this typically arises from LO-amplified spontaneous
emission (ASE) beat noise, while in un-amplified systems, it
arises from LO shot noise [22]. Assuming a single polarization
for simplicity, SC detection is described by the discrete-time
channel model in Fig. 1, and by the analytical model

Y = X +N. (1)

Here, Y is the received complex electric field, X in the trans-
mitted complex electric field, and N is an independent, zero-
mean, additive complex circularly symmetric Gaussian random
variable with variance var(N) = 2σ2

amp. For concreteness, our
notation assumes LO-ASE beat noise is dominant.

Shannon introduced an approach to computing the optimal in-
put distribution for the SC channel which is based on maximizing
mutual information, which we denote by the maximum mutual
information (MMI) approach. In MMI, the channel capacity is
defined as the maximum value of an objective function in a
formally defined optimization problem [1]. In this framework,

the capacity-achieving input distribution is a solution to the
formally stated optimization problem. While MMI is clearly
defined and rigorous, the corresponding optimization problem
can be solved analytically only for certain channel models.
Despite the analytic intractability of the MMI problems for many
channels, the optimal discrete input distribution can typically be
computed numerically, as explained further in Section III-D.

Forney and Wei later extended HCA to channel coding to
analytically compute continuous approximations to the opti-
mal input distribution of the SC channel [31]. In the context
of capacity-approaching high-dimensional coset codes, HCA
determines an optimal shaping region to minimize the average
power of enclosed signal points while maintaining a constant
minimum distance. The input distribution for the channel input is
obtained by marginalizing over the coset code. Forney and Wei’s
analysis was extended to study non-equiprobable signaling on
the signal points contained by the optimal shaping region [46]
and integration of shaping and coding [47].

In this section, we review both MMI and HCA and their
application to the SC channel. In Section III-A, we briefly review
MMI and introduce concepts and notation from information
theory used throughout this paper. In Section III-B, we review the
central concepts and methodologies in HCA. In Section III-C,
we apply HCA to the SC channel, deriving the optimal input
distribution and the shaping gain. Then, in Section IV, we extend
HCA to study DD-based optical channels.

A. Maximum Mutual Information

The channel capacity was defined in [1] as the maximum
mutual information between the input and output of a channel
subject to various constraints on the channel input. In this tuto-
rial, we consider discrete, memoryless channels with constraints
on the average power of the channel input. The channel capacity
for the average power-limited SC channel is

C = max
fX(x):E[|X|2]≤P̄

I(X;Y ), (2)

where fX(x) is the probability density function (PDF) of X ,
P̄ is a constraint on the average power per symbol, E is the
expectation operator, and I(X;Y ) = h(Y )− h(Y |X) is the
mutual information [48].

Using the independence of the signal and noise, the con-
ditional entropy term can be simplified to h(Y |X) = h(N).
For the SC channel, maximizing the mutual information is
equivalent to maximizing the entropy of the output distribution.
Using variational calculus, one can show that the maximum-
entropy distribution subject to a squared L2-norm constraint
is the Gaussian distribution. Using the fact that the sum of
two independent jointly Gaussian random variables is Gaussian
distributed, the capacity-achieving input distribution is therefore
a complex circularly symmetric Gaussian distribution, i.e.,

fX(x) =
1

πP̄
exp

(
− 1

P̄
‖x‖22

)
. (3)

Using X ∼ CN (0, P̄ ) in (2), the capacity of the SC channel is

C
(

SNR(amp)
)
= log2

(
1 + SNR(amp)

)
, (4)
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where SNR(amp) = P̄ /2σ2
amp. Throughout this tutorial, the su-

perscripts (th) and (amp) indicate that the dominant noises are
additive thermal noise or additive amplifier noise, respectively.

B. High-Rate Continuous Approximation

As stated in Section I, attempting to apply MMI to study vari-
ous DD channels in optical communications yields optimization
problems that have not yet admitted analytical solution. HCA
provides an approach for analytically approximating the optimal
input distributions for these DD channels.

In this subsection, we review the central concepts and method-
ologies of HCA. While we aim to keep our presentation inde-
pendent of the channel model, we assume the SC channel to
ensure concreteness in our presentation. While referencing the
SC channel throughout this subsection, we defer computation of
the final analytical results for the SC channel until Section III-C.

Consider the discrete-time channel model for the SC channel
in Fig. 1. For two arbitrary 1-D complex electric fields X1 and
X2 input to the channel, the pairwise error probability under
maximum-likelihood (ML) detection is

Pe(X1, X2) = Q

(‖X1 −X2‖2
2σamp

)
. (5)

In HCA, a signal point X is an N -dimensional (N -D) com-
plex vector formed by concatenating N time-disjoint symbols
Xi, i = 1, . . . , N , i.e., X = [X1, X2, . . ., XN ]T . The pairwise
error probability under ML detection for two arbitrary signal
points X1 and X2 is

Pe(X1,X2) = Q

(‖X1 −X2‖2
2σamp

)
. (6)

The forms of (5) and (6) are the same because the additive
noise is an independent, identically distributed Gaussian random
variable in each vector component.

1) Coset Code, Constellation, and Constituent Constellation:
The first step in HCA is to define a coset (translate of a lattice)
from which a constellation can be constructed. For the sake of
simplicity and notational convenience, we assume the coset is
formed by the N -fold Cartesian product of a constituent coset.
However, the analysis here applies to more general cosets.

Let Λ(1) and CΛ(1) denote a real constituent coset and com-
plex constituent coset, respectively. The number of dimensions
in a constituent coset is determined by the number of inde-
pendent dimensions in the detected signal of the discrete-time
channel model. The constituent coset for the SC channel has one
complex dimension, as one complex symbol is detected in any
time interval. The other discrete-time channel models analyzed
in this tutorial use different constituent cosets.

Let Λ(N) and CΛ(N) denote real and complex cosets formed
by theN -fold Cartesian product ofΛ(1) and CΛ(1), respectively.
The dimensionalities of Λ(N) and CΛ(N) are factors of N larger
than the constituent cosets from which they are constructed.

A coset must be defined in terms of an underlying coordinate
system. Following from (6), the coordinate system for the SC
channel is the complex electric field because the pairwise error
probability under ML detection is a decreasing function of

Euclidean distance in this coordinate system for any N . The
SC channel uses the complex coset CΛ(N).

A high-dimensional constellation is obtained from a coset
by selecting all signal points in the coset that lie within a
shaping regionR. In this tutorial, we restrict ourselves to closed,
convex shaping regions. Let C denote the constellation formed
by selecting all signal points from a coset that lie within R. This
operation is equivalent to the intersection operation between a
coset and R. For the SC channel, we have C = CΛ(N) ∩R. In
Section III-B2, we discuss the construction of optimized shaping
regions.

The constituent constellation is defined as the set of points
from the constituent coset that are used in at least one signal
point from C. The constituent constellation is used extensively
when discussing the induced density, which is introduced in
Section III-B3.

Different channel models give rise to different coordinate
systems, shaping regions, and constituent constellations. For
example, as we will see in Section IV-B, shaping regions for the
thermal noise-limited SD detection channel are defined in terms
of a real N -D vector space with field intensity coordinates. The
constituent constellation is a set of nonnegative intensity levels
on R

1
+.

2) Optimal Shaping Region and Continuous Approximation:
In HCA, the optimal shaping region is defined as the set of points
whose physical energy is less than or equal to P . This region
is optimal in that it encloses a given volume while minimizing
average power. The mapping between the coordinates of a signal
point and its physical energy depends on the coordinate system.
Since the SC channel uses complex electric field coordinates,
the physical energy of a signal point is its squared L2-norm.
The optimal N -D shaping region for the SC channel with total
physical energy at most P is

R(SC)
shaped(N,P ) = {X ∈ C

N | ‖X‖22 ≤ P}. (7)

The reference shaping region is defined as an N -D hypercube
in the same coordinate system at the optimal shaping region. The
reference shaping region for the SC channel is parameterized by
the maximum absolute value of any one side A and is therefore

R(SC)
ref (N,A) =

{
X ∈ C

N |
∥∥∥[Re{X}, Im{X}]T

∥∥∥
∞

≤ A
}
,

(8)
where Re{X} and Im{X} are realN -D vectors formed by taking
the real and imaginary parts of X, respectively.

Fig. 2 shows an example constellation formed by the in-
tersection of a coset and an optimal shaping region. For this
example, we assume CΛ(N) is the half-integer complex coset
scaled to have minimum distance d. The optimal shaping region
for N = 1 corresponds to a disk in the complex plane with
radius

√
P . The set of points in the coset code is given by

C
(SC)
shaped(N,P ) = R(SC)

shaped(N,P ) ∩ CΛ(N). The resulting con-
stellation is optimal in the sense that it minimizes the average
power subject of the constellation subject to a constraint on the
number of points from the underlying coset that are included.

HCA simplifies the analysis of R(SC)
shaped(N,P ) and

R(SC)
ref (N,A) by using the continuous approximation. For
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Fig. 2. Optimal constellation construction for the SC channel for N = 1

complex dimension. CΛ(N) is the half-integer complex coset scaled to have

minimum distance d and is depicted by the blue dots. R(SC)
shaped(N,P ) is the

continuous enclosed region and is depicted by the shaded region inside the
circle. The constellation is the set of signal points from the coset that lie within
the shaded region and is visually depicted by the 44 larger circles. Adapted
from [45].

sufficiently dense constellations, the distribution of signal
points in the constellation can be well-approximated by a
continuous distribution over the shaping region [31], [33],
[46], [47]. The continuous approximation replaces the uniform,
discrete probability mass function over the signal points in the
coset code with a uniform, continuous PDF over the shaping
region that constructed the coset code.

Let dx = dx1I , dx1Qdx2I , dx2Q, . . . dxNI , dxNQ, where
xiI and xiQ are the real and imaginary parts of xi, i = 1, . . . , N .
Under HCA, the PDF for the shaping region is

fX(x) =
1

V(SC)
shaped(N,P )

, x ∈ R(SC)
shaped(N,P ), (9)

where

V(SC)
shaped(N,P ) =

∫
x∈R(SC)

shaped(N,P )

dx. (10)

Similarly, the PDF for the reference region is

fX(x) =
1

V(SC)
ref (N,A)

, x ∈ R(SC)
ref (N,A), (11)

where

V(SC)
ref (N,A) =

∫
x∈R(SC)

ref (N,A)

dx. (12)

The average powers of the shaped and reference constella-
tions are given by the average squared L2-norm of the signal
points in the two respective constellations. Under HCA, the
average power of a constellation is approximated by the squared
second moment of the shaping region. Let P̄ (SC)

shaped(N,P ) and

P̄
(SC)
ref (N,A) be the average power of the shaped and reference

constellations under the continuous approximation, respectively.
The general expressions for P̄ (SC)

shaped(N,P ) and P̄
(SC)
ref (N,A) for

the SC channel are

P̄
(SC)
shaped(N,P ) =

1

V(SC)
shaped(N,P )

∫
x∈R(SC)

shaped(N,P )

‖x‖22 dx (13)

and

P̄
(SC)
ref (N,A) =

1

V(SC)
ref (N,A)

∫
x∈R(SC)

ref (N,A)

‖x‖22 dx. (14)

3) Induced Marginal Density: The induced marginal density
on a basic signaling dimension is an important analytic result
that can be derived using HCA. The shaping region affects the
induced marginal distribution by defining the support region of
the induced marginal distribution. The induced marginal density
on a basic dimension can be obtained by marginalizing the joint
PDF fX(x) over all other dimensions. For concreteness, we
compute the induced marginal density ofX1, the first component
of X:

fX1
(x) =

∫ ∞

−∞
· · ·
∫ ∞

−∞
fX1I ,X1Q,...,XNQ

(xI , xQ, . . . , xNQ)

dx2I
, . . . , dxNQ

. (15)

One method for solving (15) is to partitionR into disjoint sub-
sets and assign probability density proportional to the volumes
of the subsets in the partition [32], [34], [35].

4) Shaping Gain: Shaping gain is a second important ana-
lytic result provided by HCA. The shaping gain is the factor of
reduction in the average power of the optimal shaping region
to the reference shaping region. The shaping gain γ(SC)

s (N) is
defined as

γ(SC)
s (N) � P̄

(SC)
ref (A)

P̄
(SC)
shaped(N,P )

, (16)

where P and A are chosen to ensure that V(SC)
shaped(N,P ) =

V(SC)
ref (N,A). The variable N is dropped from P̄

(SC)
ref (N,A) to

obtain P̄
(SC)
ref (A) because P̄

(SC)
ref (N,A) does not depend on N .

The ultimate shaping gain γ(SC)
s is defined as the shaping gain in

the limit as N → ∞:

γ(SC)
s � lim

N→∞
γ(SC)
s (N). (17)

The average power of the reference shaping region is an
expectation of a function of the marginal density, which is the
uniform distribution. The specific function is the physical energy
of the signal point, which is the squared L2-norm in the case of
SC detection.

The average power of the optimal shaping region can be
computed by exploiting the properties of R(SC)

shaped(N,P ). The

fraction of signal points in R(SC)
shaped(N,P ) with power at most

p is V(SC)
shaped(N, p)/V(SC)

shaped(N,P ). Let random variable ρ be the
total optical power of a signal point selected uniformly from
R(SC)

shaped(N,P ). The CDF of ρ for SC detection is

Fρ(p) =
V(SC)

shaped(N, p)

V(SC)
shaped(N,P )

, p ∈ [0, P ]. (18)

The average optical power can be computed as the normalized
expectation of ρ. Computing the average optical power of the
optimal constellation using the distribution of ρ is a general
strategy that also applies to optimal shaping regions for other
detection methods.
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Fig. 3. Optimal SC detection shaping region for N = 1.5 complex dimen-
sions. The vertical black line corresponds to the set of signal points enclosed by
the shaping region that satisfies the constraint X1 = x. Adapted from [45].

C. High-Rate Continuous Approximation for Standard
Coherent Detection

The channel model for SC detection was given in Fig. 1 and
(1). In view of (6), the complex electric field is chosen as our
coordinate system.

1) Shaping Regions: The next step in HCA is to define opti-
mal and reference shaping regions. From these shaping regions,
we can compute closed-form expressions for V(SC)

shaped(N,P ),

V(SC)
ref (N,A), P̄ (SC)

shaped(N,P ), and P̄
(SC)
ref (A).

The optimal and reference shaping regions for the SC channel
are given in (7) and (8), respectively. Fig. 3 shows the optimal
shaping region in N = 1.5 complex dimensions, which is a real
3-D ball with radius

√
P . InN complex dimensions, the optimal

shaping region is a 2N -real-dimensional ball with radius
√
P .

The volume of R(SC)
shaped(N,P ) is equal to the volume of a

2N -D real ball with radius
√
P and is

V(SC)
shaped(N,P ) =

(πP )N

N !
. (19)

The volume of R(SC)
ref (N,A) is the volume of a 2N -D real

hypercube with side length 2A and is

V(SC)
ref (N,A) = (2A)2N . (20)

Using (19) in (18), we obtain

Fρ(p) =
( p

P

)N
, ρ ∈ [0, P ]. (21)

The average power of the optimal shaping region is

P̄
(SC)
shaped(N,P ) =

1

N
E[ρ] =

P

N + 1
. (22)

The average power of the reference shaping region is

P̄
(SC)
ref (A) =

2

3
A2. (23)

2) Induced Distribution: The general analytical form for the
marginal density is given in (15). The remaining step is to
evaluate the marginal distribution for the SC channel. Detailed
derivations can be found in [31], [45].

Fig. 4. Marginal density induced on Re{X1} by the optimal shaping region
for SC detection for various N . For finite and infinite N , expressions for the
marginal density are given in (24) and (25), respectively. fRe{X1}(N,P, x)

converges to a Gaussian distribution as N → ∞. P̄ = E[|X1|2] is fixed to a
constant value as N is varied.

One can show that the induced distribution must satisfy the
following proportionality:

f
(SC)
X1,shaped(N,P, x) ∝

(
1− |x|2

(N + 1)P̄
(SC)
shaped(N,P )

)N−1

,

|x|2 ∈ [0, P ]. (24)

Using P̄
(SC)
shaped(N,P ) = E[|X1|2] and taking the limit as N →

∞, we find

f
(SC)
X1,shaped(x) � lim

N→∞
f
(SC)
X1,shaped(N,P, x)

∝ exp

( −|x|2
E [|X1|2]

)
, x ∈ C. (25)

We conclude that the optimal shaping region for SC detection
induces a circularly symmetric complex Gaussian density as
N → ∞.

We can also analyze the induced density on X1 for interme-
diate values of N . First, we write X1 in terms of its real and
imaginary parts as X1 = Re{X1}+ jIm{X1}. Fig. 4 shows
the induced marginal density of Re{X1} for different values
of N . The induced marginal density on Re{X1} for a given
N is

fRe{X1}(N,P, x) =

∫ ∞

−∞
f
(SC)
X1,shaped(N,P, x+ jy) dy. (26)

We also define fIm{X1}(N,P, x) by similarly marginalizing over
Re{X1}. By symmetry, fRe{X1}(N,P, x) = fIm{X1}(N,P, x),
so we only plot the marginal density for Re{X1} for sake of
simplicity.

We include the case of N = 1.5 to show the density induced
by the shaping region in Fig. 3. While the density induced in
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X1 traces out a hemisphere with radius
√
2.5P̄ for N = 1.5, the

density induced on Re{X1} is not a half-circle. The marginaliza-
tion over Im{X1} causes the induced density on Re{X1} to no
longer trace a half-circle. The intermediate values of N = 4 and
N = 6 visually show the density converges toward a Gaussian
distribution. It is important to note that the maximum value
for Re{X1} must increase with

√
N + 1 to maintain constant

average power.
3) Shaping Gain: Now we compute a closed-form expres-

sion for the ultimate shaping gain for SC detection. The ex-
pression for the ultimate shaping gain was first given in (17).
The computation of the ultimate shaping gain only requires
the volume expressions (19) and (20) and the average power
expressions (22) and (23).

We first need to equate the volumes of the optimal and
reference shaping regions. Equating (20) and (19), using Stir-
ling’s approximation, taking the ratio of (23) to (22) and letting
N → ∞, we obtain

γ(SC)
s =

πe

6
≈ 1.53 dB. (27)

D. Numerical Optimization of the Input Distribution

MMI and HCA provide closed-form analytic expressions for
the optimal input distribution and channel capacity for SC detec-
tion. These techniques, however, presume signaling techniques
and operating regimes that may not always apply in practice. For
example, MMI and HCA presume continuous constellations, in
contrast with the discrete constellations used in practice. HCA
also presumes operation in the high-SNR regime, which is not
always applicable.

Numerical estimation of the channel capacity provides an
analysis that is complementary to the analytical results derived
using MMI and HCA. For example, numerical methods can
estimate the achievable information rates when finite, discrete
constellations are used or under various input probability distri-
bution constraints. Numerical methods can also independently
verify the ultimate shaping gains and induced marginal densities
derived using MMI and HCA.

In this subsection, we first define the coded modulation ca-
pacity of the SC channel. We then present a general proce-
dure for computing optimized discrete input distributions that
can be used for both the SC channel and DD channels. We
then numerically analyze the coded modulation capacity of
the SC channel for various M and different constraints on the
input distributions. In Section IV, we use similar procedures
to study the coded modulation capacity for several DD-based
methods.

1) Coded Modulation Capacity: The coded modulation ca-
pacity is a definition of channel capacity applicable when the
constellation input to the channel is discrete [49]. Let C(SC)

ref (M)
be a minimum-energy cubic constellation with M signal points
selected from C

(SC)
ref (N,A). M is restricted to positive integers

that allow the constellation to have symmetry about the mirror

planes passing through the coordinate axes. The coded modula-
tion capacity for the SC channel is

C
(SC)
CM

(
SNR(amp),M

)
� max

σamp,PX(x):
E[|X|2]

σ2
amp

≤SNR(amp)

X=C
(SC)
ref (M)

I(X;Y ), (28)

where M is the modulation order, PX(x) is a probability mass
function (PMF) over the input constellation, and X is the alpha-
bet of the random variable X .

In the optimization (28), the constellation has a fixed unit
spacing. We optimize the input distribution PX(x) to maximize
mutual information, while simultaneously optimizing the noise
standard deviationσamp to achieve the SNR constraint SNR(amp).
In an equivalent formulation, one may fix σamp and achieve the
SNR constraint by optimizing over the constellation spacing
using a scale factor λ > 0 [49]. In this paper, we fix λ = 1 and
optimize over σamp.

2) Numerical Optimization of the Input Distribution: Nu-
merically solving (28) requires a method of computing the
optimal PX(x). The Blahut-Arimoto (BA) algorithm can be
used to compute the capacity-achieving input distribution for
arbitrary discrete memoryless channels subject to an average
power constraint [11], [12]. To use the BA algorithm in (28),
the continuous-valued output of the channel must be quantized.
Throughout this paper, we use the method described in [50] to
compute the correct number of output bins. For any fixed value
of σamp in (28), the optimal input distribution can be found using
the BA algorithm. The complete optimization can be solved by
adding an outer loop to optimize over σamp > 0.

While the BA algorithm can numerically compute the optimal
input distribution, we are also interested in evaluating the coded
modulation capacity under additional constraints on the input
distribution. For example, it is often desirable to parameterize
the input distribution by one or more variables. Such an approach
reduces implementation complexity in practice and facilitates
comparison with the optimal input distribution computed by the
BA algorithm and other analytic distributions.

The following presents a general procedure for obtaining
a parameterized discrete input distribution from a continuous
Gaussian, exponential, or uniform distribution. While we use
these discrete distributions here to analyze the SC channel, this
procedure is also used to obtain discrete input distributions for
several DD channels in Section IV. The continuous Gaussian
distribution is assumed to be a zero-mean, N -D IID real or
circularly symmetric complex Gaussian random vector and is
proportional to

fX(x, β) ∝ exp
(
−β ‖x‖22

)
, (29)

whereβ ≥ 0 is a shaping parameter. The continuous exponential
distribution is a zero-mean real or complex random variable and
assigns probability proportional to

fX(x, β) ∝ exp (−β ‖x‖2) . (30)

The continuous uniform distribution is not parameterized by β.
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Fig. 5. Continuous 1-D Gaussian probability density function fX(x, β) vs. x
for shaping parameter values 10 · log10(β) = 10, 0, and − 10 given in (29).
The 21 markers on each curve indicate locations of samples of the continuous
distribution, which are normalized according to (31) to obtain a Maxwell-
Boltzmann distribution. Adapted from [45].

The continuous Gaussian, exponential, and uniform distribu-
tions must be sampled and normalized to obtain discrete PMFs.
The associated discrete PMFs for the Maxwell-Boltzmann (MB)
and exponential distributions PX(x, β) with alphabet X are
obtained by sampling and normalizing the continuous PDFs for
each value in the alphabet, i.e.,

PX(x, β) =
fX(x, β)∑

x′∈X fX(x′, β)
. (31)

The discrete uniform distribution assigns probability 1/|X | to
each x ∈ X .

Fig. 5 shows an example of sampling a 1-D continuous
Gaussian distribution and normalizing for three different values
of β to obtain an MB distribution [46]. For larger values of β,
more probability is concentrated near x = 0. As β decreases,
the normalized discrete distribution converges to a uniform
distribution.

The coded modulation capacity expression (28) can be easily
adapted to include constraints on the input distribution. In the
case of the discrete uniform distribution, there is only one
valid PMF, which in turn fixes the value of σamp. The uniform
input distribution constraint therefore reduces the optimization
in (28) to a simple Monte Carlo estimate of the empirical mutual
information.

In the case of either the MB distribution or discrete exponen-
tial distribution, (28) becomes an optimization over σamp > 0
and β ≥ 0. However, for each β, there exists only one value of
σamp that satisfies the SNR constraint. Thus, the optimization in
(28) becomes a simple 1-D parameter search over β ≥ 0.

In this paper, a subset of the optimal, MB, exponential, and
uniform distributions are numerically computed for each of
the channels analyzed. The term optimal indicates that the BA
algorithm is used to obtain the input distribution. The terms

Fig. 6. Mutual information vs. SNR(amp) for SC detection for varying mod-
ulation order M and uniform square constellations. The solid and dotted
lines indicate that the transmitted signal points follow a Gaussian (Maxwell-
Boltzmann (MB)) or uniform distribution, respectively. The blue and red arrows
and text indicate the values of SNR(amp) and mutual information at which the
maximum shaping gains are obtained for modulation orders for M = 65536
and M = 256, respectively.

Maxwell-Boltzmann and exponential indicate that an optimiza-
tion of the shaping parameterβ, the noise variance, and sampling
as described in (31) is used to obtain the input distribution.
The term uniform indicates the mutual information is obtained
via Monte Carlo simulation with a fixed discrete uniform input
distribution.

3) Numerical Analysis for Standard Coherent Detection:
The HCA analysis for the induced marginal density and ultimate
shaping gain implies that the continuous 2-D complex Gaussian
distribution is 1.53 dB more energy efficient than the continu-
ous 2-D uniform distribution at the same information rate. In
practice, discrete 2-D constellations per polarization are used.
In this section, we analyze the achievable shaping gains using
finite square constellations with modulation order M .

Fig. 6 shows MI vs. SNR(amp) for the SC channel.
Modulation ordersM = 65536,M = 16384,M = 4096,M =
1024, and M = 256 are differentiated by unique markers. The
solid and dotted lines indicate whether the MB or uniform dis-
tributions are used, respectively. The MI achieved using the BA
algorithm is indistinguishable from the MB input distribution, so
only the MB distribution is shown. The Shannon limit is included
as a reference and is given by log2(1 + SNR(amp)) bits/symbol.

The finite-constellation shaping gains for M = 65536 and
M = 256 are indicated by the blue and red arrows and text
in Fig. 6. This finite-constellation shaping gain is computed
by computing the largest difference in SNR(amp) between the
uniform distribution and the MB distribution at a fixed MI over
the range of SNR(amp) analyzed. The finite-constellation shaping
gain increases from∼ 1 dB to∼ 1.4 dB asM increases from 256
to 65536. The relative increase in shaping gain decreases for each
factor of 4 increase in M . The finite-constellation shaping gain
for M = 65536 is ∼ 0.13 dB less than the ultimate shaping gain
given in (27). This gap could be decreased by further increasing
M .
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IV. DIRECT-DETECTION METHODS

In this section, we explain how to derive continuous-valued
induced marginal densities for several important DD-based
methods. As a first step, in Section IV-A, we introduce the
concept of natural coordinates. We then use HCA to derive
input distributions for thermal noise-limited and amplifier noise-
limited SD detection and SV detection in Section IV-B through
Section IV-E. Finally, in Section IV-F, we use MMI to study
the optimal input distribution for amplifier noise-limited KK
detection.

A. Natural Coordinates

Natural coordinates are a key to applying HCA to DD-based
methods, particularly in the amplifier noise-limited regime,
where the detected noise is signal-dependent. The term natu-
ral coordinates [34] refers to a coordinate system in which a
set of signals may be expressed such that the pairwise error
probability between any two signals is a decreasing function of
the Euclidean distance between them, at least asymptotically at
high SNR. When a coset is expressed in natural coordinates, the
minimum Euclidean distance characterizes the pairwise error
probability between nearest neighbors throughout the coset,
and remains a good descriptor of the nearest-neighbor error
probability when the coset is approximated by a continuum with
uniform density.

Although Forney and Wei did not explicitly define the natural
coordinates, they may be considered implicit in their treatment
of shaping for SC detection [31], where the natural coordinates
are the electric field quadratures, and the physical energy of a
signal corresponds to its squared L2-norm.

For the various DD-based methods studied here, the natural
coordinates depend on the detection method, the noise distribu-
tion, and the decision rule, and are not necessarily the same as
the physical variables that are modulated or detected. Depending
on the natural coordinates in which a signal is expressed, its
physical energy does not necessarily correspond to its squared
L2-norm.

For example, in thermal noise-limited SD detection [32],
we modulate electric field magnitude or intensity and detect
intensity. The natural coordinates for describing a signal (coset
point) are the sequence of intensities, and the physical energy of a
signal is its L1-norm. By contrast, in amplifier noise-limited SD
detection [34], we modulate electric field magnitude or intensity
and detect intensity. The natural coordinates are the sequence of
electric field magnitudes, and the physical energy of a signal is
its squared L2-norm.

In general, the statistics of the dominant noise source affect
the induced marginal density and shaping gain by affecting the
natural coordinates of the discrete-time channel. The pairwise
error probability being a Q-function of the Euclidean distance
is a sufficient condition to establish the natural coordinates
and approximately holds for every discrete-time channel model
studied in this paper. We also note that the natural coordinates
derived for each discrete-time channel model are not unique, as
the L2-norm is preserved under any unitary transformation of
the natural coordinates.

Fig. 7. Discrete-time channel model for SD detection in the thermal noise-
limited regime. The noise variance σ2

th is independent of I . Adapted from [45].

In the various DD-based methods studied in the following
subsections, the natural coordinates are derived using a variety
of observations and approximations, so we defer more detailed
explanation of the natural coordinates to those subsections.

B. Standard Direct Detection, Thermal Noise-Limited

The first work on probabilistic shaping for optical communi-
cations used HCA to analytically approximate the optimal input
distribution for SD detection of intensity-modulated signals
in the thermal noise-limited regime [32]. This calculation is
reviewed in this subsection.

The discrete-time channel model for SD detection in the
thermal noise-limited regime is shown in Fig. 7 and is given
by

Y = I +N. (32)

The detected electrical signal Y is equal to the signal intensity
I ≥ 0 corrupted by signal-independent Gaussian noise N with
variance σ2

th.
1) Natural Coordinates: Given two possible signal intensi-

ties in a symbol interval, I1 and I2, the pairwise error probability
under ML detection is

Pe(I1, I2) = Q

(‖I1 − I2‖2
2σth

)
. (33)

The error probability (33) is a decreasing function of the Eu-
clidean distance between I1 and I2, implying that the natural
coordinates for thermal noise-limited SD detection are intensi-
ties.

2) Shaping Regions: Let I = [I1, I2, . . . , IN ]T ∈ R
N
+ be a

real N -D vector be formed by concatenating N 1-D signal
intensities in N disjoint symbol intervals. The average optical
power of I is 1

N ‖I‖1. The optimal shaping region consists of the
set of N -D signal points with peak total power at most P :

R(SD,th)
shaped (N,P ) =

{
I ∈ R

N
+ | ‖I‖1 ≤ P

}
. (34)

This region is depicted for the case ofN = 3 in Fig. 8, and is a
tetrahedron. More generally, the shaping region is anN -simplex
in N dimensions. The volume of R(SD,th)

shaped (N,P ) is

V(SD,th)
shaped (N,P ) =

PN

N !
. (35)

The average optical power of R(SD,th)
shaped (N,P ) is

P̄
(SD,th)
shaped (N,P ) =

P

N + 1
. (36)
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Fig. 8. Thermal noise-limited SD detection: Optimal shaping region inN = 3
real dimensions. The shaded region depicts the set of points from the shaping
region that satisfy the constraint I1 = i. Adapted from [45].

The reference shaping region is defined by a hypercube in the
intensity. This shaping region can be equivalently described as
the set of signal points with a peak intensity constraintA on each
constituent 1-D symbol, and is given by

R(SD,th)
ref (N,A) =

{
I ∈ R

N
+ | ‖I‖∞ ≤ A

}
. (37)

The volume of the region is simply

V(SD,th)
ref (A) = AN . (38)

Because each signaling dimension is independent, the average
optical power of the shaping region can be computed by the
expectation of the intensity in any one dimension, and is

P̄
(SD,th)
ref (A) =

A

2
. (39)

3) Induced Distribution and Shaping Gain: The induced
density in one basic dimension must satisfy the following [32]:

fI1(N,P, i) ∝
(
1− i

(N + 1)P̄
(SD,th)
shaped (N,P )

)N−1

,

i ∈ [0, P ]. (40)

Using P̄
(SD,th)
shaped (N,P ) = E[I1] and taking the limit as N → ∞,

we find

fI1(i) = lim
N→∞

fI1(N,P, i)

∝ exp

( −i

E[I1]

)
, i ∈ R+. (41)

The optimal shaping region for the thermal noise-limited SD
receiver induces an exponential distribution in the intensity.
This is equivalent to a Rayleigh distribution in the electric field
magnitude.

We now compute the ultimate shaping gain for the thermal
noise-limited SD receiver. Setting the volumes of the shaped
and reference regions in (35) and (38) equal and using Stirling’s
approximation, we find the ultimate shaping gain to be

γ(SD,th)
s = lim

N→∞
P̄

(SD,th)
ref (A)

P̄
(SD,th)
shaped (N,P )

=
e

2
. (42)

Fig. 9. Mutual information vs. SNR(th) for the thermal noise-limited SD de-
tection channel. The 128-point constellations are uniformly spaced in intensity.
Adapted from [45].

Fig. 9 shows mutual information vs. SNR(th) = P̄ 2/σ2
th for

thermal noise-limited SD detection using 128-point constella-
tions uniformly spaced in intensity with optimal, exponential,
MB and uniform input distributions. The optimal distribution
and its mutual information are computed numerically using the
BA method, as explained in Section III-D. Consistent with the
HCA analysis, an exponential distribution in intensity outper-
forms a MB distribution in intensity at all values of SNR(th)

shown. The exponential distribution achieves a mutual infor-
mation within 0.03 bits/symbol of the optimal distribution over
the entire range of SNRs studied, with the gap decreasing as
SNR(th) increases. The empirical shaping gain at 5 bits/symbol
is 2.65dB, which is close to the ultimate shaping gain of
2× 10 log10(e/2) ≈ 2.665 dB in (42) when expressed in terms
of SNR(th).

Over the range of SNR(th) studied in Fig. 9, the shaping
gain for the optimal input distribution decreases monotonically
with increasing SNR(th). This is in contrast with SC detection,
where the shaping gain increases monotonically toward its max-
imum value as SNR(amp) increases. This is a consequence of
the discreteness of the optimal input distribution for thermal
noise-limited SD detection [14], [16]. At low values of SNR(th),
optimization over the thermal noise standard deviation σth leads
to a large separation between adjacent constellation points rela-
tive toσth, with the result that only a few constellation points have
significant probability, despite the simulation including many
possible constellation points.

C. Standard Direct Detection, Amplifier Noise-Limited

In this subsection, we review the application of HCA to
amplifier noise-limited SD detection [34]. The discrete-time
channel model is shown in Fig. 10, and is given by

Y = |X +N |2

= |X|2 + 2Re(X∗N) + |N |2. (43)
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Fig. 10. Discrete-time channel model for SD detection in the amplifier noise-
limited regime. The approximation, made at high SNR, neglects ASE-ASE beat
noise. The signal-ASE beat noise variance σ2

2Re{X∗N} is proportional to the

signal energy |X|2. ASE: Amplified spontaneous emission. Adapted from [45].

For simplicity, we have assumed the signal and ASE are re-
ceived in one polarization. This enables us to write the channel
model in (43) as a complex, scalar channel. The signal X is
generally complex-valued, and the ASE noise N is a complex
circularly symmetric ASE noise with variance 2σ2

amp, i.e., N ∼
CN (0, 2σ2

amp). The signal component of the detected intensity
Y is proportional to |X|2. Because the phase of X is lost in
detection, we may assume X is real and nonnegative, and use X
and |X| interchangeably, without changing the statistics of the
detected intensity Y .

The detected intensity Y includes additive noise components
Re(X∗N) and |N |2, which are, respectively, signal-ASE and
ASE-ASE beat noises. In the high-SNR regime, the signal-ASE
beat noise is dominant, and the ASE-ASE beat noise becomes
negligible. The discrete-time channel model is approximated by

Y ≈ |X|2 + 2Re(X∗N)

= |X|2 + Ñ , (44)

where the signal-ASE beat noise is Ñ = 2Re(X∗N). In the
HCA derivation, we use the approximate channel model (44).
Our numerical simulations to evaluate mutual information use
the exact channel model (43), which includes both signal-ASE
and ASE-ASE beat noises.

1) Natural Coordinates: Consider two arbitrary electric
fields x1 and x2 input to the channel modeled by (44). The
signal-ASE beat noise is Gaussian distributed with a variance
that scales linearly with received optical intensity. The condi-
tional distributions of this noise are Ñ |(X = xi) ∼ N (0, σ2

i ),
where σ2

i = 4|xi|2σ2
amp for i = 1, 2.

The conditional distributions of the detected intensity are
Y |(X = xi) ∼ N (xi, σ

2
i ) for i = 1, 2 The exact ML decision

threshold is a value of Y at which the two conditional distribu-
tions of Y cross. The ML decision threshold is well approxi-
mated by the simple formula

Yd =
σ1|x2|2 + σ2|x1|2

σ1 + σ2
= |x1||x2|. (45)

Let Pe(x1|x2) be the probability of decoding x1 given x2 was
transmitted and Pe(x2|x1) is defined likewise. Using the deci-
sion threshold (45), we findPe(x1|x2) = Pe(x2|x1). Therefore,
the pairwise error probability between x1 and x2 is

Pe(x1, x2) = Pe(x1|x2) = Pe(x2|x1) (46)

Fig. 11. Amplifier noise-limited SD detection: Optimal shaping region for
N = 3 real dimensions. Adapted from [45].

= Q

(‖|x2| − |x1|‖2
2σamp

)
. (47)

Since the pairwise error probability is given by a Q-function
of the L2-norm of the difference in electric field magnitudes, we
conclude that electric field magnitudes are natural coordinates
for the amplifier noise-limited SD receiver.

2) Shaping Regions: LetX = [X1, X2, . . . , XN ]T ∈ R
N
+ be

a real N -D vector be formed by concatenating N 1-D electric
field magnitudes in N disjoint symbol intervals. The average
optical power of X is 1

N ‖X‖22. The optimal shaping region is
the set of N -D signal points with peak total power P :

R(SD,amp)
shaped (N,P ) =

{
X ∈ R

N
+ | ‖X‖22 ≤ P

}
. (48)

Fig. 11 shows the optimal shaping region for the amplifier
noise-limited SD receiver for N = 3, which is the intersection
of a 3-D ball with the non-negative orthant. For general N , the
shaping region is the intersection between an N -D ball and the
non-negative orthant. The volume of the regionR(SD,amp)

shaped (N,P )
is

V(SD,amp)
shaped (N,P ) =

1

Γ(N2 + 1)

(πP )N/2

2N
. (49)

The average optical power of the region R(SD,amp)
shaped (N,P ) is

P̄
(SD,amp)
shaped (N,P ) =

P

N + 2
. (50)

The reference shaping region is a hypercube in electric field
magnitude. This region is equivalently described as the set of
signal points with a peak power constraint A on each constituent
1-D symbol:

R(SD,amp)
ref (N,A) =

{
X ∈ R

N
+ | ‖X‖∞ ≤ A

}
. (51)

The volume of the shaping region is

V(SD,amp)
ref (N,A) = AN . (52)

The average optical power of the shaping region is the second
moment of the electric field magnitude in any one dimension,
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Fig. 12. Mutual information vs. SNR(amp) for amplifier noise-limited SD
detection. The 128-point constellations are uniformly spaced in electric field
magnitude. Adapted from [45].

and is given by

P̄
(SD,amp)
ref (A) =

A2

3
. (53)

3) Induced Distribution and Shaping Gain: The induced
density in one basic dimension must satisfy the following [34]:

fX1
(N,P, x) ∝

(
1− x2

(N + 2)P̄
(SD,amp)
shaped (N,P )

)N−1
2

,

x ∈
[
0,
√
P
]
. (54)

Substituting E[X2
1 ] = P̄

(SD,amp)
shaped (N,P ) into (54) and taking the

limit as N → ∞, we get

fX1
(x) � lim

N→∞
fX1

(N,P, x)

∝ exp

(
−1

2

x2

E[X2
1 ]

)
, x ∈ R+. (55)

The optimal shaping region for the amplifier noise-limited SD
receiver induces an MB distribution in electric field magnitude.
We note that a half-Gaussian distribution in the electric field
magnitude corresponds to a Gamma distribution with shape
parameter k = 1/2 and scale parameter θ = 2P̄ in the intensity.

To compute the ultimate shaping gain for amplifier noise-
limited SD detection, we must equate the volumes in (49) and
(52). Equating the volumes yields a relationship between P and
A and using Stirling’s approximation, the ultimate shaping gain
is the ratio of (50) and (53) as N → ∞, and is given by

γ(SD,amp)
s = lim

N→∞
P̄

(SD,amp)
ref (A)

P̄
(SD,amp)
shaped (N,P )

=
πe

6
. (56)

Fig. 12 shows the mutual information vs. SNR(amp) for am-
plifier noise-limited SD detection using 128-point constella-
tions uniformly spaced in electric field magnitude with optimal,
MB, exponential, and uniform input distributions. The optimal
distribution and its mutual information are computed numeri-
cally using the BA method, as explained in Section III-D. For

Fig. 13. Discrete-time channel model for SV detection in the thermal noise-
limited regime. The noise covariance matrix cov{ 1

ς H
TN(th)} is independent

of the transmitted SV S. Adapted from [45].

SNR(amp) < 8 dB, an exponential distribution in electric field
magnitude outperforms the MB distribution. For SNR(amp) > 10
dB, the MB distribution in electric field magnitude outperforms
the exponential distribution. As SNR(amp) increases from 10 dB
to 20 dB, the mutual information achieved by the MB distribu-
tion converges to that achieved by the optimal distribution. These
results are consistent with the HCA derivation, which states that
a half-Gaussian distribution in electric field magnitude is the
optimal distribution at high SNR.

The shaping gain achieved by the optimal distribution over
the uniform distribution depends on the target mutual infor-
mation. At 0.5 bits/symbol, the shaping gain of the optimal
distribution over the uniform distribution is greater than 3 dB.
At 2.5 bits/symbol, the shaping gain of the optimal distribution
is about 1.5 dB, in agreement with the analytical result (56), i.e.,
πe/6 ≈ 1.53 dB.

For simplicity, we have assumed both the signal and ASE
noise are received in only one polarization, since the dominant
signal-ASE beat noise arises only from the noise that is co-
polarized with the signal. If the receiver were to also detect
ASE noise in the orthogonal polarization, it would affect only
the ASE-ASE beat noise. This would not change the input
distribution found using HCA, but would slightly degrade the
performance obtained using any input distribution at low values
of SNR(amp).

D. Stokes Vector Detection, Thermal Noise-Limited

In this subsection, we review the application of HCA to
thermal noise-limited SV detection [35]. We consider the spe-
cific SV receiver structures shown in [22, Fig. 3] and [23, Fig.
1(a)], which yield identical outputs in principle. These structures
may be considered canonical because they directly yield the
three components of the received Stokes vector with identical
signal gains and noise distributions, and because they minimize
the number of required electrical outputs and analog-to-digital
converters.

The discrete-time channel model for thermal noise-limited
SV detection is shown in Fig. 13 and given by

Y =
1

ς
HT

(
HS+N(th)

)
= S+

1

ς
HTN(th). (57)

Here, H is a 3× 3 real orthogonal Mueller matrix with channel
gain HTH = ςI3, S = [S1, S2, S3]

T is the SV of the transmit-
ted electric field, and N(th) = [N

(th)
1 , N

(th)
2 , N

(th)
3 ]T is a jointly

Gaussian AWGN vector with covariance matrix cov{N(th)} =
σ2

thI3.
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The discrete-time model presumes the channel is known at
the receiver and that the receiver uses memoryless digital signal
processing to compensate for the effects of the channel. The
covariance of the noise after the signal processing is an IID
jointly Gaussian AWGN vector because the covariance matrix
is

cov

{
1

ς
HTN(th)

}
=

1

ς
σ2

thI3. (58)

1) Natural Coordinates: Consider two arbitrary SVs S1 and
S2 input into the channel. Under ML detection, the pairwise
error probability is

Pe(S1,S2) = Q

(‖S1 − S2‖2
2σth

)
. (59)

We therefore conclude that the Stokes parameters are the natural
coordinates for thermal noise-limited SV detection.

2) Shaping Regions: Let S(N) = [ST
1 ,S

T
2 , . . . ,S

T
N ]T =

[S11, S1,2, S1,3, S2,1, . . . , SN,3] be a length-3N real vector of
Stokes parameters formed by concatenating N 3-D SVs in N
disjoint symbol intervals. The average optical power is

1

N
S
(N)
0 =

1

N

∥∥∥S(N)
∥∥∥
2
=

1

N

N∑
i=1

‖Si‖2 . (60)

The optimal shaping region is the set of 3N -D signal points
with the property that the sum of the optical powers of the N
constituent 3-D SVs is less than or equal to the total power P .
It is defined by

R(SV,th)
shaped (N,P ) =

{
S(N) ∈ R

3N |
N∑
i=1

Si,0 ≤ P

}
(61)

=

{
S(N) ∈ R

3N |
N∑
i=1

‖Si‖2 ≤ P

}
. (62)

Fig. 14(a) shows the optimal shaping region for thermal
noise-limited SV detection for N = 2, which is a 2-D simplex.
It corresponds to the shaping regionR(SV,th)

shaped (2, P ) given in (61),
which is an L1-norm constraint on the zeroth Stokes parameter.
A 6-D signal point S(2) = [ST

1 ,S
T
2 ]

T is specified by indicating
the values of the two constituent 3-D signal points S1 and
S2. The black dot indicates the 2-D coordinates of the corre-
sponding zeroth Stokes parameters, which are ‖S1‖2 = S1,0

and ‖S2‖2 = S2,0, respectively. Fig. 14(b) contains two shaded
3-D balls enclosed by two outer balls with radius P , which
is an alternative method of depicting S(2). The coordinates on
the left and right shaded 3-D balls are S1 = {S1,1, S1,2, S1,3}
and S2 = {S2,1, S2,2, S2,3}, respectively, which are indicated
by the black dots. The radii of the shaded 3-D balls are S1,0 and
S2,0, respectively. Any pair of 3-D signal points that lie on the
surfaces of the shaded 3-D balls in Fig. 14(b) map back to S(2)

in Fig. 14(a).
LetV(SV,th)

shaped (N,P ) be the volume ofR(SV,th)
shaped (N,P ). A closed-

form expression for V(SV,th)
shaped (N,P ) is [35]:

V(SV,th)
shaped (N,P ) = P 3N (8π)N

Γ(3N + 1)
. (63)

Fig. 14. (a) Optimal shaping region for thermal noise-limited SV detection
for N = 2 Stokes symbols S1 and S2. The figure depicts the 6-D real vector
S(2) in terms of S1,0 and S2,0, the zeroth Stokes parameters of S1 and S2,

respectively. S(2) is a signal point on the surface of R(SV,th)
shaped (2, P ), which is

a 2-simplex in S0. The maximum-L1-norm constraint on the simplex is P .
(b)S1 andS2 shown on separate 3-D plots with the individual Stokes parameters
{S1,1, S1,2, S1,3} and {S2,1, S2,2, S2,3} as coordinates. The radii of the outer
3-D balls are also P .

The average optical power of the region R(SV,th)
shaped (N,P ) is

P̄
(SV,th)
shaped (N,P ) =

3

3N + 1
P. (64)

The reference shaping region is a hypercube in Stokes space,
and can be described by the set of signal points with maximum-
L∞-norm constraint A. The analytical form for R(SV,th)

ref (N,A)
is given by

R(SV,th)
ref (N,A) =

{
S(N) ∈ R

3N |
∥∥∥S(N)

∥∥∥
∞

≤ A
}
. (65)

The volume of R(SV,th)
ref (N,A) is

V(SV,th)
ref (N,A) = (2A)3N . (66)

By symmetry, we can compute the average optical power by
considering onlyS1. For the reference shaping region,S1,1,S1,2,
and S1,3 are mutually independent and uniformly distributed
from [−A,A]. The average optical power per Stokes symbol is

P̄
(SV,th)
ref (A) = E

[√
S2
1,1 + S2

1,2 + S2
1,3

]
(67)

≈ 0.961A (68)

≤ A. (69)

Eq. (68) comes from numerically approximating (67) and (69)
follows from Jensen’s inequality, and is an upper bound of the
exact expression (67).
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Fig. 15. Mutual information vs. SNR(th) for thermal noise-limited SV detec-
tion. The (12× 12× 12) constellations are uniformly spaced in Stokes space.

3) Induced Distribution and Shaping Gain: The induced
density in one basic dimension must satisfy the following [35]:

fS1
(N,P, s) ∝

(
1− 3 ‖s‖2

(3N + 1)P̄
(SV,th)
shaped (N,P )

)3N−3

,

‖s‖2 ∈ [0, P ]. (70)

Setting the average power to a constant P̄ (SV,th)
shaped (N,P ) = P̄ , and

taking the limit as N → ∞, we obtain

fS1
(s) = lim

N→∞
fS1

(N, s)

∝ exp

(−‖s‖2
P̄ /3

)
, ‖s‖2 ∈ R+. (71)

Normalizing the density, we get

fS1
(s) =

1

8π

(
1

P̄ /3

)3

exp

(
−‖s‖2
P̄ /3

)
, ‖s‖2 ∈ R+. (72)

We conclude that the optimal input distribution for the thermal
noise-limited SVR is a 3-D exponential distribution in S0.

Computing the ultimate shaping gain of thermal noise-limited
SV detection requires equating the volumes in (63) and (66).
Taking the ratio of P̄

(SV,th)
ref (A) to P̄

(SV,th)
shaped (N,P ) as N → ∞

with volumes equated, we find

γ(SV,th)
s = lim

N→∞
P̄

(SV,th)
ref (A)

P̄
(SV,th)
shaped (N,P )

(73)

≈ 0.961
3
√
πe

3
≈ 1.056 dB (74)

≤
3
√
πe

3
≈ 1.23 dB. (75)

Eq. (74) uses the approximation in (68), and (75) uses the upper
bound (69).

Fig. 15 shows the mutual information vs. SNR(th) for the
3-D optimal distribution, 3-D exponential distribution, 3-D MB,
and uniform distribution. The (12× 12× 12) constellations are

Fig. 16. 3-D optimal distribution vs. S1 for S2 = S3 = 0.5 and SNR(th) =
20 dB for thermal noise-limited SV detection computed using the BA algorithm.
The unnormalized continuous exponential and Gaussian densities are fitted to
minimize the L1-norm of the fitting error in dB.

uniformly spaced in Stokes space, and the input distributions
and thermal noise standard deviation σth are optimized using
the methods described in Section III-D. The 3-D exponential
distribution outperforms the MB distribution over the entire
range of SNR(th) studied, while both distributions outperform
the uniform distribution over the entire range of SNR(th) studied.
The 3-D exponential distribution is within 0.01 bits/symbol of
the 3-D optimal distribution at SNR(th) = 16 dB.

The shaping gain of the 3-D optimal distribution over the
uniform distribution at 6.4 bits/symbol is 1.25 dB. This is almost
0.15 dB higher than the 1.105 dB shaping gain estimated using
the (8× 8× 8) constellation in [35]. This higher shaping gain
is a consequence of the larger (12× 12× 12) constellation
used in Fig. 15. The ultimate shaping gain derived in (74) is
2.11 dB when expressed in terms of SNR(th), indicating that
our numerical simulation achieves roughly 60% of the ultimate
shaping gain. In Fig. 6, we showed that SC detection achieves
roughly 65% of the ultimate shaping gain when usingM = 256,
which uses 16 constellation points per signaling dimension.
The gap to the maximum theoretical shaping gain is similar for
SC detection and thermal noise-limited SV detection. The gap
between the theoretical maximum and numerically estimated
shaping gains can be reduced by using 3-D constellations with
more signal points.

Fig. 16 shows the 3-D optimal distribution vs. S1 for S2 =
S3 = 0.5 and SNR(th) = 20 dB computed using the BA algo-
rithm. The continuous exponential and Gaussian distributions
are fitted to minimize the L1-norm of the fitting error in dB.
The exponential better fits the 3-D optimal distribution than the
Gaussian does. This result is consistent with the 3-D exponential
distribution analytically derived in (72) for thermal noise-limited
SV detection.

E. Stokes Vector Detection, Amplifier Noise-Limited

In this subsection, we review the application of HCA to am-
plifier noise-limited SV detection [35]. As in the previous sub-
section, we consider the specific SV receiver structures shown
in [22, Fig. 3] and [23, Fig. 1(a)], which may be considered
canonical.
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We first state the discrete-time channel model in terms of elec-
tric field components and then derive the discrete-time channel
model in terms of Stokes vector components. A received electric
field vector ER is

ER = E′ +N(amp), (76)

where E = [E1, E2]
T = [E1I + jE1Q, E2I + jE2Q]

T is the
transmitted electric field, U is a scaled unitary matrix satisfy-
ing UUH =

√
ςI2, E′ = UE = [E ′

1I + jE ′
1Q, E

′
2I + jE ′

2Q]
T

is the electric field after multiplication by U, and N(amp) =

[N
(amp)
1 , N

(amp)
2 ]T = [N1I + jN1Q, N2I + jN2Q]

T is a com-
plex, circularly symmetric jointly Gaussian AWGN vector with
covariance matrix cov{N(amp)} = 2σ2

ampI2.
Let S be the SV corresponding to the electric field vector E.

After detection and MIMO equalization, the detected electrical
signals are

Y = S+
1

ς
HT Ň(amp). (77)

The channel matrix U transforms to an orthogonal Mueller
matrixHwithHTH = ςI3 [51]. The real noise vector Ň(amp) =

[Ň
(amp)
1 , Ň

(amp)
2 , Ň

(amp)
3 ]T has components

Ň
(amp)
1 = 2N1IE

′
1I + 2N1QE

′
1Q − 2N2IE

′
2I

− 2N2QE
′
2I +N2

1I +N2
1Q −N2

2I −N2
2Q, (78)

Ň
(amp)
2 = 2N1IE

′
2I + 2N1QE

′
2Q + 2N2IE

′
1I

+ 2N2QE
′
1Q + 2N1IN2I + 2N1QN2Q, (79)

Ň
(amp)
3 = − 2N1IE

′
2Q + 2N1QE

′
2I + 2N2IE

′
1Q

− 2N2QE
′
1I + 2N1QN2I − 2N1IN2Q. (80)

As in Section IV-C, we derive an approximate chan-
nel model that neglects ASE-ASE beat noise. Let Ñ(amp) =

[Ñ
(amp)
1 , Ñ

(amp)
2 , Ñ

(amp)
3 ]T be the noise vector obtained by drop-

ping all ASE-ASE beat noise terms from Ň(amp), which has
components

Ñ
(amp)
1 = 2N1IE

′
1I + 2N1QE

′
1Q − 2N2IE

′
2I

− 2N2QE
′
2I , (81)

Ñ
(amp)
2 = 2N1IE

′
2I + 2N1QE

′
2Q + 2N2IE

′
1I

+ 2N2QE
′
1Q, (82)

Ñ
(amp)
3 = − 2N1IE

′
2Q + 2N1QE

′
2I + 2N2IE

′
1Q

− 2N2QE
′
1I . (83)

Substituting in Ň(amp) for Ñ(amp) in (77), we obtain

Y ≈ S+
1

ς
HT Ñ(amp). (84)

The approximate channel model (84) is depicted in Fig. 17.
In the HCA derivation of the optimal shaping distribution,

we use the approximate channel model (84), setting ς = 1. In
numerical simulations to evaluate mutual information, we use

Fig. 17. Discrete-time channel model for SV detection in the amplifier
noise-limited limited regime. The approximation, made at high signal-to-noise
ratio, neglects ASE-ASE beat noise. The signal-ASE beat noise covariance
matrix cov{ 1

ς H
T Ñ(amp)} scales linearly with the signal energy ‖S‖2. ASE:

Amplified spontaneous emission. Adapted from [45].

the exact channel model (77), which includes both signal-ASE
and ASE-ASE beat noises.

1) Natural Coordinates: Consider two arbitrary SVs S1 and
S2 input to the channel described by (84). To derive an ex-
pression for the error probability for arbitrary S1 and S2, we
assume that a normalized correlation detector computes an inner
product between the detected electrical currentsY and the vector
(S1 − S2)/‖S1 − S2‖2 to form a decision statistic [52, Ch. 4.3].
The decoding rule using a decision threshold Yd is

YT S1 − S2

‖S1 − S2‖2
S1
≷
S2

Yd. (85)

The ML decision threshold, which minimizes the error proba-
bility, is well approximated by

Yd=
‖S2‖1/22

(
ST
2 S1 − ‖S1‖22

)
+ ‖S1‖1/22

(
‖S2‖22 − ST

1 S2

)
‖S1 − S2‖2 (‖S1‖1/22 + ‖S2‖1/22 )

.

(86)
LetPe(Si|Sj) be the conditional error probability of decoding

Si when Sj is transmitted. Assuming the channel is exactly
described by (84), the approximate ML decision threshold
(86) results in Pe(S1|S2) = Pe(S2|S1) = Pe(S1,S2), which is
given by

Pe (S1,S2) = Q

(
‖S1 − S2‖2

2σamp(‖S1‖1/22 + ‖S2‖1/22 )

)
. (87)

We now introduce an invertible transformation from Stokes
space to scaled Stokes space to aid in simplifying (87). Let X =
[X1, X2, X3] be a 3-D scaled Stokes symbol, whereX1, X2, X3

are the corresponding scaled Stokes parameters. The zeroth
scaled Stokes parameter is X0 = ‖X‖2. X is defined in terms
of S by

[X1, X2, X3]
T =

[S1, S2, S3]
T

√
S0

=
[S1, S2, S3]

T

4
√

S2
1 + S2

2 + S2
3

. (88)

To simplify (87), we make the approximation that ‖S1‖1/22 ≈
‖S2‖1/22 . Using this approximation, we obtain

Pe (S1,S2) ≈ Q

(
1

4σamp

∥∥∥∥∥ S1

‖S1‖1/22

− S2

‖S2‖1/22

∥∥∥∥∥
2

)

= Q

(
1

4σamp
‖X1 −X2‖2

)
. (89)
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Fig. 18. (a) Optimal shaping region for amplifier noise-limited SV detection
for N = 2. The figure depicts a 6-D real vector X(2) in terms of X1,0 and
X2,0, the zeroth scaled Stokes parameters of X1 and X2, respectively. X(2) is

a signal point on the surface of R(SV,amp)
shaped (2, P ), which is a 2-ball in X0 with

radius
√
P intersected with the non-negative orthant. (b) X1 and X2 shown

on separate 3-D plots with scaled Stokes parameters {X1,1,X1,2,X1,3} and
{X2,1,X2,2,X2,3} as coordinates. The radii of the outer 3-D balls in the bottom
plot are also equal to

√
P .

Since the pairwise error probability is expressed as a Q-
function of theL2-norm of the difference between scaled Stokes
vectors, we conclude that the scaled Stokes parameters are
natural coordinates for amplifier noise-limited SV detection.

2) Shaping Regions: Let X(N) = [XT
1 ,X

T
2 , . . . ,X

T
N ]T =

[X11, X1,2, X1,3, X2,1, . . . , XN,3] be a length-3N real vector
of scaled Stokes parameters that is formed by concatenating N
3-D scaled SVs in N disjoint symbol intervals. The average
optical power of X(N) is

1

N

∥∥∥X(N)
∥∥∥2
2
=

1

N

N∑
i=1

‖Xi‖22 . (90)

The optimal shaping region is the set of 3N -D signal points
with total optical power less than or equal to the maximum opti-
cal power constraint P . The optimal shaping region is described
by

R(SV,amp)
shaped (N,P ) =

{
X(N) ∈ R

3N |
N∑
i=1

‖Xi‖22 = P

}
. (91)

Fig. 18(a) shows the optimal shaping region for N = 2. A
2-D representation of the 6-D shaping region R(SV,amp)

shaped (N,P )

is a disk with radius
√
P intersected with the nonnegative

orthant. The coordinates are the zeroth scaled Stokes parameters
‖X1‖2 = X1,0 and ‖X2‖2 = X2,0, respectively. The real 6-D

vector X(2) is a signal point on the surface of R(SV,amp)
shaped (N,P ).

It is indicated using a black dot in Fig. 18(a). Fig. 18(b) shows
an alternative method of describing the real 6-D vector X(2).
The coordinates on the left and right shaded 3-D balls are X1 =

{X1,1, X1,2, X1,3} and X2 = {X2,1, X2,2, X2,3}, respectively,
which are indicated by the black dots. The radii of both outer
balls are

√
P . The radii of the shaded 3-D balls are X1,0 and

X2,0, respectively. Pairs of 3-D signal points that lie on the
surfaces of the two shaded 3-D balls in Fig. 18(b) map to X(2)

in Fig. 18(a).
It is worth noting that a 3N -D ball in scaled Stokes space

with radius
√
P maps to a 3N -D ball in Stokes space with

radius P via the transformation in (88). However, a uniform
distribution of signal points in scaled Stokes space does not map
to a uniform distribution of signal points in Stokes space because
of the Jacobian of the transformation (88). Computations of the
volume and average power in HCA must be done using the
natural coordinates.

The volume of the region R(SV,amp)
shaped (N,P ) is the volume of a

3N -D ball with radius
√
P , and is given by

V(SV,amp)
shaped (N,P ) =

(πP )3N/2

Γ( 3N2 + 1)
. (92)

The average optical power of the region R(SV,amp)
shaped (N,P ) is

P̄
(SV,amp)
shaped (N,P ) =

3P

3N + 2
. (93)

The reference shaping region is a hypercube in scaled Stokes
space. The analytical form for R(SV,amp)

ref (N,A) is given by

R(SV,amp)
ref (N,A) =

{
X(N) ∈ R

3N |
∥∥∥X(N)

∥∥∥
∞

≤ A
}
, (94)

where A is the L∞-norm constraint in scaled Stokes space. The
volume of the region is

V(SV,amp)
ref (N,A) = (2A)3N . (95)

By symmetry, the average optical power is P̄
(SV,amp)
ref (A) =

E[|X1|2] for any N . Computing the average second moment
of X1, we obtain

P̄
(SV,amp)
ref (A) = A2. (96)

3) Induced Distribution and Shaping Gain: In Section III-C,
we showed that an N -D complex ball induces a complex circu-
larly symmetric Gaussian distribution in one complex dimension
as N → ∞. In Section IV-C, we also showed that an N -D real
ball intersected with the nonnegative orthant induces a half-
Gaussian distribution in one real dimension. Using an almost
identical proof, it is straightforward to show that the distribution
induced in X is a 3-D IID real Gaussian distribution. The PDF
of X ∼ N (0, σ2I3) is given by

fX(x) =
1

(2πσ2)3/2
exp

(
− 1

2σ2
‖x‖22

)
, (97)

where σ2 = P̄ /3 is the input power constraint on each real
dimension of X.

The induced density in Stokes space is given by the follow-
ing [35]:

fS(s) =
1

2 ‖s‖3/22

1(
2πP̄/3

)3/2 exp

(
−1

2

1

P̄ /3
‖s‖2

)
. (98)
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Fig. 19. Mutual information (MI) vs. SNR(amp) for amplifier noise-limited SV
detection. The (12× 12× 12) constellations are uniformly spaced in Stokes
space.

The distribution of S, given by (98), is undefined at s = 0.
However, (98) is only a function of ‖s‖2 = s0. We can write the
distribution induced in S0 as

fS0
(s0) = 2πs

1/2
0

1(
2πP̄/3

)3/2 exp

(
−1

2

1

P̄ /3
s0

)
. (99)

From (99), we can see thatS0 ∼ Gamma(3/2, 2P̄ /3), i.e.,S0

is Gamma distributed with shape parameter k = 3/2 and scale
parameter θ = 2P̄ /3. While the distribution of S is undefined
at s = 0, the distribution of S0 is well defined at s0 = 0.

To compute the ultimate shaping gain for amplifier noise-
limited SV detection, we equate the volumes in (92) and (95).
Using Stirling’s approximation, we find that

γ(SV,amp)
s = lim

N→∞
P̄

(SV,amp)
ref (A)

P̄
(SV,amp)
shaped (N,P )

=
πe

6
≈ 1.53 dB. (100)

Fig. 19 shows the mutual information vs. SNR(amp) for ampli-
fier noise-limited SV detection, comparing the 3-D optimal, 3-D
exponential, MB, and uniform distributions. The (12× 12× 12)
constellations are uniformly spaced in Stokes space and the input
distributions and amplifier noise standard deviation σamp are
optimized using the methods outlined in Section III-D.

The 3-D exponential distribution outperforms the 3-D MB
distribution over the range of SNR(amp) studied. This is consis-
tent with (98), which suggests that at high SNR(amp), where the
exponential factor dominates, the input distribution should be
exponentially distributed in ‖s‖2 = s0.

The 3-D optimal distribution outperforms the 3-D exponen-
tial, MB, and uniform distributions, as expected. The 3-D ex-
ponential distribution achieves a mutual information within 0.1
bits/symbol of the 3-D optimal distribution at SNR(amp) = 21
dB. The shaping gain of the 3-D optimal distribution over the
uniform distribution is 1.49 dB at 6.58 bits/symbol. This is
larger than the 1.105 dB observed in [35] owing to the larger
constellation size used in Fig. 19. We note that the comparison
of the 3-D optimal distribution and the uniform distribution
in Fig. 19 is not directly comparable to the ultimate shaping

Fig. 20. 3-D optimal distribution vs. S1 for S2 = S3 = 0.5 and SNR(amp) =
25 dB for amplifier noise-limited SV detection computed using the BA algo-
rithm. The unnormalized continuous exponential and Gaussian densities are
fitted to minimize the L1-norm of the fitting error in dB.

Fig. 21. Continuous-time channel model for KK detection in the amplifier
noise-limited regime. The total transmitted signal power is equal to the sum of
the modulated data signal power P̄s and the carrier power Pc. The detected
intensity y(t) is processed to recover the phase of the received electric field.
Adapted from [45].

gain derived in (100). The uniform distribution in Stokes space
presumed in Fig. 19 is not equivalent to the uniform distribution
in scaled Stokes space used in the derivation of (100).

Fig. 20 shows the 3-D optimal distribution vs. S1 for S2 =
S3 = 0.5 and SNR(amp) = 25 dB computed using the BA algo-
rithm. The continuous exponential and Gaussian distributions
are optimized to minimize the L1-norm of the fitting error
in dB. Similar to Fig. 16, the exponential distribution better
fits the optimal PMF than the Gaussian distribution does. The
exponential distribution still provides a reasonable fit in spite of
neglecting the factor of 1/‖S‖3/22 in (98). TheL1-norm of the fit-
ting error for the exponential distribution is lower in the thermal
noise-limited regime (Fig. 16) than in the amplifier noise-limited
regime (Fig. 20), presumably because of the neglect of the factor
1/‖S‖3/22 in the latter regime.

F. Kramers Kronig Detection, Amplifier Noise-Limited

Kramers Kronig detection [25] enables coherent detection
without requiring a LO laser at the receiver. Unlike the other
DD-based methods discussed in the previous subsections, an
approximately optimal input distribution can be obtained ana-
lytically using MMI [1], and application of HCA [31] is not
strictly required. In this subsection, we mainly review the study
of KK detection in the amplifier noise-limited regime presented
in [27].

1) Continuous-Time Channel Model: Fig. 21 presents a
continuous-time channel model for a KK receiver in the ampli-
fier noise-limited regime. This continuous time model is adapted
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from [27], which assumes that the unmodulated carrier is added
at the transmitter. Centered at the frequency of the unmodulated
carrier and using band-limited Nyquist pulses, the noiseless
continuous-time transmitted signal is

x(t) = E0 + s(t)ejπBt, (101)

where E0 is the unmodulated carrier, s(t) is the information-
bearing modulated signal, and B is the bandwidth of s(t).

The transmitted signal (101) is minimum-phase provided
the carrier power Pc is sufficient to ensure that time-domain
trajectories of x(t) do not encircle the origin. If the minimum-
phase condition is satisfied, the phase ϕ(t) = arg{x(t)} can be
obtained from the intensity |x(t)|2 by using the Hilbert transform
H:

ϕ(t) = H{log
√
|x(t)|2}. (102)

Assuming ideal phase reconstruction of ϕ(t), s(t) can be ob-
tained by

s(t) =
(√

|x(t)|2ejϕ(t) − E0

)
e−jπBt. (103)

Near-lossless implementations of (102) and (103) can be real-
ized using samples of |x(t)|2 with an oversampling ratio of 2
and digital signal processing [53].

Assuming transmission through a non-dispersive channel for
simplicity, the detected electrical current in an amplifier noise-
limited KK receiver is

yI(t) = |x(t) + n(t)|2, (104)

where n(t) is white complex Gaussian noise with one-sided
PSD N0. The KK receiver subsequently computes the Hilbert
transform of log

√
yI(t). Phase-retrieval errors can occur if the

noise causes time-domain trajectories of x(t) + n(t) to encircle
the origin, which would result in a recovered phase ϕ(t) not
equal toH{log√x(t) + n(t)}. For simplicity, we have assumed
the signal and ASE noise are received in one polarization. This
enables us to write the channel model (104) as a complex, scalar
channel. KK detection of dual-polarization signals is possible in
principle, but may be complicated in practice [27].

The channel model can be further simplified if we assume the
carrier is sufficiently strong to ensure x(t) + n(t) is minimum-
phase, which we refer to as the high carrier-to-signal power
(CSPR) regime. In this regime, assuming ideal phase reconstruc-
tion, the received electric field can be reconstructed exactly from

the detected intensity as x(t) + n(t) =
√
yI(t)e

jH{log
√

yI(t)},
and we can employ an intermediate continuous-time channel for
KK detection:

y(t) = x(t) + n(t) (105)

= E0 + s(t)ejπBt + n(t). (106)

After subtracting the unmodulated carrierE0 and multiplying by
e−jπBt to remove the frequency shift, the continuous-time chan-
nel model for KK detection in the high-CSPR regime becomes

y′(t) = (y(t)− E0) e
−jπBt

= s(t) + n′(t). (107)

The channel output (107) comprises the information-bearing
modulated signal s(t) plus n′(t) = n(t)e−jπBt, which is an
additive white Gaussian noise with PSD N0.

2) Channel Capacity and Optimal Input Distribution: The
total average transmit power is Pc + P̄s, the sum of the carrier
power Pc and the modulated signal average power P̄s. The two
powers are additive because the carrier and modulated signal do
not overlap in frequency. The received SNR is defined as

SNR(amp) =
P̄s + Pc

N0B

= SNRsig (1 + CSPR) , (108)

where SNRsig = P̄s/N0B is the SNR excluding the carrier and
CSPR = Pc/P̄s is the carrier-to-signal power ratio.

The general form for the capacity of the amplifier noise-
limited KK receiver is the maximum mutual information be-
tween X and yI(t) from (104):

C(KK)(SNR(amp)) = max
Pc,fS(s):
E[|S|2]≤P̄s

Pc+P̄s≤SNR(amp)N0B

I(X;YI), (109)

where fS(s) is the PDF of the modulated signal s(t) and
SNR(amp) is the SNR constraint. Owing to the complexity of
phase retrieval, the capacity of KK detection for arbitraryCSPR
is an open problem.

A closed-form analytical expression for the capacity-
achieving input distribution can be derived in the high-CSPR
regime [27]. Assuming Pc is sufficient to ensure ideal phase
recovery, there is a one-to-one relationship between y(t) and
yI(t), and we can equate I(X;YI) = I(X;Y ), where Y is a
random variable for y(t) in (105). The addition of a carrier or
a frequency shift of s(t) do not change mutual information,
so we obtain I(X;Y ) = I(S;Y ). For a given SNR(amp), the
power available for s(t) is P̄s ≤ SNR(amp)N0B − Pc. Using
these observations, the optimization in (109) simplifies to

C(KK,CSPR)(SNR(amp)) = max
fS(s):

E[|S|2]≤P̄s

P̄s≤SNR(amp)N0B−Pc

I(S;Y ), (110)

where C(KK,CSPR) indicates the capacity in the high-CSPR
regime. Using the independence of the signal and noise, the
optimization problem simplifies to maximizing h(S)− h(N)
subject to E[|S|2] ≤ SNR(amp)N0B − Pc.

Using reasoning similar to that in Section III-A, the
capacity-achieving input distribution for KK detection in the
high-CSPR regime described by (110) is S ∼ CN (0, P̄s),
a 2-D complex circular Gaussian distribution with vari-
ance P̄s = SNR(amp)N0B − Pc. Using minimum-bandwidth
Nyquist pulses and the capacity-achieving input distribution,
the capacity of KK detection in the high-CSPR regime is

C(KK,CSPR)(SNR(amp)) = B log2 (1 + SNRsig)

= B log2

(
1 +

SNR(amp)

1 + CSPR

)
, (111)

achieving a spectral efficiency log2(1 + SNRsig) bits/symbol.
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Fig. 22. Mutual information vs. SNR(amp) for amplifier noise-limited SC
detection, KK detection and SD detection, compared to the Shannon capacity
for SC detection. For SC and KK detection, (8× 8) constellations are shaped by
MB distributions optimized at each SNR(amp) (jointly optimized with the CSPR
for KK detection). For SD detection, a 64-point constellation is optimized at
each SNR(amp) using the BA algorithm. Adapted from [27].

3) High-Rate Continuous Approximation: In the high-CSPR
regime, the general KK receiver continuous-time channel in
(104) can be transformed to the AWGN channel in (107).
Symbol-rate sampling yields a sufficient statistic, leading to a
discrete-time channel model

y′[n] = s[n] + n′[n]. (112)

The discrete-time channel model is equivalent to the SC channel
model given in (1), except for the implicit transmitted carrier.
Therefore, the HCA derivation for the amplifier noise-limited
KK detection in the high-CSPR regime is very similar to that
for SC detection. For sake of brevity, we omit the derivation
and summarize the results in Table II, which is explained in
Section IV-G.

4) Numerical Analysis: While analytical solution of (109)
is an open problem, the mutual information achieved by KK
detection can be estimated numerically using methods presented
in Section III-D. Fig. 22 shows the mutual information vs.
SNR(amp) for SC detection, KK detection, and SD detection,
comparing them to the Shannon capacity (4). For SC and KK
detection, (8× 8) uniformly spaced constellations are shaped by
MB distributions optimized at each SNR(amp) (jointly optimized
with the CSPR for KK detection). For SD detection, a 64-point
uniformly spaced constellation is optimized at each SNR(amp)

using the BA algorithm.
In Fig. 22, comparing KK and SC detection, we observe

that KK detection incurs a penalty of 5–7dB compared to
SC detection in terms of the SNR(amp) required to achieve a
given mutual information over the range of SNRs studied. This
SNR penalty corresponds to the power used in the unmodu-
lated carrier. Ignoring the effect of limited constellation size
near 6 bits/symbol, the gap between the SC and KK receivers
grows monotonically with increasing SNR(amp). Although KK
detection nominally provides 2 real dimensions per polarization,
the effective degrees of freedom are only about 1.8, because
as SNR(amp) increases, it is necessary to continuously increase
CSPR to ensure ever-more-accurate phase retrieval [27].

Comparing KK and SD detection in Fig. 22, we observe that
KK detection significantly outperforms SD detection at high
SNR(amp), owing to its advantage in degrees of freedom (about
1.8 for KK detection vs. 1 for SD detection). Interestingly,
however, SD detection outperforms KK detection for SNR(amp)

< 5dB. At these very low SNRs, the optimal input distribution
for SD detection has a high probability at the zero intensity level,
which has the lowest noise. By contrast, for KK detection, the
need to satisfy a minimum-phase requirement prevents the use
of the zero intensity level, tending to increase the noise detected
at the receiver.

G. Summary of Shaping Results

Table II summarizes the optimal shaping regions, induced dis-
tributions on the constituent constellation, and ultimate shaping
gains for the six discrete-time channels considered in this paper.
We observe several interesting similarities when comparing
the shaping regions and induced distributions in this common
framework.

The optimal shaping region for thermal noise-limited SD
detection and SV detection are both N -simplexes in signal
intensity. The induced distribution for SD detection is an expo-
nential distribution in the intensity. For SV detection, the induced
distribution is an exponential distribution in the intensity S0.
Because the intensity S0 is an L2-norm of the Stokes parame-
ters {S1, S2, S3}, the induced distribution is a 3-D exponential
distribution in the Stokes parameters.

The optimal shaping regions for amplifier noise-limited SD
detection and SV detection are nonnegative orthants intersected
with N -balls in |E| and X0, respectively. These induce, re-
spectively, N -D and 3N -D balls in the natural coordinates.
The induced distribution for SD detection is a half-Gaussian
distribution in electric field magnitude |E|, which corresponds to
a Gamma distribution with shape parameter 1/2 in the intensity.
The induced distribution for SV detection is a Gamma distribu-
tion with shape parameter 3/2 in the intensity. We observe that
the induced intensity distributions for amplifier noise-limited SD
detection and SV detection are Gamma distributions with shape
parameters equal to half the number of signaling dimensions.

The optimal shaping regions for SC detection and amplifier
noise-limited KK detection are both hyperballs in electric field
with radii equal to the square root of the respective peak con-
straints on the total signal power. The shaping region for the SC
receiver is centered at the origin while the shaping region for the
SC receiver is centered at the unmodulated carrier E0, which is
required to ensure the received signal is minimum-phase. The
induced distributions are both complex circular Gaussian, which
are centered at the origin and at E0, respectively.

V. IMPLEMENTATION OF PROBABILISTIC SHAPING

While HCA provides analytical continuous approximations
to the optimal input distributions, at least at high SNR, discrete
constellations with a finite number of signal points must be
used in practice. Hence, some means of obtaining an optimized
discrete input distribution must be used. Methods commonly
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TABLE II
SUMMARY OF SHAPING RESULTS FOR SIX CHANNEL MODELS IN OPTICAL COMMUNICATIONS
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employed include the BA algorithm and sampling and normal-
izing a continuous input distribution. We refer the reader to
Section III-D for an overview of these methods.

In the remainder of this section, we consider other important
aspects of implementing coded modulation with probabilistic
shaping, emphasizing certain issues that arise with DD-based
detection methods but not typically with SC detection. We first
review DM and the PAS architecture to identify restrictions on
the output distribution imposed by PAS. We then study how the
separability and symmetry of the continuous input distributions
derived for DD-based methods affect the implementation and
performance of probabilistic shaping.

A. Conventional Implementation of Discrete Input
Distributions

A conventional approach to achieving a target nonuniform
discrete input distribution is to combine an FEC code and a DM
using the PAS architecture [5], [36]. A DM is an algorithm that
maps uniform input bits to a sequence of symbols whose em-
pirical distribution closely follows a target discrete distribution.
CCDM and sphere shaping are two important classes of DM
methods that have been studied extensively for optical commu-
nications [4], [5]. CCDM maps uniform input bits to symbol se-
quences whose empirical distribution exactly equals a target dis-
tribution. The constant-composition property can be exploited
to enable a fixed-length-to-fixed-length implementation using
simple arithmetic coding [3]. By contrast, sphere shaping maps
uniform input bit sequences to symbol sequences that satisfy a
maximum-energy constraint [4]. While both CCDM and sphere
shaping are capacity-achieving in the limit of an infinite-length
DM, sphere shaping exhibits performance superior to CCDM at
finite block lengths.

PAS is a layered architecture that enables the integration of
DM with an existing FEC code [2], [5]. The PAS architecture
requires that the target probability distribution have probability
masses that occur in equal-probability pairs. Using this structure,
the symbol sequence output by the DM can be uniquely mapped
to a pair of symbols with equal probabilities. A combination of
bits output by the FEC code and additional information bits are
used to uniformly choose among pairs of symbols with equal
probabilities. We use the term pairwise symmetry to denote
continuous or discrete probability distributions in which the
probability masses or densities occur in equal-probability pairs.

The MB distribution is a near-capacity-achieving input distri-
bution for the SC channel obtained by sampling and normalizing
a continuous Gaussian distribution [46]. There are conditions
on the constellation points at which the continuous Gaussian
distribution is sampled to ensure the resulting MB distribution
is both separable and has pairwise symmetry.

Separability of a multi-variate distribution refers to its ability
to be expressed as a product of distributions for the individual
variables. An N -D MB distribution is separable into the product
of N identically distributed 1-D MB distributions provided the
sampling constellation is described as the N -fold Cartesian
product of a 1-D constellation [46]. In the remainder of Sec-
tion V, we assume that a continuous distribution is sampled using

TABLE III
CATEGORIZATION OF OPTIMAL INPUT DISTRIBUTIONS FOR FIVE DIRECT

DETECTION-BASED CHANNEL MODELS

a constellation formed by the N -fold Cartesian product of a 1-D
constellation. The pairwise symmetry of the MB distribution
is guaranteed provided the sampling constellation has bipolar
symmetry. In the remainder of Section V, we assume that when
the underlying continuous distribution has bipolar symmetry,
the sampling constellation has bipolar symmetry.

The optimal continuous input distribution for SC detection
is a complex circular Gaussian distribution (we consider one
polarization for simplicity). This is equivalent to a 2-D real IID
Gaussian distribution. This distribution is symmetric and has
bipolar symmetry and can therefore be implemented using two
independent 1-D PAS encoders.

B. Implementation of Shaping With Direct Detection

Table III categorizes the optimal input distributions for am-
plifier noise-limited KK detection, thermal noise-limited and
amplifier noise-limited SD detection, and thermal noise-limited
and amplifier noise-limited SV detection based on bipolar sym-
metry and separability.

For amplifier noise-limited KK detection, the optimal input
distribution has bipolar symmetry about the transmitted carrier
and is separable into independent 1-D distributions. This enables
lossless implementation by independent 1-D PAS encoders.

For SD detection in both noise regimes, the optimal input
distributions are asymmetric, which precludes straightforward
implementation using PAS. The distributions are unipolar and
monotonically decreasing, so there is no sampling constellation
that can achieve pairwise symmetry in the resulting discrete
distribution. Two common approaches to overcoming this lack
of pairwise symmetry include modifying the input distribution
to have pairwise symmetry, which results in a small loss in
achievable rate, or using a non-PAS scheme [5], [55], [56].

For SV detection in the thermal and amplifier noise-limited
regimes, the optimal input distributions are 3-D exponential
and Gamma with shape parameter 3/2, respectively. These can
be sampled by a constellation with bipolar symmetry to yield
3-D discrete distributions, which can be implemented by 3-D
PAS encoders. The two 3-D discrete distributions are not loss-
lessly separable into products of 1-D distributions, owing to the
L2-norms appearing in the expressions. Nevertheless, each 3-D
discrete distribution can be approximated by a product of 1-D
distributions with a small loss in achievable rate [35].
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VI. CONCLUSION

In this tutorial, we presented a comprehensive overview of
probabilistic shaping in DD-based optical communication sys-
tems. We reviewed DD-based detection methods and presented
discrete-time channel models for thermal noise-limited and
amplifier noise-limited SD detection and SV detection, and
amplifier noise-limited KK detection. Exploiting the concept
of natural coordinates, we used HCA to compute continuous
analytical approximations to the optimal input distributions and
the shaping gains for SD detection and SV detection in the
thermal noise-limited and amplifier noise-limited regimes. We
also studied the optimal input distribution and achievable rate for
amplifier noise-limited KK detection in the high-CSPR regime
using both MMI and HCA. We discussed some considerations
in algorithmic implementation of probabilistic shaping in DD-
based systems based on the separability and symmetry of the
optimal input distributions.
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