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Abstract—Probabilistic shaping is widely employed in local
oscillator-based coherent optical systems to improve receiver
sensitivity and provide rate adaptation. This widespread adoption
has been enabled, in part, by simple closed-form solutions for
the optimal input distribution and channel capacity for these
standard coherent channels. By contrast, the optimal input
distributions and channel capacities for many direct-detection
optical channels remain open problems. The lack of non-negative
root-Nyquist pulses, signal-dependent noise, and the possible
discreteness of the capacity-achieving input distribution have
historically prevented standard information-theoretic techniques
from obtaining simple closed-form solutions for these channels.
In this tutorial, we review a high-rate continuous approxima-
tion (HCA) for analytically approximating the optimal input
distribution. HCA, which was first developed in the context of
source coding and later extended to channel coding for standard
coherent channels, approximates the input constellation by a
dense high-dimensional coset code that can be approximated
well by a continuum, transforming the problem of computing
the optimal input distribution subject to an average-power
constraint to a problem of finding a minimum-energy shaping
region in a high-dimensional continuous space. HCA yields
closed-form continuous approximations to the capacity-achieving
input distributions and shaping gains at high signal-to-noise
ratio. We explain how enumerating a coset code in natural
coordinates enables extension of HCA to direct-detection optical
channels, allowing one to obtain closed-form approximations for
the capacity-achieving input distributions and shaping gains for
a variety of direct-detection systems that detect the intensity or
Stokes vector and are limited by thermal or optical amplifier
noise. We also discuss the implementation of probabilistic shap-
ing in direct-detection systems.

Index Terms—Fiber Optic Communication, Probabilistic
Shaping, Direct Detection, Stokes Vector Receiver.

I. INTRODUCTION

Probabilistic shaping for channels using coherent detection
with additive Gaussian noise has been studied extensively
since Shannon derived the optimal input distribution and
capacity for these standard coherent (SC) channels [1]. Much
of the work on probabilistic shaping for SC channels can be
categorized into one of two areas: 1) algorithmic methods
for achieving a target discrete-valued input distribution or
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2) analytical and numerical methods for computing optimal
continuous- or discrete-valued input distributions and the
resulting channel capacities under various constraints.

A key advance in the algorithmic implementation of proba-
bilistic shaping was the probabilistic amplitude shaping (PAS)
architecture [2]. PAS provides a flexible framework in which
a fixed distribution matcher (DM) can be combined with an
independently designed forward error-correction (FEC) code
to achieve a target discrete input distribution. This archi-
tecture was first demonstrated using a constant-composition
DM (CCDM) [3], but alternative schemes yielding superior
performance at finite block lengths have also been developed
[4]. Work on algorithmic approaches that do not use PAS is
summarized in [5].

On the analytical front, since Shannon’s seminal work,
substantial progress has been made in obtaining closed-form
solutions for the optimal input distributions and capacities of
various electrical channels using coherent detection. Examples
of channels studied include statistically parameterized wireless
channels [6], multi-input multi-output channels [7], [8], and
multi-user channels [9], [10]. On the numerical front, methods
for computing the capacity-achieving input distribution were
pioneered in [11], [12].

Local oscillator (LO)-based coherent optical systems are
well-modeled as SC channels, and have extensively employed
the aforementioned theories and algorithms, most of which
were first developed for electrical channels. (A notable ex-
ception is the PAS architecture [2], which was first motivated,
in part, by applications in coherent optical systems [5].)

By contrast, the capacities and capacity-achieving input
distributions for several important direct-detection (DD) op-
tical methods remain open problems. The most common DD
scheme simply uses a photodetector to detect an intensity-
modulated signal. We refer to this method as standard direct
(SD) detection (it is often called intensity modulation/direct
detection, IM/DD). Closed-form solutions for the capacity and
capacity-achieving input distributions for SD optical channels
are not known [13], [14], although tight lower and upper
bounds for the capacity under average power constraints
[15], [16] or peak and average power constraints [17]–[19]
have been derived. There has also been substantial progress
in deriving properties of the capacity-achieving input dis-
tribution under various channel constraints. The capacity-
achieving input distribution under peak and average power
constraints was proven to be both discrete and finite [20], and
an algorithm to numerically compute the capacity-achieving
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input distribution has been given [14]. The capacity-achieving
input distribution for average power-constrained SD channels
with signal-dependent Gaussian noise has been shown to
be discrete with a countably infinite support set [14], [21].
While the form of the capacity-achieving input distribution
for average power-constrained SD channels with only signal-
independent Gaussian noise is not known, the best schemes
to date used finite, discrete input distributions [16].

Beyond simple SD detection, Stokes vector (SV) detec-
tion [22]–[24] and Kramers Kronig (KK) detection [25] are
alternative DD-based methods that are actively studied for
possible use in next-generation short-reach optical links. These
methods provide higher signal dimensionalities than tradi-
tional SD detection, enabling scaling up of per-wavelength
data rates without necessarily increasing the symbol rate.
Previous work on the optimal input distributions and capacities
of these methods included study of thermal noise-limited
SV detection under constraints on detected electrical power
[24], amplifier noise-limited SV detection under constraints on
detected electrical power [26], and amplifier noise-limited KK
detection in the high carrier-to-signal power ratio regime [27].
While we would like to derive closed-form analytic solutions
for the capacity-achieving input distributions and capacities
for SD, SV, and KK detection in the thermal noise-limited and
amplifier noise-limited regimes, these remain open problems.
In the absence of exact solutions, it is desirable to have a
framework in which to derive approximate capacity-achieving
input distributions for these receivers, at least at high signal-
to-noise ratios (SNRs).

In this tutorial paper, we review the high-rate continuous
approximation (HCA) and its application to DD optical meth-
ods. HCA was originally developed to analytically estimate
the distortion in scalar [28] and vector source coding [29], [30]
in the high-resolution regime. HCA was later extended by G.
D. Forney and L.-F. Wei to channel coding for SC channels
[31]. In this paper, we use HCA to compute closed-form
analytic approximations to the capacity-achieving input distri-
bution at high SNR1. In the context of capacity-approaching
high-dimensional lattice codes, HCA approximates the input
constellation as a continuum contained within a geometric
shaping region. HCA reduces the problem of probabilistic
shaping to determination of the minimum-energy shaping
region in a high-dimensional continuous geometric space. The
distribution induced in the basic signaling dimensions and
the shaping gain become properties of the minimum-energy
shaping region. HCA was subsequently applied to thermal
noise-limited SD detection [32], [33], amplifier noise-limited
SD detection [34], and SV detection in the thermal noise-
limited and amplifier noise-limited regimes [35], yielding
closed-form analytical approximations for the optimal input
distribution and shaping gain for each method.

There are several previous tutorial and review papers cov-

1In this paper, we neglect memory effects in all channels, which may
arise from uncompensated channel dispersion or transmit pulses that are
not orthogonal to time translates by all nonzero integer multiples of the
symbol period (see Sec. II-B). In a channel with memory, our analysis
approximates the optimal input distribution for a memoryless channel with
the same marginal statistics as the actual channel.

ering various aspects of probabilistic shaping for optical
communications. PAS and CCDM with a focus on algorithmic
implementation are presented in [5]. Another tutorial paper
on PAS and CCDM with a comprehensive presentation of
relevant information-theoretic concepts and metrics is pre-
sented in [36]. An alternative DM approach using enumerative
sphere shaping is presented in [4]. A tutorial on practical hard-
ware implementation of probabilistic shaping is presented in
[37]. Numerical computation of the optimal input distribution
of the thermal noise-limited SD receiver under peak-power
constraints is presented in [38]. Comprehensive overviews of
capacity results for the SD receiver are presented in [13], [14].

By contrast, this tutorial paper focuses on deriving closed-
form continuous approximations to the capacity-achieving
input distributions and shaping gains at high SNR for a
variety of DD-based methods, which detect different physical
variables, including optical intensity, SV, and optical electric
field, in both the thermal noise-limited and amplifier noise-
limited regimes. This paper studies a total of six different
discrete-time channel models, each resulting in a different
input distribution.

The remainder of this paper is structured as follows. In
Sec. II, we distinguish between LO-based and direct detection,
provide an overview of the DD methods covered in this
tutorial, and list our assumptions and performance metrics.
In Sec. III, we briefly cover Shannon’s derivation of the
SC detection channel capacity before presenting an overview
of HCA. We then apply HCA to SC detection and show
that the results exactly match those obtained by Shannon.
In Sec. IV, we introduce the concept of natural coordinates,
allowing us to extend HCA to DD-based methods. We then
use HCA to derive continuous approximations to the optimal
input distribution and shaping gain for the SD detection and
SV detection in the thermal noise-limited and amplifier noise-
limited regimes. We also consider probabilistic shaping for
KK detection in the amplifier noise-limited regime. In Sec.
V, we discuss the implementation of shaping for DD-based
methods. In Sec. VI, we conclude the paper.

II. PRELIMINARIES

A. Detection Methods
Table I lists the major detection methods used in opti-

cal communications following the classification scheme in
[22]. The first three columns enumerate and describe five
fundamentally different classes of detection methods, while
the fourth and fifth columns specify, respectively, an LO-
based implementation and a DD-based implementation for
each class. Canonical receiver structures for most of these can
be found in [22]. As defined here, an LO-based scheme injects
an unmodulated carrier into the receiver to aid in detection,
while a DD-based scheme does not (a DD-based scheme may
transmit an unmodulated carrier along with the modulated
signal to aid in detection). It should be evident from Table
I that an LO-based scheme is not necessarily coherent; and,
conversely, a DD-based scheme is not necessarily noncoher-
ent. For brevity, the discussion here is simplified from that in
[22]; for example, frequency-shift keying and its variants are
not discussed here.
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TABLE I
MAJOR DETECTION METHODS IN OPTICAL COMMUNICATIONS.

SHAPING DISTRIBUTIONS FOR THE METHODS OUTLINED IN HEAVY BOXES ARE STUDIED IN THIS PAPER.

Direct Detection-
Based Method

Local Oscillator-
Based Method

Signal Dimensions 
(in 2 Polarizations)

DetectsClassification

Standard direct 
detection

Envelope detection1 or 2IntensityNoncoherent

Delay interferometer 
detection

Delay-and-multiply 
detection

1 or 2
Differential phase 

shift
Differentially coherent

3-D Stokes vector 
detection

Polarization shift 
keying detection

3Stokes parameters
Noncoherent + 

differentially coherent 
hybrid

4-D Stokes vector 
detection

Polarization shift 
keying + delay-and-
multiply detection 

4
Stokes parameters + 

differential phase shift

Noncoherent + 
differentially coherent 

hybrid

Kramers Kronig
detection

Standard coherent 
detection

4Field quadraturesCoherent

It is instructive to discuss Table I row-by-row.

Noncoherent detection measures the intensity of signals
(proportional to their energy or squared L2-norm of the
electric field) in one or more orthogonal dimensions of a
signal space, yielding one real decision statistic per dimension.
Accordingly, single- or dual-polarization intensity-modulated
signals respectively convey one or two real dimensions per
symbol interval. Noncoherent detection can be achieved using
LO-based downconversion followed by envelope detection
[22], but is most commonly implemented using simple SD
detection.

Differentially coherent detection measures phase differ-
ences between different orthogonal dimensions of a signal
space, yielding one real decision statistic per pair of dimen-
sions. It is typically used to detect differential phase-shift
keying (DPSK), which encodes information in phase changes
between successive symbols. Single- or dual-polarization
DPSK signals respectively convey one or two real dimen-
sions per symbol interval. Differentially coherent detection
can be achieved using LO-based downconversion followed
by delay-and-multiply detection [22], but is most commonly
implemented using delay interferometers and DD.

The third row of Table I considers modulation of informa-
tion in the SV [23], which can convey three real dimensions
per symbol interval. Three-dimensional (3-D) SV modulation
can be detected using LO-based polarization-shift keying
detection or by DD-based SV detection [22], [23]. These de-
tection methods are a hybrid between noncoherent and differ-
entially coherent detection, since they measure intensities in,
and phase differences between, two orthogonal polarizations
[22]. As depicted in the fourth row, SV modulation can encode
a fourth dimension per symbol by modulating the phase
difference between successive symbols [39]. Methods for

detecting 4-D SV modulation can also be considered hybrids
between noncoherent and differentially coherent detection.

Coherent detection can measure the two electric field
quadratures in each of the two polarizations, which can convey
four real dimensions per symbol. It is typically implemented
using LO-based downconversion with some means to syn-
chronize the signal and LO carrier phases, which we refer
to as SC detection. KK detection achieves coherent detection
without requiring a LO [25], typically by transmitting a strong
unmodulated carrier along with a modulated signal, detecting
the received intensity and performing digital phase retrieval to
obtain the received electric field. A dual-polarization system
employing KK detection can convey nearly four real dimen-
sions per symbol [27].

This tutorial paper studies the shaping distributions only for
the four specific methods outlined in heavy boxes in Table I.
The only LO-based method studied is SC detection, which is
studied in Sec. III. Three DD-based methods are studied: SD
detection, 3-D SV detection and Kramers Kronig detection,
which are studied in Sec. IV. Hereafter, 3-D SV detection is
referred to simply as “SV detection”.

B. Assumptions and Performance Metrics

In this tutorial, we consider systems subject to average
power constraints, which are relevant for a wide variety of
system designs. In short-reach intra-data center fiber links
[40] and in indoor free-space optical links [41], eye safety
constrains average transmitted power. Likewise, in long-haul
fiber links, fiber nonlinearity and optical amplifier pump power
limitations can constrain average transmitted power [42].

Other works on shaping for DD systems consider other
important constraints, such as peak power constraints or
constraints on the average detected electrical power [24],
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Fig. 1. Discrete-time channel model for single-polarization SC detection in
the amplifier noise- or local oscillator shot noise-limited regime. The additive
noise N is independent of X . ASE: amplified spontaneous emission, LO:
local oscillator. Adapted from [45].

[26], [43]. Indeed, these are important considerations for a
wide range of systems. Our constraint on average optical
power, however, is consistent with other fundamental studies
of channel capacity, which start by considering average power
constraints [14]–[19], [33].

We study discrete-time channel models that consider one
dominant additive noise in the thermal noise-limited or am-
plifier noise-limited regimes. A discrete-time channel model
is explicitly presented for each receiver and noise regime
combination studied. For simplicity, we do not consider cases
where both thermal and amplifier noises are significant.

Our primary performance metric is achievable spectral
efficiency given in terms of bits/symbol. We estimate the
achievable spectral efficiency using mutual information, which
implies no limits on encoding or decoding complexity, con-
sistent with our focus on fundamental limits. We present
results in terms of bits/symbol instead of bits/s/Hz, in part,
due to the nonexistence of non-negative root-Nyquist pulses,
which precludes the use of minimum-bandwidth pulses in
SD systems [44]. This nonexistence may cause intersymbol
interference, leading to dependence between successive uses
of the discrete-time channel. We ignore these memory effects
for analytical tractability and assume that each use of the
discrete-time channel model is independent. While SV, KK
and SC detection can detect bipolar signals, enabling use
of root-Nyquist pulses that approach one bit/s/Hz, we use
bits/symbol for all systems for the sake of consistency.

III. STANDARD COHERENT DETECTION

SC detection denotes LO-based coherent detection with
additive white Gaussian noise (AWGN). In systems using
optical amplifiers, this typically arises from LO-amplified
spontaneous emission (ASE) beat noise, while in un-amplified
systems, it arises from LO shot noise [22]. Assuming a single
polarization for simplicity, SC detection is described by the
discrete-time channel model in Fig. 1, and by the analytical
model

Y = X +N. (1)

Here, Y is the received complex electric field, X in the
transmitted complex electric field, and N is an independent,
zero-mean, additive complex circularly symmetric Gaussian
random variable with variance var(N) = 2σ2

amp. For concrete-
ness, our notation assumes LO-ASE beat noise is dominant.

Shannon introduced an approach to computing the optimal
input distribution for the SC channel which is based on
maximizing mutual information, which we denote by the
maximum mutual information (MMI) approach. In MMI, the
channel capacity is defined as the maximum value of an objec-
tive function in a formally defined optimization problem [1].
In this framework, the capacity-achieving input distribution
is a solution to the formally stated optimization problem.
While MMI is clearly defined and rigorous, the corresponding
optimization problem can be solved analytically only for
certain channel models. Despite the analytic intractability of
the MMI problems for many channels, the optimal discrete
input distribution can typically be computed numerically, as
explained further in Sec. III-D.

Forney and Wei later extended HCA to channel coding to
analytically compute continuous approximations to the opti-
mal input distribution of the SC channel [31]. In the context
of capacity-approaching high-dimensional coset codes, HCA
determines an optimal shaping region to minimize the average
power of enclosed signal points while maintaining a constant
minimum distance. The input distribution for the channel input
is obtained by marginalizing over the coset code. Forney
and Wei’s analysis was extended to study non-equiprobable
signaling on the signal points contained by the optimal shaping
region [46] and integration of shaping and coding [47].

In this section, we review both MMI and HCA and their
application to the SC channel. In Sec. III-A, we briefly review
MMI and introduce concepts and notation from information
theory used throughout this paper. In Sec. III-B, we review
the central concepts and methodologies in HCA. In Sec. III-C,
we apply HCA to the SC channel, deriving the optimal input
distribution and the shaping gain. Then, in Sec. IV, we extend
HCA to study DD-based optical channels.

A. Maximum Mutual Information

The channel capacity was defined in [1] as the maximum
mutual information between the input and output of a chan-
nel subject to various constraints on the channel input. In
this tutorial, we consider discrete, memoryless channels with
constraints on the average power of the channel input. The
channel capacity for the average power-limited SC channel is

C = max
fX(x):E[|X|2]≤P̄

I(X;Y ), (2)

where fX(x) is the probability density function (PDF) of X ,
P̄ is a constraint on the average power per symbol, E is the
expectation operator, and I(X;Y ) = h(Y ) − h(Y |X) is the
mutual information [48].

Using the independence of the signal and noise, the condi-
tional entropy term can be simplified to h(Y |X) = h(N). For
the SC channel, maximizing the mutual information is equiv-
alent to maximizing the entropy of the output distribution.
Using variational calculus, one can show that the maximum-
entropy distribution subject to a squared L2-norm constraint is
the Gaussian distribution. Using the fact that the sum of two
independent jointly Gaussian random variables is Gaussian
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distributed, the capacity-achieving input distribution is there-
fore a complex circularly symmetric Gaussian distribution,
i.e.,

fX(x) =
1

πP̄
exp

(
− 1

P̄
∥x∥22

)
. (3)

Using X ∼ CN (0, P̄ ) in (2), the capacity of the SC channel
is

C
(

SNR(amp)
)
= log2

(
1 + SNR(amp)

)
, (4)

where SNR(amp) = P̄ /2σ2
amp. Throughout this tutorial, the

superscripts (th) and (amp) indicate that the dominant noises are
additive thermal noise or additive amplifier noise, respectively.

B. High-Rate Continuous Approximation

As stated in Sec. I, attempting to apply MMI to study vari-
ous DD channels in optical communications yields optimiza-
tion problems that have not yet admitted analytical solution.
HCA provides an approach for analytically approximating the
optimal input distributions for these DD channels.

In this subsection, we review the central concepts and
methodologies of HCA. While we aim to keep our presen-
tation independent of the channel model, we assume the SC
channel to ensure concreteness in our presentation. While
referencing the SC channel throughout this subsection, we
defer computation of the final analytical results for the SC
channel until Sec. III-C.

Consider the discrete-time channel model for the SC chan-
nel in Fig. 1. For two arbitrary 1-D complex electric fields
X1 and X2 input to the channel, the pairwise error probability
under maximum-likelihood (ML) detection is

Pe(X1, X2) = Q

(
∥X1 −X2∥2

2σamp

)
. (5)

In HCA, a signal point X is an N -dimensional (N -D)
complex vector formed by concatenating N time-disjoint
symbols Xi, i = 1, . . . , N , i.e., X = [X1, X2, ..., XN ]T .
The pairwise error probability under ML detection for two
arbitrary signal points X1 and X2 is

Pe(X1,X2) = Q

(
∥X1 − X2∥2

2σamp

)
. (6)

The forms of Eqs. (5) and (6) are the same because the addi-
tive noise is an independent, identically distributed Gaussian
random variable in each vector component.

1) Coset Code, Constellation, and Constituent Constella-
tion: The first step in HCA is to define a coset (translate
of a lattice) from which a constellation can be constructed.
For the sake of simplicity and notational convenience, we
assume the coset is formed by the N -fold Cartesian product
of a constituent coset. However, the analysis here applies to
more general cosets.

Let Λ(1) and CΛ(1) denote a real constituent coset and com-
plex constituent coset, respectively. The number of dimensions
in a constituent coset is determined by the number of inde-
pendent dimensions in the detected signal of the discrete-time
channel model. The constituent coset for the SC channel has
one complex dimension, as one complex symbol is detected

in any time interval. The other discrete-time channel models
analyzed in this tutorial use different constituent cosets.

Let Λ(N) and CΛ(N) denote real and complex cosets
formed by the N -fold Cartesian product of Λ(1) and CΛ(1),
respectively. The dimensionalities of Λ(N) and CΛ(N) are
factors of N larger than the constituent cosets from which
they are constructed.

A coset must be defined in terms of an underlying coordi-
nate system. Following from Eq. (6), the coordinate system
for the SC channel is the complex electric field because the
pairwise error probability under ML detection is a decreasing
function of Euclidean distance in this coordinate system for
any N . The SC channel uses the complex coset CΛ(N).

A high-dimensional constellation is obtained from a coset
by selecting all signal points in the coset that lie within a
shaping region R. In this tutorial, we restrict ourselves to
closed, convex shaping regions. Let C denote the constellation
formed by selecting all signal points from a coset that lie
within R. This operation is equivalent to the intersection
operation between a coset and R. For the SC channel, we have
C = CΛ(N) ∩ R. In Sec. III-B2, we discuss the construction
of optimized shaping regions.

The constituent constellation is defined as the set of points
from the constituent coset that are used in at least one signal
point from C. The constituent constellation is used extensively
when discussing the induced density, which is introduced in
Sec. III-B3.

Different channel models give rise to different coordinate
systems, shaping regions, and constituent constellations. For
example, as we will see in Sec. IV-B, shaping regions for
the thermal noise-limited SD detection channel are defined in
terms of a real N -D vector space with field intensity coor-
dinates. The constituent constellation is a set of nonnegative
intensity levels on R1

+.
2) Optimal Shaping Region and Continuous Approxima-

tion: In HCA, the optimal shaping region is defined as the
set of points whose physical energy is less than or equal to
P . This region is optimal in that it encloses a given volume
while minimizing average power. The mapping between the
coordinates of a signal point and its physical energy depends
on the coordinate system. Since the SC channel uses complex
electric field coordinates, the physical energy of a signal point
is its squared L2-norm. The optimal N -D shaping region for
the SC channel with total physical energy at most P is

R(SC)
shaped (N,P ) = {X ∈ CN | ∥X∥22 ≤ P}. (7)

The reference shaping region is defined as an N -D hyper-
cube in the same coordinate system at the optimal shaping
region. The reference shaping region for the SC channel is
parameterized by the maximum absolute value of any one
side A and is therefore

R(SC)
ref (N,A) =

{
X ∈ CN |

∥∥∥[Re{X}, Im{X}]T
∥∥∥
∞

≤ A
}
,

(8)
where Re{X} and Im{X} are real N -D vectors formed by
taking the real and imaginary parts of X, respectively.

Fig. 2 shows an example constellation formed by the
intersection of a coset and an optimal shaping region. For
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Fig. 2. Optimal constellation construction for the SC channel for N = 1
complex dimension. CΛ(N) is the half-integer complex coset scaled to have
minimum distance d and is depicted by the blue dots. R(SC)

shaped (N,P ) is the
continuous enclosed region and is depicted by the shaded region inside the
circle. The constellation is the set of signal points from the coset that lie
within the shaded region and is visually depicted by the 44 larger circles.
Adapted from [45].

this example, we assume CΛ(N) is the half-integer complex
coset scaled to have minimum distance d. The optimal shaping
region for N = 1 corresponds to a disk in the complex
plane with radius

√
P . The set of points in the coset code

is given by C
(SC)
shaped (N,P ) = R(SC)

shaped (N,P ) ∩ CΛ(N). The
resulting constellation is optimal in the sense that it minimizes
the average power subject of the constellation subject to a
constraint on the number of points from the underlying coset
that are included.

HCA simplifies the analysis of R(SC)
shaped (N,P ) and

R(SC)
ref (N,A) by using the continuous approximation. For suf-

ficiently dense constellations, the distribution of signal points
in the constellation can be well-approximated by a continuous
distribution over the shaping region [31], [33], [46], [47].
The continuous approximation replaces the uniform, discrete
probability mass function over the signal points in the coset
code with a uniform, continuous PDF over the shaping region
that constructed the coset code.

Let dx = dx1I , dx1Qdx2I , dx2Q, . . . dxNI , dxNQ, where
xiI and xiQ are the real and imaginary parts of xi, i =
1, . . . , N . Under HCA, the PDF for the shaping region is

fX(x) =
1

V(SC)
shaped (N,P )

, x ∈ R(SC)
shaped (N,P ) , (9)

where
V(SC)

shaped (N,P ) =

∫
x∈R(SC)

shaped(N,P )

dx. (10)

Similarly, the PDF for the reference region is

fX(x) =
1

V(SC)
ref (N,A)

, x ∈ R(SC)
ref (N,A) , (11)

where
V(SC)

ref (N,A) =

∫
x∈R(SC)

ref (N,A)

dx. (12)

The average powers of the shaped and reference con-
stellations are given by the average squared L2-norm of
the signal points in the two respective constellations. Under

HCA, the average power of a constellation is approximated
by the squared second moment of the shaping region. Let
P̄

(SC)
shaped (N,P ) and P̄

(SC)
ref (N,A) be the average power of

the shaped and reference constellations under the continu-
ous approximation, respectively. The general expressions for
P̄

(SC)
shaped (N,P ) and P̄

(SC)
ref (N,A) for the SC channel are

P̄
(SC)
shaped (N,P ) =

1

V(SC)
shaped (N,P )

∫
x∈R(SC)

shaped(N,P )

∥x∥22 dx (13)

and

P̄
(SC)
ref (N,A) =

1

V(SC)
ref (N,A)

∫
x∈R(SC)

ref (N,A)

∥x∥22 dx. (14)

3) Induced Marginal Density: The induced marginal den-
sity on a basic signaling dimension is an important analytic
result that can be derived using HCA. The shaping region
affects the induced marginal distribution by defining the sup-
port region of the induced marginal distribution. The induced
marginal density on a basic dimension can be obtained by
marginalizing the joint PDF fX(x) over all other dimensions.
For concreteness, we compute the induced marginal density
of X1, the first component of X:

fX1(x) =

∫ ∞

−∞
· · ·
∫ ∞

−∞
fX1I ,X1Q,...,XNQ

(xI , xQ, . . . , xNQ)

dx2I
, . . . , dxNQ

. (15)

One method for solving Eq. (15) is to partition R into
disjoint subsets and assign probability density proportional to
the volumes of the subsets in the partition [32], [34], [35].

4) Shaping Gain: Shaping gain is a second important
analytic result provided by HCA. The shaping gain is the
factor of reduction in the average power of the optimal shaping
region to the reference shaping region. The shaping gain
γ(SC)
s (N) is defined as

γ(SC)
s (N) ≜

P̄
(SC)
ref (A)

P̄
(SC)
shaped (N,P )

, (16)

where P and A are chosen to ensure that V(SC)
shaped (N,P ) =

V(SC)
ref (N,A). The variable N is dropped from P̄

(SC)
ref (N,A)

to obtain P̄
(SC)
ref (A) because P̄

(SC)
ref (N,A) does not depend on

N . The ultimate shaping gain γ(SC)
s is defined as the shaping

gain in the limit as N → ∞:

γ(SC)
s ≜ lim

N→∞
γ(SC)
s (N). (17)

The average power of the reference shaping region is an
expectation of a function of the marginal density, which is
the uniform distribution. The specific function is the physical
energy of the signal point, which is the squared L2-norm in
the case of SC detection.

The average power of the optimal shaping region can be
computed by exploiting the properties of R(SC)

shaped (N,P ). The
fraction of signal points in R(SC)

shaped (N,P ) with power at most
p is V(SC)

shaped (N, p) /V(SC)
shaped (N,P ). Let random variable ρ be
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Fig. 3. Optimal SC detection shaping region for N = 1.5 complex
dimensions. The vertical black line corresponds to the set of signal points
enclosed by the shaping region that satisfies the constraint X1 = x. Adapted
from [45].

the total optical power of a signal point selected uniformly
from R(SC)

shaped (N,P ). The CDF of ρ for SC detection is

Fρ(p) =
V(SC)

shaped (N, p)

V(SC)
shaped (N,P )

, p ∈ [0, P ]. (18)

The average optical power can be computed as the normalized
expectation of ρ. Computing the average optical power of the
optimal constellation using the distribution of ρ is a general
strategy that also applies to optimal shaping regions for other
detection methods.

C. High-Rate Continuous Approximation for Standard Coher-
ent Detection

The channel model for SC detection was given in Fig. 1
and Eq. (1). In view of Eq. (6), the complex electric field is
chosen as our coordinate system.

1) Shaping Regions: The next step in HCA is to define
optimal and reference shaping regions. From these shap-
ing regions, we can compute closed-form expressions for
V(SC)

shaped (N,P ), V(SC)
ref (N,A), P̄ (SC)

shaped (N,P ), and P̄
(SC)
ref (A).

The optimal and reference shaping regions for the SC
channel are given in Eqs. (7) and (8), respectively. Fig. 3
shows the optimal shaping region in N = 1.5 complex
dimensions, which is a real 3-D ball with radius

√
P . In N

complex dimensions, the optimal shaping region is a 2N -real-
dimensional ball with radius

√
P .

The volume of R(SC)
shaped (N,P ) is equal to the volume of a

2N -D real ball with radius
√
P and is

V(SC)
shaped (N,P ) =

(πP )N

N !
. (19)

The volume of R(SC)
ref (N,A) is the volume of a 2N -D real

hypercube with side length 2A and is

V(SC)
ref (N,A) = (2A)2N . (20)

Using (19) in (18), we obtain

Fρ(p) =
( p

P

)N
, ρ ∈ [0, P ]. (21)

!
p

7 7P !
p

2:5 7P 0
p

2:5 7P
p

7 7P
x
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!
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!
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N
;P

;x
)

!
p

5
7 P

p
5
7 P

N
=

1
N

=
6

N
=

4
N

=
1
:5

Fig. 4. Marginal density induced on Re{X1} by the optimal shaping region
for SC detection for various N . For finite and infinite N , expressions for the
marginal density are given in Eqs. (24) and (25), respectively. fRe{X1}(N, x)
converges to a Gaussian distribution as N → ∞. P̄ = E[|X1|2] is fixed to
a constant value as N is varied.

The average power of the optimal shaping region is

P̄
(SC)
shaped (N,P ) =

1

N
E[ρ] =

P

N + 1
. (22)

The average power of the reference shaping region is

P̄
(SC)
ref (A) =

2

3
A2. (23)

2) Induced Distribution: The general analytical form for
the marginal density is given in (15). The remaining step is to
evaluate the marginal distribution for the SC channel. Detailed
derivations can be found in [31], [45].

One can show that the induced distribution must satisfy the
following proportionality:

f
(SC)
X1,shaped(N,P, x) ∝

(
1− |x|2

(N + 1)P̄
(SC)
shaped (N,P )

)N−1

,

|x|2 ∈ [0, P ]. (24)

Using P̄
(SC)
shaped (N,P ) = E[|X1|2] and taking the limit as N →

∞, we find

f
(SC)
X1,shaped(x) ≜ lim

N→∞
f
(SC)
X1,shaped(N,P, x)

∝ exp

(
−|x|2

E [|X1|2]

)
, x ∈ C. (25)

We conclude that the optimal shaping region for SC detection
induces a circularly symmetric complex Gaussian density as
N → ∞.

We can also analyze the induced density on X1 for interme-
diate values of N . First, we write X1 in terms of its real and
imaginary parts as X1 = Re{X1} + jIm{X1}. Fig. 4 shows
the induced marginal density of Re{X1} for different values
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of N . The induced marginal density on Re{X1} for a given
N is

fRe{X1}(N,P, x) =

∫ ∞

−∞
f
(SC)
X1,shaped(N,P, x+ jy) dy. (26)

We also define fIm{X1}(N,P, x) by similarly marginal-
izing over Re{X1}. By symmetry, fRe{X1}(N,P, x) =
fIm{X1}(N,P, x), so we only plot the marginal density for
Re{X1} for sake of simplicity.

We include the case of N = 1.5 to show the density
induced by the shaping region in Fig. 3. While the density
induced in X1 traces out a hemisphere with radius

√
2.5P̄ for

N = 1.5, the density induced on Re{X1} is not a half-circle.
The marginalization over Im{X1} causes the induced density
on Re{X1} to no longer trace a half-circle. The intermediate
values of N = 4 and N = 6 visually show the density
converges toward a Gaussian distribution. It is important to
note that the maximum value for Re{X1} must increase with√
N + 1 to maintain constant average power.
3) Shaping Gain: Now we compute a closed-form ex-

pression for the ultimate shaping gain for SC detection. The
expression for the ultimate shaping gain was first given in (17).
The computation of the ultimate shaping gain only requires
the volume expressions (19) and (20) and the average power
expressions (22) and (23).

We first need to equate the volumes of the optimal and
reference shaping regions. Equating (20) and (19), using
Stirling’s approximation, taking the ratio of (23) to (22) and
letting N → ∞, we obtain

γ(SC)
s =

πe

6
≈ 1.53 dB. (27)

D. Numerical Optimization of the Input Distribution

MMI and HCA provide closed-form analytic expressions
for the optimal input distribution and channel capacity for
SC detection. These techniques, however, presume signaling
techniques and operating regimes that may not always apply
in practice. For example, MMI and HCA presume continuous
constellations, in contrast with the discrete constellations used
in practice. HCA also presumes operation in the high-SNR
regime, which is not always applicable.

Numerical estimation of the channel capacity provides an
analysis that is complementary to the analytical results derived
using MMI and HCA. For example, numerical methods can
estimate the achievable information rates when finite, discrete
constellations are used or under various input probability
distribution constraints. Numerical methods can also indepen-
dently verify the ultimate shaping gains and induced marginal
densities derived using MMI and HCA.

In this subsection, we first define the coded modulation ca-
pacity of the SC channel. We then present a general procedure
for computing optimized discrete input distributions that can
be used for both the SC channel and DD channels. We then
numerically analyze the coded modulation capacity of the SC
channel for various M and different constraints on the input
distributions. In Sec. IV, we use similar procedures to study
the coded modulation capacity for several DD-based methods.

1) Coded Modulation Capacity: The coded modulation
capacity is a definition of channel capacity applicable when
the constellation input to the channel is discrete [49]. Let
C

(SC)
ref (M) be a minimum-energy cubic constellation with M

signal points selected from C
(SC)
ref (N,A). M is restricted to

positive integers that allow the constellation to have symmetry
about the mirror planes passing through the coordinate axes.
The coded modulation capacity for the SC channel is

C
(SC)
CM

(
SNR(amp),M

)
≜ max

σamp,PX(x):
E[|X|2]

σ2
amp

≤SNR(amp)

X=C
(SC)
ref (M)

I(X;Y ), (28)

where M is the modulation order, PX(x) is a probability mass
function (PMF) over the input constellation, and X is the
alphabet of the random variable X .

In the optimization (28), the constellation has a fixed
unit spacing. We optimize the input distribution PX(x) to
maximize mutual information, while simultaneously optimiz-
ing the noise standard deviation σamp to achieve the SNR
constraint SNR(amp). In an equivalent formulation, one may
fix σamp and achieve the SNR constraint by optimizing over
the constellation spacing using a scale factor λ > 0 [49]. In
this paper, we fix λ = 1 and optimize over σamp.

2) Numerical Optimization of the Input Distribution:
Numerically solving (28) requires a method of computing the
optimal PX(x). The Blahut-Arimoto (BA) algorithm can be
used to compute the capacity-achieving input distribution for
arbitrary discrete memoryless channels subject to an average
power constraint [11], [12]. To use the BA algorithm in (28),
the continuous-valued output of the channel must be quan-
tized. Throughout this paper, we use the method described in
[50] to compute the correct number of output bins. For any
fixed value of σamp in (28), the optimal input distribution can
be found using the BA algorithm. The complete optimization
can be solved by adding an outer loop to optimize over
σamp > 0.

While the BA algorithm can numerically compute the
optimal input distribution, we are also interested in evaluating
the coded modulation capacity under additional constraints
on the input distribution. For example, it is often desirable
to parameterize the input distribution by one or more vari-
ables. Such an approach reduces implementation complexity
in practice and facilitates comparison with the optimal input
distribution computed by the BA algorithm and other analytic
distributions.

The following presents a general procedure for obtaining
a parameterized discrete input distribution from a continuous
Gaussian, exponential, or uniform distribution. While we use
these discrete distributions here to analyze the SC channel, this
procedure is also used to obtain discrete input distributions
for several DD channels in Sec. IV. The continuous Gaussian
distribution is assumed to be a zero-mean, N -D IID real or
circularly symmetric complex Gaussian random vector and is
proportional to

fX(x, β) ∝ exp
(
−β ∥x∥22

)
, (29)
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Fig. 5. Continuous 1-D Gaussian probability density function fX(x, β) vs.
x for shaping parameter values 10 · log10 (β) = 10, 0, and − 10 given in
Eq. (29). The 21 markers on each curve indicate locations of samples of the
continuous distribution, which are normalized according to Eq. (31) to obtain
a Maxwell-Boltzmann distribution. Adapted from [45].

where β ≥ 0 is a shaping parameter. The continuous expo-
nential distribution is a zero-mean real or complex random
variable and assigns probability proportional to

fX(x, β) ∝ exp (−β ∥x∥2) . (30)

The continuous uniform distribution is not parameterized by
β.

The continuous Gaussian, exponential, and uniform dis-
tributions must be sampled and normalized to obtain dis-
crete PMFs. The associated discrete PMFs for the Maxwell-
Boltzmann (MB) and exponential distributions PX(x, β) with
alphabet X are obtained by sampling and normalizing the
continuous PDFs for each value in the alphabet, i.e.,

PX(x, β) =
fX(x, β)∑

x′∈X fX(x′, β)
. (31)

The discrete uniform distribution assigns probability 1/|X | to
each x ∈ X .

Fig. 5 shows an example of sampling a 1-D continuous
Gaussian distribution and normalizing for three different val-
ues of β to obtain an MB distribution [46]. For larger values
of β, more probability is concentrated near x = 0. As β
decreases, the normalized discrete distribution converges to a
uniform distribution.

The coded modulation capacity expression (28) can be
easily adapted to include constraints on the input distribution.
In the case of the discrete uniform distribution, there is only
one valid PMF, which in turn fixes the value of σamp. The
uniform input distribution constraint therefore reduces the
optimization in (28) to a simple Monte Carlo estimate of the
empirical mutual information.

In the case of either the MB distribution or discrete
exponential distribution, (28) becomes an optimization over
σamp > 0 and β ≥ 0. However, for each β, there exists only
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Fig. 6. Mutual information vs. SNR(amp) for SC detection for varying
modulation order M and uniform square constellations. The solid and dotted
lines indicate that the transmitted signal points follow a Gaussian (Maxwell-
Boltzmann (MB)) or uniform distribution, respectively. The blue and red
arrows and text indicate the values of SNR(amp) and mutual information at
which the maximum shaping gains are obtained for modulation orders for
M = 65536 and M = 256, respectively.

one value of σamp that satisfies the SNR constraint. Thus, the
optimization in (28) becomes a simple 1-D parameter search
over β ≥ 0.

In this paper, a subset of the optimal, MB, exponential,
and uniform distributions are numerically computed for each
of the channels analyzed. The term optimal indicates that the
BA algorithm is used to obtain the input distribution. The
terms Maxwell-Boltzmann and exponential indicate that an
optimization of the shaping parameter β, the noise variance,
and sampling as described in (31) is used to obtain the
input distribution. The term uniform indicates the mutual
information is obtained via Monte Carlo simulation with a
fixed discrete uniform input distribution.

3) Numerical Analysis for Standard Coherent Detection:
The HCA analysis for the induced marginal density and
ultimate shaping gain implies that the continuous 2-D complex
Gaussian distribution is 1.53 dB more energy efficient than the
continuous 2-D uniform distribution at the same information
rate. In practice, discrete 2-D constellations per polarization
are used. In this section, we analyze the achievable shaping
gains using finite square constellations with modulation order
M .

Fig. 6 shows MI vs. SNR(amp) for the SC channel. Mod-
ulation orders M = 65536,M = 16384,M = 4096,M =
1024, and M = 256 are differentiated by unique markers.
The solid and dotted lines indicate whether the MB or uniform
distributions are used, respectively. The MI achieved using the
BA algorithm is indistinguishable from the MB input distribu-
tion, so only the MB distribution is shown. The Shannon limit
is included as a reference and is given by log2(1+SNR(amp))
bits/symbol.

The finite-constellation shaping gains for M = 65536 and
M = 256 are indicated by the blue and red arrows and text
in Fig. 6. This finite-constellation shaping gain is computed
by computing the largest difference in SNR(amp) between the
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Fig. 7. Discrete-time channel model for SD detection in the thermal noise-
limited regime. The noise variance σ2

th is independent of I . Adapted from
[45].

uniform distribution and the MB distribution at a fixed MI
over the range of SNR(amp) analyzed. The finite-constellation
shaping gain increases from ∼ 1 dB to ∼ 1.4 dB as M
increases from 256 to 65536. The relative increase in shaping
gain decreases for each factor of 4 increase in M . The finite-
constellation shaping gain for M = 65536 is ∼ 0.13 dB less
than the ultimate shaping gain given in (27). This gap could
be decreased by further increasing M .

IV. DIRECT-DETECTION METHODS

In this section, we explain how to derive continuous-valued
induced marginal densities for several important DD-based
methods. As a first step, in Sec. IV-A, we introduce the
concept of natural coordinates. We then use HCA to derive
input distributions for thermal noise-limited and amplifier
noise-limited SD detection and SV detection in Secs. IV-B
through IV-E. Finally, in Sec. IV-F, we use MMI to study
the optimal input distribution for amplifier noise-limited KK
detection.

A. Natural Coordinates

Natural coordinates are a key to applying HCA to DD-based
methods, particularly in the amplifier noise-limited regime,
where the detected noise is signal-dependent. The term natural
coordinates [34] refers to a coordinate system in which a
set of signals may be expressed such that the pairwise error
probability between any two signals is a decreasing function of
the Euclidean distance between them, at least asymptotically
at high SNR. When a coset is expressed in natural coordinates,
the minimum Euclidean distance characterizes the pairwise
error probability between nearest neighbors throughout the
coset, and remains a good descriptor of the nearest-neighbor
error probability when the coset is approximated by a contin-
uum with uniform density.

Although Forney and Wei did not explicitly define the
natural coordinates, they may be considered implicit in their
treatment of shaping for SC detection [31], where the natural
coordinates are the electric field quadratures, and the physical
energy of a signal corresponds to its squared L2-norm.

For the various DD-based methods studied here, the nat-
ural coordinates depend on the detection method, the noise
distribution, and the decision rule, and are not necessarily the
same as the physical variables that are modulated or detected.
Depending on the natural coordinates in which a signal is
expressed, its physical energy does not necessarily correspond
to its squared L2-norm.

For example, in thermal noise-limited SD detection [32],
we modulate electric field magnitude or intensity and detect
intensity. The natural coordinates for describing a signal (coset
point) are the sequence of intensities, and the physical energy
of a signal is its L1-norm. By contrast, in amplifier noise-
limited SD detection [34], we modulate electric field magni-
tude or intensity and detect intensity. The natural coordinates
are the sequence of electric field magnitudes, and the physical
energy of a signal is its squared L2-norm.

In general, the statistics of the dominant noise source affect
the induced marginal density and shaping gain by affecting the
natural coordinates of the discrete-time channel. The pairwise
error probability being a Q-function of the Euclidean distance
is a sufficient condition to establish the natural coordinates and
approximately holds for every discrete-time channel model
studied in this paper. We also note that the natural coordinates
derived for each discrete-time channel model are not unique,
as the L2-norm is preserved under any unitary transformation
of the natural coordinates.

In the various DD-based methods studied in the following
subsections, the natural coordinates are derived using a variety
of observations and approximations, so we defer more detailed
explanation of the natural coordinates to those subsections.

B. Standard Direct Detection, Thermal Noise-Limited

The first work on probabilistic shaping for optical commu-
nications used HCA to analytically approximate the optimal
input distribution for SD detection of intensity-modulated sig-
nals in the thermal noise-limited regime [32]. This calculation
is reviewed in this subsection.

The discrete-time channel model for SD detection in the
thermal noise-limited regime is shown in Fig. 7 and is given
by

Y = I +N. (32)

The detected electrical signal Y is equal to the signal intensity
I ≥ 0 corrupted by signal-independent Gaussian noise N with
variance σ2

th.
1) Natural Coordinates: Given two possible signal inten-

sities in a symbol interval, I1 and I2, the pairwise error
probability under ML detection is

Pe(I1, I2) = Q

(
∥I1 − I2∥2

2σth

)
. (33)

The error probability (33) is a decreasing function of the
Euclidean distance between I1 and I2, implying that the
natural coordinates for thermal noise-limited SD detection are
intensities.

2) Shaping Regions: Let I = [I1, I2, · · · , IN ]T ∈ RN
+ be

a real N -D vector be formed by concatenating N 1-D signal
intensities in N disjoint symbol intervals. The average optical
power of I is 1

N ∥I∥1. The optimal shaping region consists of
the set of N -D signal points with peak total power at most
P :

R(SD,th)
shaped (N,P ) =

{
I ∈ RN

+ | ∥I∥1 ≤ P
}
. (34)

This region is depicted for the case of N = 3 in Fig. 8,
and is a tetrahedron. More generally, the shaping region is an
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Fig. 8. Thermal noise-limited SD detection: optimal shaping region in N = 3
real dimensions. The shaded region depicts the set of points from the shaping
region that satisfy the constraint I1 = i. Adapted from [45].

N -simplex in N dimensions. The volume of R(SD,th)
shaped (N,P )

is

V(SD,th)
shaped (N,P ) =

PN

N !
. (35)

The average optical power of R(SD,th)
shaped (N,P ) is

P̄
(SD,th)
shaped (N,P ) =

P

N + 1
. (36)

The reference shaping region is defined by a hypercube
in the intensity. This shaping region can be equivalently
described as the set of signal points with a peak intensity
constraint A on each constituent 1-D symbol, and is given by

R(SD,th)
ref (N,A) =

{
I ∈ RN

+ | ∥I∥∞ ≤ A
}
. (37)

The volume of the region is simply

V(SD,th)
ref (A) = AN . (38)

Because each signaling dimension is independent, the average
optical power of the shaping region can be computed by the
expectation of the intensity in any one dimension, and is

P̄
(SD,th)
ref (A) =

A

2
. (39)

3) Induced Distribution and Shaping Gain: The induced
density in one basic dimension must satisfy the following [32]:

fI1(N,P, i) ∝

(
1− i

(N + 1)P̄
(SD,th)
shaped (N,P )

)N−1

,

i ∈ [0, P ]. (40)

Using P̄
(SD,th)
shaped (N,P ) = E[I1] and taking the limit as N →

∞, we find

fI1(i) = lim
N→∞

fI1(N,P, i)

∝ exp

(
−i

E[I1]

)
, i ∈ R+. (41)

The optimal shaping region for the thermal noise-limited SD
receiver induces an exponential distribution in the intensity.
This is equivalent to a Rayleigh distribution in the electric
field magnitude.

We now compute the ultimate shaping gain for the thermal
noise-limited SD receiver. Setting the volumes of the shaped
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Fig. 9. Mutual information vs. SNR(th) for the thermal noise-limited SD
detection channel. The 128-point constellations are uniformly spaced in
intensity. Adapted from [45].

and reference regions in Eqs. (35) and (38) equal and using
Stirling’s approximation, we find the ultimate shaping gain to
be

γ(SD,th)
s = lim

N→∞

P̄
(SD,th)
ref (A)

P̄
(SD,th)
shaped (N,P )

=
e

2
. (42)

Fig. 9 shows mutual information vs. SNR(th) = P̄ 2/σ2
th for

thermal noise-limited SD detection using 128-point constella-
tions uniformly spaced in intensity with optimal, exponential,
MB and uniform input distributions. The optimal distribution
and its mutual information are computed numerically using
the BA method, as explained in Sec. III-D. Consistent with
the HCA analysis, an exponential distribution in intensity
outperforms a MB distribution in intensity at all values
of SNR(th) shown. The exponential distribution achieves a
mutual information within 0.03 bits/symbol of the optimal
distribution over the entire range of SNRs studied, with the
gap decreasing as SNR(th) increases. The empirical shaping
gain at 5 bits/symbol is 2.65 dB, which is close to the ultimate
shaping gain of 2 × 10 log10(e/2) ≈ 2.665 dB in Eq. (42)
when expressed in terms of SNR(th).

Over the range of SNR(th) studied in Fig. 9, the shaping
gain for the optimal input distribution decreases monotonically
with increasing SNR(th). This is in contrast with SC detection,
where the shaping gain increases monotonically toward its
maximum value as SNR(amp) increases. This is a consequence
of the discreteness of the optimal input distribution for ther-
mal noise-limited SD detection [14], [16]. At low values
of SNR(th), optimization over the thermal noise standard
deviation σth leads to a large separation between adjacent
constellation points relative to σth, with the result that only
a few constellation points have significant probability, despite
the simulation including many possible constellation points.

C. Standard Direct Detection, Amplifier Noise-Limited

In this subsection, we review the application of HCA to
amplifier noise-limited SD detection [34]. The discrete-time
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Fig. 10. Discrete-time channel model for SD detection in the amplifier noise-
limited regime. The approximation, made at high SNR, neglects ASE-ASE
beat noise. The signal-ASE beat noise variance σ2

2Re{X∗N} is proportional
to the signal energy |X|2. ASE: amplified spontaneous emission. Adapted
from [45].

channel model is shown in Fig. 10, and is given by

Y = |X +N |2

= |X|2 + 2Re(X∗N) + |N |2. (43)

For simplicity, we have assumed the signal and ASE are
received in one polarization. This enables us to write the
channel model in Eq. (43) as a complex, scalar channel. The
signal X is generally complex-valued, and the ASE noise N
is a complex circularly symmetric ASE noise with variance
2σ2

amp, i.e., N ∼ CN (0, 2σ2
amp). The signal component of

the detected intensity Y is proportional to |X|2. Because the
phase of X is lost in detection, we may assume X is real
and nonnegative, and use X and |X| interchangeably, without
changing the statistics of the detected intensity Y .

The detected intensity Y includes additive noise compo-
nents Re(X∗N) and |N |2, which are, respectively, signal-
ASE and ASE-ASE beat noises. In the high-SNR regime, the
signal-ASE beat noise is dominant, and the ASE-ASE beat
noise becomes negligible. The discrete-time channel model is
approximated by

Y ≈ |X|2 + 2Re(X∗N)

= |X|2 + Ñ , (44)

where the signal-ASE beat noise is Ñ = 2Re(X∗N). In the
HCA derivation, we use the approximate channel model (44).
Our numerical simulations to evaluate mutual information use
the exact channel model (43), which includes both signal-ASE
and ASE-ASE beat noises.

1) Natural Coordinates: Consider two arbitrary electric
fields x1 and x2 input to the channel modeled by (44). The
signal-ASE beat noise is Gaussian distributed with a variance
that scales linearly with received optical intensity. The condi-
tional distributions of this noise are Ñ |(X = xi) ∼ N (0, σ2

i ),
where σ2

i = 4|xi|2σ2
amp for i = 1, 2.

The conditional distributions of the detected intensity are
Y |(X = xi) ∼ N (xi, σ

2
i ) for i = 1, 2 The exact ML

decision threshold is a value of Y at which the two conditional
distributions of Y cross. The ML decision threshold is well
approximated by the simple formula

Yd =
σ1|x2|2 + σ2|x1|2

σ1 + σ2
= |x1||x2|. (45)

Let Pe(x1|x2) be the probability of decoding x1 given x2

was transmitted and Pe(x2|x1) is defined likewise. Using the

!!

!"

!#
", 0,0

%, 0,0

0, %, 0	

0,0, %

Fig. 11. Amplifier noise-limited SD detection: optimal shaping region for
N = 3 real dimensions. Adapted from [45].

decision threshold (45), we find Pe(x1|x2) = Pe(x2|x1).
Therefore, the pairwise error probability between x1 and x2

is

Pe(x1, x2) = Pe(x1|x2) = Pe(x2|x1) (46)

= Q

(
∥|x2| − |x1|∥2

2σamp

)
. (47)

Since the pairwise error probability is given by a Q-
function of the L2-norm of the difference in electric field
magnitudes, we conclude that electric field magnitudes are
natural coordinates for the amplifier noise-limited SD receiver.

2) Shaping Regions: Let X = [X1, X2, · · · , XN ]T ∈ RN
+

be a real N -D vector be formed by concatenating N 1-D
electric field magnitudes in N disjoint symbol intervals. The
average optical power of X is 1

N ∥X∥22. The optimal shaping
region is the set of N -D signal points with peak total power
P :

R(SD,amp)
shaped (N,P ) =

{
X ∈ RN

+ | ∥X∥22 ≤ P
}
. (48)

Fig. 11 shows the optimal shaping region for the amplifier
noise-limited SD receiver for N = 3, which is the intersection
of a 3-D ball with the non-negative orthant. For general
N , the shaping region is the intersection between an N -D
ball and the non-negative orthant. The volume of the region
R(SD,amp)

shaped (N,P ) is

V(SD,amp)
shaped (N,P ) =

1

Γ(N2 + 1)

(πP )N/2

2N
. (49)

The average optical power of the region R(SD,amp)
shaped (N,P ) is

P̄
(SD,amp)
shaped (N,P ) =

P

N + 2
. (50)

The reference shaping region is a hypercube in electric
field magnitude. This region is equivalently described as the
set of signal points with a peak power constraint A on each
constituent 1-D symbol:

R(SD,amp)
ref (N,A) =

{
X ∈ RN

+ | ∥X∥∞ ≤ A
}
. (51)

The volume of the shaping region is

V(SD,amp)
ref (N,A) = AN . (52)
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Fig. 12. Mutual information vs. SNR(amp) for amplifier noise-limited SD
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magnitude. Adapted from [45].

The average optical power of the shaping region is the second
moment of the electric field magnitude in any one dimension,
and is given by

P̄
(SD,amp)
ref (A) =

A2

3
. (53)

3) Induced Distribution and Shaping Gain: The induced
density in one basic dimension must satisfy the following [34]:

fX1(N,P, x) ∝

(
1− x2

(N + 2)P̄
(SD,amp)
shaped (N,P )

)N−1
2

,

x ∈
[
0,
√
P
]
. (54)

Substituting E[X2
1 ] = P̄

(SD,amp)
shaped (N,P ) into Eq. (54) and

taking the limit as N → ∞, we get

fX1(x) ≜ lim
N→∞

fX1(N,P, x)

∝ exp

(
−1

2

x2

E[X2
1 ]

)
, x ∈ R+. (55)

The optimal shaping region for the amplifier noise-limited
SD receiver induces an MB distribution in electric field
magnitude. We note that a half-Gaussian distribution in the
electric field magnitude corresponds to a Gamma distribution
with shape parameter k = 1/2 and scale parameter θ = 2P̄
in the intensity.

To compute the ultimate shaping gain for amplifier noise-
limited SD detection, we must equate the volumes in Eqs. (49)
and (52). Equating the volumes yields a relationship between
P and A and using Stirling’s approximation, the ultimate
shaping gain is the ratio of Eqs. (50) and (53) as N → ∞,
and is given by

γ(SD,amp)
s = lim

N→∞

P̄
(SD,amp)
ref (A)

P̄
(SD,amp)
shaped (N,P )

=
πe

6
. (56)

Fig. 12 shows the mutual information vs. SNR(amp) for
amplifier noise-limited SD detection using 128-point con-
stellations uniformly spaced in electric field magnitude with

! = # + 1& '
!( "## '

( "#

1
& '

!+

Stokes Vector

Thermal Noise

Fiber Equalizer Stokes Vector + Noise

Fig. 13. Discrete-time channel model for SV detection in the thermal noise-
limited regime. The noise covariance matrix cov

{
1
ς

HT N(th)
}

is independent
of the transmitted SV S. Adapted from [45].

optimal, MB, exponential, and uniform input distributions.
The optimal distribution and its mutual information are com-
puted numerically using the BA method, as explained in Sec.
III-D. For SNR(amp) < 8 dB, an exponential distribution in
electric field magnitude outperforms the MB distribution. For
SNR(amp) > 10 dB, the MB distribution in electric field mag-
nitude outperforms the exponential distribution. As SNR(amp)

increases from 10 dB to 20 dB, the mutual information
achieved by the MB distribution converges to that achieved by
the optimal distribution. These results are consistent with the
HCA derivation, which states that a half-Gaussian distribution
in electric field magnitude is the optimal distribution at high
SNR.

The shaping gain achieved by the optimal distribution
over the uniform distribution depends on the target mutual
information. At 0.5 bits/symbol, the shaping gain of the
optimal distribution over the uniform distribution is greater
than 3 dB. At 2.5 bits/symbol, the shaping gain of the optimal
distribution is about 1.5 dB, in agreement with the analytical
result (56), i.e., πe/6 ≈ 1.53 dB.

For simplicity, we have assumed both the signal and ASE
noise are received in only one polarization, since the dominant
signal-ASE beat noise arises only from the noise that is co-
polarized with the signal. If the receiver were to also detect
ASE noise in the orthogonal polarization, it would affect only
the ASE-ASE beat noise. This would not change the input
distribution found using HCA, but would slightly degrade
the performance obtained using any input distribution at low
values of SNR(amp).

D. Stokes Vector Detection, Thermal Noise-Limited

In this subsection, we review the application of HCA to
thermal noise-limited SV detection [35]. We consider the
specific SV receiver structures shown in [22, Fig. 3] and [23,
Fig. 1(a)], which yield identical outputs in principle. These
structures may be considered canonical because they directly
yield the three components of the received Stokes vector with
identical signal gains and noise distributions, and because
they minimize the number of required electrical outputs and
analog-to-digital converters.

The discrete-time channel model for thermal noise-limited
SV detection is shown in Fig. 13 and given by

Y =
1

ς
HT
(
HS+ N(th)

)
= S +

1

ς
HT N(th). (57)

Here, H is a 3 × 3 real orthogonal Mueller matrix with
channel gain HT H = ςI3, S = [S1, S2, S3]

T is the SV of the
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transmitted electric field, and N(th) =
[
N

(th)
1 , N

(th)
2 , N

(th)
3

]T
is a jointly Gaussian AWGN vector with covariance matrix
cov

{
N(th)

}
= σ2

thI3.
The discrete-time model presumes the channel is known

at the receiver and that the receiver uses memoryless digital
signal processing to compensate for the effects of the channel.
The covariance of the noise after the signal processing is an
IID jointly Gaussian AWGN vector because the covariance
matrix is

cov

{
1

ς
HT N(th)

}
=

1

ς
σ2

thI3. (58)

1) Natural Coordinates: Consider two arbitrary SVs S1

and S2 input into the channel. Under ML detection, the
pairwise error probability is

Pe(S1,S2) = Q

(
∥S1 − S2∥2

2σth

)
. (59)

We therefore conclude that the Stokes parameters are the
natural coordinates for thermal noise-limited SV detection.

2) Shaping Regions: Let S(N) = [ST
1 ,ST

2 , . . . ,ST
N ]T =

[S11, S1,2, S1,3, S2,1, . . . , SN,3] be a length-3N real vector of
Stokes parameters formed by concatenating N 3-D SVs in N
disjoint symbol intervals. The average optical power is

1

N
S(N)
0 =

1

N

∥∥∥S(N)
∥∥∥
2
=

1

N

N∑
i=1

∥Si∥2 . (60)

The optimal shaping region is the set of 3N -D signal points
with the property that the sum of the optical powers of the N
constituent 3-D SVs is less than or equal to the total power
P . It is defined by

R(SV,th)
shaped (N,P ) =

{
S(N) ∈ R3N |

N∑
i=1

Si,0 ≤ P

}
(61)

=

{
S(N) ∈ R3N |

N∑
i=1

∥Si∥2 ≤ P

}
. (62)

Fig. 14 (a) shows the optimal shaping region for thermal
noise-limited SV detection for N = 2, which is a 2-D simplex.
It corresponds to the shaping region R(SV,th)

shaped (2, P ) given in
Eq. (61), which is an L1-norm constraint on the zeroth Stokes
parameter. A 6-D signal point S(2) = [ST

1 ,ST
2 ]

T is specified
by indicating the values of the two constituent 3-D signal
points S1 and S2. The black dot indicates the 2-D coordinates
of the corresponding zeroth Stokes parameters, which are
∥S1∥2 = S1,0 and ∥S2∥2 = S2,0, respectively. Fig. 14 (b)
contains two shaded 3-D balls enclosed by two outer balls
with radius P , which is an alternative method of depicting
S(2). The coordinates on the left and right shaded 3-D balls
are S1 = {S1,1, S1,2, S1,3} and S2 = {S2,1, S2,2, S2,3},
respectively, which are indicated by the black dots. The radii
of the shaded 3-D balls are S1,0 and S2,0, respectively. Any
pair of 3-D signal points that lie on the surfaces of the shaded
3-D balls in Fig. 14 (b) map back to S(2) in Fig. 14 (a).
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𝑆!,%
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0, 𝑃

0,0, 𝑃0,0, 𝑃

(a)

(b)

Fig. 14. (a) Optimal shaping region for thermal noise-limited SV detection
for N = 2 Stokes symbols S1 and S2. The figure depicts the 6-D real vector
S(2) in terms of S1,0 and S2,0, the zeroth Stokes parameters of S1 and S2,
respectively. S(2) is a signal point on the surface of R(SV,th)

shaped (2, P ), which
is a 2-simplex in S0. The maximum-L1-norm constraint on the simplex is
P . (b) S1 and S2 shown on separate 3-D plots with the individual Stokes
parameters {S1,1, S1,2, S1,3} and {S2,1, S2,2, S2,3} as coordinates. The
radii of the outer 3-D balls are also P .

Let V(SV,th)
shaped (N,P ) be the volume of R(SV,th)

shaped (N,P ). A
closed-form expression for V(SV,th)

shaped (N,P ) is [35]:

V(SV,th)
shaped (N,P ) = P 3N (8π)N

Γ(3N + 1)
. (63)

The average optical power of the region R(SV,th)
shaped (N,P ) is

P̄
(SV,th)
shaped (N,P ) =

3

3N + 1
P. (64)

The reference shaping region is a hypercube in Stokes
space, and can be described by the set of signal points with
maximum-L∞-norm constraint A. The analytical form for
R(SV,th)

ref (N,A) is given by

R(SV,th)
ref (N,A) =

{
S(N) ∈ R3N |

∥∥∥S(N)
∥∥∥
∞

≤ A
}
. (65)

The volume of R(SV,th)
ref (N,A) is

V(SV,th)
ref (N,A) = (2A)3N . (66)

By symmetry, we can compute the average optical power
by considering only S1. For the reference shaping region,
S1,1, S1,2, and S1,3 are mutually independent and uniformly
distributed from [−A,A]. The average optical power per
Stokes symbol is

P̄
(SV,th)
ref (A) = E

[√
S2
1,1 + S2

1,2 + S2
1,3

]
(67)

≈ 0.961A (68)
≤ A. (69)

Eq. (68) comes from numerically approximating Eq. (67) and
Eq. (69) follows from Jensen’s inequality, and is an upper
bound of the exact expression (67).
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Fig. 15. Mutual information vs. SNR(th) for thermal noise-limited SV
detection. The (12× 12× 12) constellations are uniformly spaced in Stokes
space.

3) Induced Distribution and Shaping Gain: The induced
density in one basic dimension must satisfy the following [35]:

fS1
(N,P, s) ∝

(
1−

3 ∥s∥2
(3N + 1)P̄

(SV,th)
shaped (N,P )

)3N−3

,

∥s∥2 ∈ [0, P ]. (70)

Setting the average power to a constant P̄ (SV,th)
shaped (N,P ) = P̄ ,

and taking the limit as N → ∞, we obtain

fS1(s) = lim
N→∞

fS1(N, s)

∝ exp

(
−∥s∥2
P̄ /3

)
, ∥s∥2 ∈ R+. (71)

Normalizing the density, we get

fS1(s) =
1

8π

(
1

P̄ /3

)3

exp

(
−
∥s∥2
P̄ /3

)
, ∥s∥2 ∈ R+. (72)

We conclude that the optimal input distribution for the thermal
noise-limited SVR is a 3-D exponential distribution in S0.

Computing the ultimate shaping gain of thermal noise-
limited SV detection requires equating the volumes in
Eqs. (63) and (66). Taking the ratio of P̄

(SV,th)
ref (A) to

P̄
(SV,th)
shaped (N,P ) as N → ∞ with volumes equated, we find

γ(SV,th)
s = lim

N→∞

P̄
(SV,th)
ref (A)

P̄
(SV,th)
shaped (N,P )

(73)

≈ 0.961
3
√
πe

3
≈ 1.056 dB (74)

≤
3
√
πe

3
≈ 1.23 dB. (75)

Eq. (74) uses the approximation in Eq. (68), and Eq. (75) uses
the upper bound (69).

Fig. 15 shows the mutual information vs. SNR(th) for the 3-
D optimal distribution, 3-D exponential distribution, 3-D MB,
and uniform distribution. The (12×12×12) constellations are
uniformly spaced in Stokes space, and the input distributions
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Fig. 16. 3-D optimal distribution vs. S1 for S2 = S3 = 0.5 and
SNR(th) = 20 dB for thermal noise-limited SV detection computed using
the BA algorithm. The unnormalized continuous exponential and Gaussian
densities are fitted to minimize the L1-norm of the fitting error in dB.

and thermal noise standard deviation σth are optimized using
the methods described in Sec. III-D. The 3-D exponential dis-
tribution outperforms the MB distribution over the entire range
of SNR(th) studied, while both distributions outperform the
uniform distribution over the entire range of SNR(th) studied.
The 3-D exponential distribution is within 0.01 bits/symbol of
the 3-D optimal distribution at SNR(th) = 16 dB.

The shaping gain of the 3-D optimal distribution over the
uniform distribution at 6.4 bits/symbol is 1.25 dB. This is al-
most 0.15 dB higher than the 1.105 dB shaping gain estimated
using the (8×8×8) constellation in [35]. This higher shaping
gain is a consequence of the larger (12×12×12) constellation
used in Fig. 15. The ultimate shaping gain derived in Eq. (74)
is 2.11 dB when expressed in terms of SNR(th), indicating
that our numerical simulation achieves roughly 60% of the
ultimate shaping gain. In Fig. 6, we showed that SC detection
achieves roughly 65% of the ultimate shaping gain when using
M = 256, which uses 16 constellation points per signaling
dimension. The gap to the maximum theoretical shaping gain
is similar for SC detection and thermal noise-limited SV
detection. The gap between the theoretical maximum and
numerically estimated shaping gains can be reduced by using
3-D constellations with more signal points.

Fig. 16 shows the 3-D optimal distribution vs. S1 for
S2 = S3 = 0.5 and SNR(th) = 20 dB computed using
the BA algorithm. The continuous exponential and Gaussian
distributions are fitted to minimize the L1-norm of the fitting
error in dB. The exponential better fits the 3-D optimal
distribution than the Gaussian does. This result is consistent
with the 3-D exponential distribution analytically derived in
Eq. (72) for thermal noise-limited SV detection.

E. Stokes Vector Detection, Amplifier Noise-Limited

In this subsection, we review the application of HCA to
amplifier noise-limited SV detection [35]. As in the previous
subsection, we consider the specific SV receiver structures
shown in [22, Fig. 3] and [23, Fig. 1(a)], which may be
considered canonical.

We first state the discrete-time channel model in terms
of electric field components and then derive the discrete-
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time channel model in terms of Stokes vector components.
A received electric field vector ER is

ER = E′ + N(amp), (76)

where E = [E1, E2]
T

= [E1I + jE1Q, E2I + jE2Q]
T is the

transmitted electric field, U is a scaled unitary matrix satisfy-
ing UUH =

√
ςI2, E′ = UE =

[
E′

1I + jE′
1Q, E

′
2I + jE′

2Q

]T
is the electric field after multiplication by U, and N(amp) =[
N

(amp)
1 , N

(amp)
2

]T
= [N1I + jN1Q, N2I + jN2Q]

T is a
complex, circularly symmetric jointly Gaussian AWGN vector
with covariance matrix cov

{
N(amp)

}
= 2σ2

ampI2.
Let S be the SV corresponding to the electric field vector E.

After detection and MIMO equalization, the detected electrical
signals are

Y = S +
1

ς
HT Ň(amp)

. (77)

The channel matrix U transforms to an orthogonal Mueller
matrix H with HT H = ςI3 [51]. The real noise vector

Ň(amp)
=
[
Ň

(amp)
1 , Ň

(amp)
2 , Ň

(amp)
3

]T
has components

Ň
(amp)
1 = 2N1IE

′
1I + 2N1QE

′
1Q − 2N2IE

′
2I

− 2N2QE
′
2I +N2

1I +N2
1Q −N2

2I −N2
2Q, (78)

Ň
(amp)
2 = 2N1IE

′
2I + 2N1QE

′
2Q + 2N2IE

′
1I

+ 2N2QE
′
1Q + 2N1IN2I + 2N1QN2Q, (79)

Ň
(amp)
3 = − 2N1IE

′
2Q + 2N1QE

′
2I + 2N2IE

′
1Q

− 2N2QE
′
1I + 2N1QN2I − 2N1IN2Q. (80)

As in Sec. IV-C, we derive an approximate channel
model that neglects ASE-ASE beat noise. Let Ñ(amp) =[
Ñ

(amp)
1 , Ñ

(amp)
2 , Ñ

(amp)
3

]T
be the noise vector obtained by

dropping all ASE-ASE beat noise terms from Ň(amp)
, which

has components

Ñ
(amp)
1 = 2N1IE

′
1I + 2N1QE

′
1Q − 2N2IE

′
2I

− 2N2QE
′
2I , (81)

Ñ
(amp)
2 = 2N1IE

′
2I + 2N1QE

′
2Q + 2N2IE

′
1I

+ 2N2QE
′
1Q, (82)

Ñ
(amp)
3 = − 2N1IE

′
2Q + 2N1QE

′
2I + 2N2IE

′
1Q

− 2N2QE
′
1I . (83)

Substituting in Ň(amp)
for Ñ(amp) in Eq. (77), we obtain

Y ≈ S +
1

ς
HT Ñ(amp). (84)

The approximate channel model (84) is depicted in Fig. 17.
In the HCA derivation of the optimal shaping distribution,

we use the approximate channel model (84), setting ς = 1. In
numerical simulations to evaluate mutual information, we use
the exact channel model (77), which includes both signal-ASE
and ASE-ASE beat noises.

+

Stokes Vector Fiber Equalizer Stokes Vector +
Signal-ASE Beat Noise

Approximate ASE Noise

Fig. 17. Discrete-time channel model for SV detection in the amplifier
noise-limited limited regime. The approximation, made at high signal-to-noise
ratio, neglects ASE-ASE beat noise. The signal-ASE beat noise covariance
matrix cov

{
1
ς

HT Ñ(amp)
}

scales linearly with the signal energy ∥S∥2 .
ASE: amplified spontaneous emission. Adapted from [45].

1) Natural Coordinates: Consider two arbitrary SVs S1

and S2 input to the channel described by Eq. (84). To derive
an expression for the error probability for arbitrary S1 and S2,
we assume that a normalized correlation detector computes an
inner product between the detected electrical currents Y and
the vector (S1 − S2) / ∥S1 − S2∥2 to form a decision statistic
[52, Ch. 4.3]. The decoding rule using a decision threshold
Yd is

YT S1 − S2

∥S1 − S2∥2

S1
≷
S2

Yd. (85)

The ML decision threshold, which minimizes the error prob-
ability, is well approximated by

Yd =
∥S2∥1/22

(
ST
2 S1 − ∥S1∥22

)
+ ∥S1∥1/22

(
∥S2∥22 − ST

1 S2

)
∥S1 − S2∥2 (∥S1∥1/22 + ∥S2∥1/22 )

.

(86)
Let Pe(Si|Sj) be the conditional error probability of decod-

ing Si when Sj is transmitted. Assuming the channel is exactly
described by Eq. (84), the approximate ML decision threshold
(86) results in Pe(S1|S2) = Pe(S2|S1) = Pe (S1,S2), which
is given by

Pe (S1,S2) = Q

(
∥S1 − S2∥2

2σamp(∥S1∥1/22 + ∥S2∥1/22 )

)
. (87)

We now introduce an invertible transformation from Stokes
space to scaled Stokes space to aid in simplifying Eq. (87).
Let X = [X1, X2, X3] be a 3-D scaled Stokes symbol, where
X1, X2, X3 are the corresponding scaled Stokes parameters.
The zeroth scaled Stokes parameter is X0 = ∥X∥2. X is
defined in terms of S by

[X1, X2, X3]
T
=

[S1, S2, S3]
T

√
S0

=
[S1, S2, S3]

T

4
√

S2
1 + S2

2 + S2
3

. (88)

To simplify Eq. (87), we make the approximation that
∥S1∥1/22 ≈ ∥S2∥1/22 . Using this approximation, we obtain

Pe (S1,S2) ≈ Q

(
1

4σamp

∥∥∥∥∥ S1

∥S1∥1/22

− S2

∥S2∥1/22

∥∥∥∥∥
2

)

= Q

(
1

4σamp
∥X1 − X2∥2

)
. (89)

Since the pairwise error probability is expressed as a Q-
function of the L2-norm of the difference between scaled
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Stokes vectors, we conclude that the scaled Stokes param-
eters are natural coordinates for amplifier noise-limited SV
detection.

2) Shaping Regions: Let X(N) = [XT
1 ,XT

2 , . . . ,XT
N ]T =

[X11, X1,2, X1,3, X2,1, . . . , XN,3] be a length-3N real vector
of scaled Stokes parameters that is formed by concatenating
N 3-D scaled SVs in N disjoint symbol intervals. The average
optical power of X(N) is

1

N

∥∥∥X(N)
∥∥∥2
2
=

1

N

N∑
i=1

∥Xi∥22 . (90)

The optimal shaping region is the set of 3N -D signal points
with total optical power less than or equal to the maximum
optical power constraint P . The optimal shaping region is
described by

R(SV,amp)
shaped (N,P ) =

{
X(N) ∈ R3N |

N∑
i=1

∥Xi∥22 = P

}
. (91)

Fig. 18 (a) shows the optimal shaping region for N = 2. A
2-D representation of the 6-D shaping region R(SV,amp)

shaped (N,P )

is a disk with radius
√
P intersected with the nonnegative or-

thant. The coordinates are the zeroth scaled Stokes parameters
∥X1∥2 = X1,0 and ∥X2∥2 = X2,0, respectively. The real 6-D
vector X(2) is a signal point on the surface of R(SV,amp)

shaped (N,P ).
It is indicated using a black dot in Fig. 18 (a). Fig. 18 (b)
shows an alternative method of describing the real 6-D vector
X(2). The coordinates on the left and right shaded 3-D balls
are X1 = {X1,1, X1,2, X1,3} and X2 = {X2,1, X2,2, X2,3},
respectively, which are indicated by the black dots. The radii
of both outer balls are

√
P . The radii of the shaded 3-D balls

are X1,0 and X2,0, respectively. Pairs of 3-D signal points that
lie on the surfaces of the two shaded 3-D balls in Fig. 18 (b)
map to X(2) in Fig. 18 (a).

It is worth noting that a 3N -D ball in scaled Stokes space
with radius

√
P maps to a 3N -D ball in Stokes space with

radius P via the transformation in Eq. (88). However, a
uniform distribution of signal points in scaled Stokes space
does not map to a uniform distribution of signal points in
Stokes space because of the Jacobian of the transformation
(88). Computations of the volume and average power in HCA
must be done using the natural coordinates.

The volume of the region R(SV,amp)
shaped (N,P ) is the volume

of a 3N -D ball with radius
√
P , and is given by

V(SV,amp)
shaped (N,P ) =

(πP )3N/2

Γ( 3N2 + 1)
. (92)

The average optical power of the region R(SV,amp)
shaped (N,P ) is

P̄
(SV,amp)
shaped (N,P ) =

3P

3N + 2
. (93)

The reference shaping region is a hypercube in scaled
Stokes space. The analytical form for R(SV,amp)

ref (N,A) is given
by

R(SV,amp)
ref (N,A) =

{
X(N) ∈ R3N |

∥∥∥X(N)
∥∥∥
∞

≤ A
}
, (94)
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Fig. 18. (a) Optimal shaping region for amplifier noise-limited SV detection
for N = 2. The figure depicts a 6-D real vector X(2) in terms of X1,0 and
X2,0, the zeroth scaled Stokes parameters of X1 and X2, respectively. X(2) is
a signal point on the surface of R(SV,amp)

shaped (2, P ), which is a 2-ball in X0 with
radius

√
P intersected with the non-negative orthant. (b) X1 and X2 shown

on separate 3-D plots with scaled Stokes parameters {X1,1, X1,2, X1,3} and
{X2,1, X2,2, X2,3} as coordinates. The radii of the outer 3-D balls in the
bottom plot are also equal to

√
P .

where A is the L∞-norm constraint in scaled Stokes space.
The volume of the region is

V(SV,amp)
ref (N,A) = (2A)3N . (95)

By symmetry, the average optical power is P̄
(SV,amp)
ref (A) =

E[|X1|2] for any N . Computing the average second moment
of X1, we obtain

P̄
(SV,amp)
ref (A) = A2. (96)

3) Induced Distribution and Shaping Gain: In Sec. III-C,
we showed that an N -D complex ball induces a complex
circularly symmetric Gaussian distribution in one complex
dimension as N → ∞. In Sec. IV-C, we also showed that
an N -D real ball intersected with the nonnegative orthant
induces a half-Gaussian distribution in one real dimension.
Using an almost identical proof, it is straightforward to show
that the distribution induced in X is a 3-D IID real Gaussian
distribution. The PDF of X ∼ N

(
0, σ2I3

)
is given by

fX(x) =
1

(2πσ2)
3/2

exp

(
− 1

2σ2
∥x∥22

)
, (97)

where σ2 = P̄ /3 is the input power constraint on each real
dimension of X.

The induced density in Stokes space is given by the
following [35]:

fS(s) =
1

2 ∥s∥3/22

1(
2πP̄/3

)3/2 exp

(
−1

2

1

P̄ /3
∥s∥2

)
. (98)
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Fig. 19. Mutual information (MI) vs. SNR(amp) for amplifier noise-limited
SV detection. The (12 × 12 × 12) constellations are uniformly spaced in
Stokes space.

The distribution of S, given by Eq. (98), is undefined at
s = 0. However, (98) is only a function of ∥s∥2 = s0. We can
write the distribution induced in S0 as

fS0
(s0) = 2πs

1/2
0

1(
2πP̄/3

)3/2 exp

(
−1

2

1

P̄ /3
s0

)
. (99)

From Eq. (99), we can see that S0 ∼ Gamma(3/2, 2P̄ /3),
i.e., S0 is Gamma distributed with shape parameter k = 3/2
and scale parameter θ = 2P̄ /3. While the distribution of S is
undefined at s = 0, the distribution of S0 is well defined at
s0 = 0.

To compute the ultimate shaping gain for amplifier noise-
limited SV detection, we equate the volumes in Eqs. (92) and
(95) . Using Stirling’s approximation, we find that

γ(SV,amp)
s = lim

N→∞

P̄
(SV,amp)
ref (A)

P̄
(SV,amp)
shaped (N,P )

=
πe

6
≈ 1.53 dB. (100)

Fig. 19 shows the mutual information vs. SNR(amp) for
amplifier noise-limited SV detection, comparing the 3-D op-
timal, 3-D exponential, MB, and uniform distributions. The
(12× 12× 12) constellations are uniformly spaced in Stokes
space and the input distributions and amplifier noise standard
deviation σamp are optimized using the methods outlined in
Sec. III-D.

The 3-D exponential distribution outperforms the 3-D MB
distribution over the range of SNR(amp) studied. This is
consistent with Eq. (98), which suggests that at high SNR(amp),
where the exponential factor dominates, the input distribution
should be exponentially distributed in ∥s∥2 = s0.

The 3-D optimal distribution outperforms the 3-D expo-
nential, MB, and uniform distributions, as expected. The 3-D
exponential distribution achieves a mutual information within
0.1 bits/symbol of the 3-D optimal distribution at SNR(amp) =
21 dB. The shaping gain of the 3-D optimal distribution over
the uniform distribution is 1.49 dB at 6.58 bits/symbol. This is
larger than the 1.105 dB observed in [35] owing to the larger
constellation size used in Fig. 19. We note that the comparison
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Fig. 20. 3-D optimal distribution vs. S1 for S2 = S3 = 0.5 and
SNR(amp) = 25 dB for amplifier noise-limited SV detection computed using
the BA algorithm. The unnormalized continuous exponential and Gaussian
densities are fitted to minimize the L1-norm of the fitting error in dB.

of the 3-D optimal distribution and the uniform distribution
in Fig. 19 is not directly comparable to the ultimate shaping
gain derived in Eq. (100). The uniform distribution in Stokes
space presumed in Fig. 19 is not equivalent to the uniform
distribution in scaled Stokes space used in the derivation of
Eq. (100).

Fig. 20 shows the 3-D optimal distribution vs. S1 for
S2 = S3 = 0.5 and SNR(amp) = 25 dB computed using
the BA algorithm. The continuous exponential and Gaus-
sian distributions are optimized to minimize the L1-norm of
the fitting error in dB. Similar to Fig. 16, the exponential
distribution better fits the optimal PMF than the Gaussian
distribution does. The exponential distribution still provides a
reasonable fit in spite of neglecting the factor of 1/ ∥S∥3/22 in
Eq. (98). The L1-norm of the fitting error for the exponential
distribution is lower in the thermal noise-limited regime (Fig.
16) than in the amplifier noise-limited regime (Fig. 20),
presumably because of the neglect of the factor 1/ ∥S∥3/22

in the latter regime.

F. Kramers Kronig Detection, Amplifier Noise-Limited

Kramers Kronig detection [25] enables coherent detection
without requiring a LO laser at the receiver. Unlike the other
DD-based methods discussed in the previous subsections,
an approximately optimal input distribution can be obtained
analytically using MMI [1], and application of HCA [31] is
not strictly required. In this subsection, we mainly review the
study of KK detection in the amplifier noise-limited regime
presented in [27].

1) Continuous-Time Channel Model: Fig. 21 presents a
continuous-time channel model for a KK receiver in the
amplifier noise-limited regime. This continuous time model
is adapted from [27], which assumes that the unmodulated
carrier is added at the transmitter. Centered at the frequency
of the unmodulated carrier and using band-limited Nyquist
pulses, the noiseless continuous-time transmitted signal is

x(t) = E0 + s(t)ejπBt, (101)

where E0 is the unmodulated carrier, s(t) is the information-
bearing modulated signal, and B is the bandwidth of s(t).
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Fig. 21. Continuous-time channel model for KK detection in the amplifier
noise-limited regime. The total transmitted signal power is equal to the sum
of the modulated data signal power P̄s and the carrier power Pc. The detected
intensity y(t) is processed to recover the phase of the received electric field.
Adapted from [45].

The transmitted signal (101) is minimum-phase provided
the carrier power Pc is sufficient to ensure that time-domain
trajectories of x(t) do not encircle the origin. If the minimum-
phase condition is satisfied, the phase φ(t) = arg{x(t)} can
be obtained from the intensity |x(t)|2 by using the Hilbert
transform H:

φ(t) = H{log
√
|x(t)|2}. (102)

Assuming ideal phase reconstruction of φ(t), s(t) can be
obtained by

s(t) =
(√

|x(t)|2ejφ(t) − E0

)
e−jπBt. (103)

Near-lossless implementations of Eqs. (102) and (103) can be
realized using samples of |x(t)|2 with an oversampling ratio
of 2 and digital signal processing [53].

Assuming transmission through a non-dispersive channel
for simplicity, the detected electrical current in an amplifier
noise-limited KK receiver is

yI(t) = |x(t) + n(t)|2, (104)

where n(t) is white complex Gaussian noise with one-sided
PSD N0. The KK receiver subsequently computes the Hilbert
transform of log

√
yI(t). Phase-retrieval errors can occur if

the noise causes time-domain trajectories of x(t) + n(t) to
encircle the origin, which would result in a recovered phase
φ(t) not equal to H

{
log
√
x(t) + n(t)

}
. For simplicity, we

have assumed the signal and ASE noise are received in one po-
larization. This enables us to write the channel model (104) as
a complex, scalar channel. KK detection of dual-polarization
signals is possible in principle, but may be complicated in
practice [27].

The channel model can be further simplified if we assume
the carrier is sufficiently strong to ensure x(t) + n(t) is
minimum-phase, which we refer to as the high carrier-to-
signal power (CSPR) regime. In this regime, assuming ideal
phase reconstruction, the received electric field can be recon-
structed exactly from the detected intensity as x(t) + n(t) =√

yI(t)e
jH{log

√
yI(t)}, and we can employ an intermediate

continuous-time channel for KK detection:

y(t) = x(t) + n(t) (105)

= E0 + s(t)ejπBt + n(t). (106)

After subtracting the unmodulated carrier E0 and multiplying
by e−jπBt to remove the frequency shift, the continuous-time

channel model for KK detection in the high-CSPR regime
becomes

y′(t) = (y(t)− E0) e
−jπBt

= s(t) + n′(t). (107)

The channel output (107) comprises the information-bearing
modulated signal s(t) plus n′(t) = n(t)e−jπBt, which is an
additive white Gaussian noise with PSD N0.

2) Channel Capacity and Optimal Input Distribution: The
total average transmit power is Pc+ P̄s, the sum of the carrier
power Pc and the modulated signal average power P̄s. The two
powers are additive because the carrier and modulated signal
do not overlap in frequency. The received SNR is defined as

SNR(amp) =
P̄s + Pc

N0B

= SNRsig (1 + CSPR) , (108)

where SNRsig = P̄s/N0B is the SNR excluding the carrier
and CSPR = Pc/P̄s is the carrier-to-signal power ratio.

The general form for the capacity of the amplifier noise-
limited KK receiver is the maximum mutual information
between X and yI(t) from Eq. (104):

C(KK)(SNR(amp)) = max
Pc,fS(s):

E[|S|2]≤P̄s

Pc+P̄s≤SNR(amp)N0B

I(X;YI), (109)

where fS(s) is the PDF of the modulated signal s(t) and
SNR(amp) is the SNR constraint. Owing to the complexity
of phase retrieval, the capacity of KK detection for arbitrary
CSPR is an open problem.

A closed-form analytical expression for the capacity-
achieving input distribution can be derived in the high-CSPR
regime [27]. Assuming Pc is sufficient to ensure ideal phase
recovery, there is a one-to-one relationship between y(t) and
yI(t), and we can equate I(X;YI) = I(X;Y ), where Y is a
random variable for y(t) in (105). The addition of a carrier or
a frequency shift of s(t) do not change mutual information,
so we obtain I(X;Y ) = I(S;Y ). For a given SNR(amp), the
power available for s(t) is P̄s ≤ SNR(amp)N0B − Pc. Using
these observations, the optimization in (109) simplifies to

C(KK,CSPR)(SNR(amp)) = max
fS(s):

E[|S|2]≤P̄s

P̄s≤SNR(amp)N0B−Pc

I(S;Y ), (110)

where C(KK,CSPR) indicates the capacity in the high-CSPR
regime. Using the independence of the signal and noise, the
optimization problem simplifies to maximizing h(S)− h(N)
subject to E[|S|2] ≤ SNR(amp)N0B − Pc.

Using reasoning similar to that in Sec. III-A, the capacity-
achieving input distribution for KK detection in the high-
CSPR regime described by (110) is S ∼ CN (0, P̄s), a
2-D complex circular Gaussian distribution with variance
P̄s = SNR(amp)N0B−Pc. Using minimum-bandwidth Nyquist
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Fig. 22. Mutual information vs. SNR(amp) for amplifier noise-limited SC
detection, KK detection and SD detection, compared to the Shannon capacity
for SC detection. For SC and KK detection, (8×8) constellations are shaped
by MB distributions optimized at each SNR(amp) (jointly optimized with
the CSPR for KK detection). For SD detection, a 64-point constellation is
optimized at each SNR(amp) using the BA algorithm. Adapted from [27].

pulses and the capacity-achieving input distribution, the capac-
ity of KK detection in the high-CSPR regime is

C(KK,CSPR)(SNR(amp)) = B log2 (1 + SNRsig)

= B log2

(
1 +

SNR(amp)

1 + CSPR

)
, (111)

achieving a spectral efficiency log2(1+ SNRsig) bits/symbol.
3) High-Rate Continuous Approximation: In the high-

CSPR regime, the general KK receiver continuous-time chan-
nel in Eq. (104) can be transformed to the AWGN channel in
Eq. (107). Symbol-rate sampling yields a sufficient statistic,
leading to a discrete-time channel model

y′[n] = s[n] + n′[n]. (112)

The discrete-time channel model is equivalent to the SC chan-
nel model given in Eq. (1), except for the implicit transmitted
carrier. Therefore, the HCA derivation for the amplifier noise-
limited KK detection in the high-CSPR regime is very similar
to that for SC detection. For sake of brevity, we omit the
derivation and summarize the results in Table II, which is
explained in Sec. IV-G.

4) Numerical Analysis: While analytical solution of Eq.
(109) is an open problem, the mutual information achieved
by KK detection can be estimated numerically using methods
presented in Sec. III-D. Fig. 22 shows the mutual informa-
tion vs. SNR(amp) for SC detection, KK detection, and SD
detection, comparing them to the Shannon capacity (4). For
SC and KK detection, (8×8) uniformly spaced constellations
are shaped by MB distributions optimized at each SNR(amp)

(jointly optimized with the CSPR for KK detection). For
SD detection, a 64-point uniformly spaced constellation is
optimized at each SNR(amp) using the BA algorithm.

In Fig. 22, comparing KK and SC detection, we observe
that KK detection incurs a penalty of 5-7 dB compared to SC
detection in terms of the SNR(amp) required to achieve a given
mutual information over the range of SNRs studied. This SNR

penalty corresponds to the power used in the unmodulated
carrier. Ignoring the effect of limited constellation size near 6
bits/symbol, the gap between the SC and KK receivers grows
monotonically with increasing SNR(amp). Although KK detec-
tion nominally provides 2 real dimensions per polarization, the
effective degrees of freedom are only about 1.8, because as
SNR(amp) increases, it is necessary to continuously increase
CSPR to ensure ever-more-accurate phase retrieval [27].

Comparing KK and SD detection in Fig. 22, we observe
that KK detection significantly outperforms SD detection at
high SNR(amp), owing to its advantage in degrees of freedom
(about 1.8 for KK detection vs. 1 for SD detection). Interest-
ingly, however, SD detection outperforms KK detection for
SNR(amp) < 5 dB. At these very low SNRs, the optimal input
distribution for SD detection has a high probability at the zero
intensity level, which has the lowest noise. By contrast, for KK
detection, the need to satisfy a minimum-phase requirement
prevents the use of the zero intensity level, tending to increase
the noise detected at the receiver.

G. Summary of Shaping Results
Table II summarizes the optimal shaping regions, induced

distributions on the constituent constellation, and ultimate
shaping gains for the six discrete-time channels considered
in this paper. We observe several interesting similarities when
comparing the shaping regions and induced distributions in
this common framework.

The optimal shaping region for thermal noise-limited SD
detection and SV detection are both N -simplexes in signal
intensity. The induced distribution for SD detection is an
exponential distribution in the intensity. For SV detection,
the induced distribution is an exponential distribution in the
intensity S0. Because the intensity S0 is an L2-norm of the
Stokes parameters {S1, S2, S3}, the induced distribution is a
3-D exponential distribution in the Stokes parameters.

The optimal shaping regions for amplifier noise-limited
SD detection and SV detection are nonnegative orthants
intersected with N -balls in |E| and X0, respectively. These
induce, respectively, N -D and 3N -D balls in the natural co-
ordinates. The induced distribution for SD detection is a half-
Gaussian distribution in electric field magnitude |E|, which
corresponds to a Gamma distribution with shape parameter
1/2 in the intensity. The induced distribution for SV detection
is a Gamma distribution with shape parameter 3/2 in the
intensity. We observe that the induced intensity distributions
for amplifier noise-limited SD detection and SV detection are
Gamma distributions with shape parameters equal to half the
number of signaling dimensions.

The optimal shaping regions for SC detection and amplifier
noise-limited KK detection are both hyperballs in electric field
with radii equal to the square root of the respective peak
constraints on the total signal power. The shaping region for
the SC receiver is centered at the origin while the shaping
region for the SC receiver is centered at the unmodulated
carrier E0, which is required to ensure the received signal is
minimum-phase. The induced distributions are both complex
circular Gaussian, which are centered at the origin and at E0,
respectively.
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TABLE II
SUMMARY OF SHAPING RESULTS FOR SIX CHANNEL MODELS IN OPTICAL COMMUNICATIONS.
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V. IMPLEMENTATION OF PROBABILISTIC SHAPING

While HCA provides analytical continuous approximations
to the optimal input distributions, at least at high SNR, discrete
constellations with a finite number of signal points must
be used in practice. Hence, some means of obtaining an
optimized discrete input distribution must be used. Methods
commonly employed include the BA algorithm and sampling
and normalizing a continuous input distribution. We refer the
reader to Sec. III-D for an overview of these methods.

In the remainder of this section, we consider other important
aspects of implementing coded modulation with probabilistic
shaping, emphasizing certain issues that arise with DD-based
detection methods but not typically with SC detection. We
first review DM and the PAS architecture to identify restric-
tions on the output distribution imposed by PAS. We then
study how the separability and symmetry of the continuous
input distributions derived for DD-based methods affect the
implementation and performance of probabilistic shaping.

A. Conventional Implementation of Discrete Input Distribu-
tions

A conventional approach to achieving a target nonuniform
discrete input distribution is to combine an FEC code and
a DM using the PAS architecture [5], [36]. A DM is an
algorithm that maps uniform input bits to a sequence of
symbols whose empirical distribution closely follows a target
discrete distribution. CCDM and sphere shaping are two
important classes of DM methods that have been studied
extensively for optical communications [4], [5]. CCDM maps
uniform input bits to symbol sequences whose empirical
distribution exactly equals a target distribution. The constant-
composition property can be exploited to enable a fixed-
length-to-fixed-length implementation using simple arithmetic
coding [3]. By contrast, sphere shaping maps uniform input
bit sequences to symbol sequences that satisfy a maximum-
energy constraint [4]. While both CCDM and sphere shaping
are capacity-achieving in the limit of an infinite-length DM,
sphere shaping exhibits performance superior to CCDM at
finite block lengths.

PAS is a layered architecture that enables the integra-
tion of DM with an existing FEC code [2], [5]. The PAS
architecture requires that the target probability distribution
have probability masses that occur in equal-probability pairs.
Using this structure, the symbol sequence output by the DM
can be uniquely mapped to a pair of symbols with equal
probabilities. A combination of bits output by the FEC code
and additional information bits are used to uniformly choose
among pairs of symbols with equal probabilities. We use
the term pairwise symmetry to denote continuous or discrete
probability distributions in which the probability masses or
densities occur in equal-probability pairs.

The MB distribution is a near-capacity-achieving input
distribution for the SC channel obtained by sampling and
normalizing a continuous Gaussian distribution [46]. There are
conditions on the constellation points at which the continuous
Gaussian distribution is sampled to ensure the resulting MB
distribution is both separable and has pairwise symmetry.

Separability of a multi-variate distribution refers to its
ability to be expressed as a product of distributions for the
individual variables. An N -D MB distribution is separable into
the product of N identically distributed 1-D MB distributions
provided the sampling constellation is described as the N -fold
Cartesian product of a 1-D constellation [46]. In the remainder
of Sec. V, we assume that a continuous distribution is sampled
using a constellation formed by the N -fold Cartesian product
of a 1-D constellation. The pairwise symmetry of the MB
distribution is guaranteed provided the sampling constellation
has bipolar symmetry. In the remainder of Sec. V, we assume
that when the underlying continuous distribution has bipolar
symmetry, the sampling constellation has bipolar symmetry.

The optimal continuous input distribution for SC detection
is a complex circular Gaussian distribution (we consider one
polarization for simplicity). This is equivalent to a 2-D real
IID Gaussian distribution. This distribution is symmetric and
has bipolar symmetry and can therefore be implemented using
two independent 1-D PAS encoders.

B. Implementation of Shaping with Direct Detection

Table III categorizes the optimal input distributions for
amplifier noise-limited KK detection, thermal noise-limited
and amplifier noise-limited SD detection, and thermal noise-
limited and amplifier noise-limited SV detection based on
bipolar symmetry and separability.

For amplifier noise-limited KK detection, the optimal input
distribution has bipolar symmetry about the transmitted carrier
and is separable into independent 1-D distributions. This
enables lossless implementation by independent 1-D PAS
encoders.

For SD detection in both noise regimes, the optimal input
distributions are asymmetric, which precludes straightforward
implementation using PAS. The distributions are unipolar and
monotonically decreasing, so there is no sampling constel-
lation that can achieve pairwise symmetry in the resulting
discrete distribution. Two common approaches to overcoming
this lack of pairwise symmetry include modifying the input
distribution to have pairwise symmetry, which results in a
small loss in achievable rate, or using a non-PAS scheme [5],
[54], [55].

For SV detection in the thermal and amplifier noise-limited
regimes, the optimal input distributions are 3-D exponential
and Gamma with shape parameter 3/2, respectively. These can
be sampled by a constellation with bipolar symmetry to yield
3-D discrete distributions, which can be implemented by 3-
D PAS encoders. The two 3-D discrete distributions are not
losslessly separable into products of 1-D distributions, owing
to the L2-norms appearing in the expressions. Nevertheless,
each 3-D discrete distribution can be approximated by a
product of 1-D distributions with a small loss in achievable
rate [35].

VI. CONCLUSION

In this tutorial, we presented a comprehensive overview of
probabilistic shaping in DD-based optical communication sys-
tems. We reviewed DD-based detection methods and presented
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TABLE III
CATEGORIZATION OF OPTIMAL INPUT DISTRIBUTIONS FOR FIVE DIRECT DETECTION-BASED CHANNEL MODELS.

KK: KRAMERS KRONIG, SD: STANDARD DIRECT, SV: STOKES VECTOR.

Not Losslessly Separable
into 1-D Distributions

Losslessly Separable
into 1-D Distributions

SV thermal (3-D exponential)
SV amplifier (Gamma, shape parameter 3/2)

KK amplifier (shifted Gaussian)
Symmetric

Distribution

SD thermal (1-D exponential)
SD amplifier (1-D half-Gaussian)

Asymmetric
Distribution

discrete-time channel models for thermal noise-limited and
amplifier noise-limited SD detection and SV detection, and
amplifier noise-limited KK detection. Exploiting the concept
of natural coordinates, we used HCA to compute continuous
analytical approximations to the optimal input distributions
and the shaping gains for SD detection and SV detection in
the thermal noise-limited and amplifier noise-limited regimes.
We also studied the optimal input distribution and achievable
rate for amplifier noise-limited KK detection in the high-
CSPR regime using both MMI and HCA. We discussed some
considerations in algorithmic implementation of probabilistic
shaping in DD-based systems based on the separability and
symmetry of the optimal input distributions.
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