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Abstract – Intersymbol interference (ISI) due to modal 
dispersion is the dominant limitation to the bit rate-distance 
product in multimode fiber-optic communication systems.  If the 
light launched into the fiber excites only the desired principal 
modes, modal dispersion can be eliminated.   We can achieve 
this by using spatial light modulators (SLMs) to perform 
adaptive spatial filtering on the electric fields of the light.  In this 
paper, we develop an optimization framework for setting the 
SLMs to obtain an upper bound on the achievable performance 
and develop heuristics that nearly reach this upper bound.  
Using this framework, we show that both a sophisticated 
semidefinite programming-based algorithm and a simple 
adaptive algorithm achieve performance close to the upper 
bound.  Performance and system complexity tradeoff curves are 
constructed, showing that a 20×20 array of SLM pixels with 
binary phase control performs within 15% of more complex 
implementations.  Finally, we extend the framework and present 
preliminary results showing the promise of further increases in 
the capabilities of multimode fiber by using the fiber as a 
multiple-input, multiple-output (MIMO) transmission medium. 

I. INTRODUCTION 

Multimode fiber is the dominant type of fiber used for data 
communications in current local-area networks; these fibers 
have several non-idealities that limit the achievable signaling 
rates for a given length of fiber. The dominant limiting factor 
in multimode links is the ISI caused by modal dispersion [1]. 

Light can travel through a multimode fiber in many 
different modes; the modes in which light propagates depend 
upon the launch conditions at the input of the fiber.  The 
existence of multiple modes makes multimode fiber easier to 
launch light into and therefore less expensive than single-
mode fiber. 

Since each of the modes propagates down the fiber with its 
own distinct group velocity, information carried by the modes 
arrives at the end of the fiber at different times.  Therefore, an 
original pulse of data at the input of the fiber spreads apart 
into several pulses at the end of the fiber – otherwise known 
as modal dispersion.  This effect is directly analogous to 
multi-path in wireless communication systems. At high data 
rates or on long fibers, the differences in arrival time of the 
various modes can span tens of symbols.  

Electrical equalization [2,3] has been proposed and used to 
mitigate this potentially severe ISI.  However, equalization in 
the electrical domain inherently amplifies the additive noise 
sources in the system (or attenuates the signal), leading to 
degradation of the achievable bit error rate [4].  

Since the ISI at the receiver is a direct function of which 
modes are launched at the input of the fiber, we propose the 
use of SLMs to perform adaptive spatial filtering on the fields 

of the light such that only the desired modes are excited 
(Fig. 1).  At the transmitter, a lens is used to perform a spatial 
Fourier transform on the transmitted electric field.  An array 
of SLM pixels manipulates the phase and/or amplitude of the 
light in the spatial frequency domain, and reflects the 
modified light back to the same lens to perform the inverse 
Fourier transform.  This approach is similar to the spatial 
filtering with computer-generated optical masks used by 
Dubois in [5]; however the use of SLMs allows the filtering 
to be adapted to an arbitrary, unknown fiber. 
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Fig. 1. Multimode fiber optic communication system using a spatial light 
modulator for adaptive spatial filtering. 

Unlike traditional equalization, the energy of the light 
signal can literally be refocused into the desired modes of the 
fiber (eliminating the ISI) without amplifying the fixed noise 
in the system.  Of course, this can only be achieved with the 
proper SLM pixel settings, and hence this paper addresses the 
task of optimizing these settings. 

In order to develop an optimization framework, we first 
create a model of the optical fiber channel as a function of the 
SLM settings.  Additionally, the passive nature of the SLMs 
introduces physical constraints that must be included in the 
optimization problem.  Finally, to complete the optimization 
problem an appropriate objective function must be chosen, 
and we examine both the signal-to-interference ratio (SIR) 
and minimum distance between signal levels (dmin). 

By deriving the dual of the optimization problem (which is 
guaranteed to be convex [6] even though the original problem 
is not), we can find provable upper bounds on the achievable 
performance for a given fiber and SLM system.   
Furthermore, the solution of the dual problem can be used in 
a heuristic to find solutions to the original problem. 

In any real system, the modes and properties of the fiber 
may change with time (e.g. due to vibrations or temperature-
induced geometric variations), making an adaptive algorithm 
for setting the SLM pixels highly desirable.  Solving the dual 
optimization problem and using the resulting solution for 
heuristics involves a high level of computational complexity, 



 

making this approach ill-suited to an adaptive solution.  
Therefore, we describe the single coordinate ascent algorithm 
[7] as an adaptive solution.  Simulation results show that both 
the SLM settings generated by the computationally intensive 
heuristics and by single coordinate ascent very nearly achieve 
the performance upper bound. 

This optimization framework allows us to explore tradeoffs 
between the performance and the complexity of the 
communication system.  In addition, this same framework 
can be extended to explore further increases in the capacity of 
the multimode fiber by creating a MIMO system over a single 
multimode fiber, and we present preliminary results from this 
type of system showing the promise of this technique. 

II. CHANNEL MODEL AND SLM CONSTRAINTS 

Multimode fibers are waveguides whose cores are large 
enough compared to the wavelength of the light that they 
support the existence of multiple distinct modes propagating 
at different group velocities.  Ideally, these modes are 
orthogonal – in other words, energy launched in only one 
mode should remain in that mode when it exits the fiber.  
However, in all real fibers, these fundamental modes are 
coupled together as they propagate down the fiber due to 
bends and imperfections in the fiber fabrication [8].  
Fortunately, even in the presence of these non-idealities 
which cause mode-mixing, the fiber will still have orthogonal 
principal modes with well-defined group delays [9]. 

In this work, we consider an ideal, weakly guiding step-
index fiber, whose linearly polarized (LP) modes and their 
associated group delays are well-known in the literature [8] –
spatial field patterns of two LP modes are shown in Fig. 2.  
Despite this simplified fiber (most deployed multimode fibers 
have graded-index profiles as well as mode-mixing), the 
optimization framework we consider is applicable to any 
fiber because it only relies on the modes of the fiber being 
orthogonal.  Other optical non-idealities that are usually a 
concern in long-haul single-mode fiber (such as chromatic 
dispersion and polarization mode dispersion) are negligible in 
short multimode fibers, and therefore are not modeled in this 
work.   

 
Fig. 2. Field patterns of two different modes in a 64 µm core 0.2% step-index 
fiber with an 850 nm laser. 

Mathematically, the modes can be represented as a matrix 
(Ψ) where each column of the matrix is a mode sampled in 
the spatial frequency domain.  The SLM settings, a vector in 

spatial frequency1 (x), set the field pattern of the light 
transmitted into the fiber.  Since the modes of the fiber are 
orthogonal, the transmitted light can be decomposed onto the 
basis of the fiber modes by a matrix projection (ΨHx).  While 
this describes the portions of the electric field in each fiber 
mode, the receiver can only detect the field intensity.  
Therefore, the impulse response of the system as a function 
of the SLM settings is 

(t) (t) ,ΨF ΨH H
outI x x=             (1) 

where F(t) is a diagonal matrix containing impulses delayed 
by the propagation delays of the modes.  It is important to 
note that since the SLM works in the electric field domain 
and the receiver detects intensity, the impulse response is a 
quadratic function of the SLM settings.  The impulse 
response of an example fiber with the SLM set such that the 
light is focused at the center of the fiber is shown in Fig. 3. 
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Fig. 3. Example pulse response for a 64 µm core 0.2% step-index fiber with 
an 850 nm laser focused in the center of the fiber. 

Since the SLM is passive in nature, each component of x 
must be a complex number with magnitude less than or equal 
to one.  In addition, most SLMs can affect only the 
magnitude or the phase of the incoming light signal, and 
often have limited precision in their settings.  For example, if 
a Texas Instruments DLP mirror array [10] were used as the 
SLM, the SLM could only be set to either fully reflect the 
light onto the fiber (providing a magnitude of 1) or deflect the 
light away from the fiber (providing a magnitude of 0).  For 
more general magnitude-only SLMs, each component of x 
must be a real number between zero and one.  The constraints 
for phase-only SLMs are that each component of x is a 
complex number whose magnitude must be equal to one. 

III. OPTIMIZATION FRAMEWORK AND ANALYSIS 

With the channel model of the fiber and physical 
constraints of the SLMs in place, we can begin to construct 
the optimization framework.  We first explore the choice of 
objective function, examining both a peak signal-to-
interference ratio function and as well as the minimum 
margin between the two intensity levels.  The dual of the 
optimization problem is then formulated to provide provable 

 
1 The two-dimensional array of pixels is transformed into a column vector to 
form x. The fiber modes are linearized in a similar fashion to construct Ψ. 



 

upper bounds on the achievable performance as well as 
intuition about solutions of the original problem.  

A. Objective Function 

Standard linear communication links are usually optimized 
based on some version of signal-to-interference ratio (SIR) or 
signal-to-interference-and-noise ratio (SINR). In our 
approach, the receiver detects intensity while the SLM acts 
on the electric field; therefore a standard SIR would be a ratio 
of 4th order polynomials, which is a very a difficult function 
to optimize.  An objective function that can be reduced to a 
ratio of quadratic forms is SIRl1, the peak SIR.   

In order to calculate this cost function, only the symbol-
spaced sampled pulse response of the system must be known.  
At a particular symbol rate, this pulse response can be 
calculated by summing together the intensities of the modes 
arriving at the end of the fiber within the same symbol 
interval.  The group of modes (or single mode) which arrive 
together to form the highest intensity sample of the pulse 
response can be selected by an indicator diagonal matrix 
I∆main (2a).  All the remaining modes, which arrive in other 
symbol periods and cause ISI, can be selected by a second 
diagonal matrix I-I∆main (2b). 

ΨI Ψmain H H
out mainI x x∆=           (2a) 

( )Ψ I I ΨH H
out main
ISII x x∆= −          (2b) 

The peak SIR is simply the ratio of main
outI  to out

ISII ; this 
function resembles the standard SIR which can be used to 
minimize the bit error rate.  Without constraints, the 
optimization problem with this objective function is 

.maximize  SIR
( )
ΨI Ψ

Ψ I I Ψ

H H
main

l1 H H
main

x x
x xx

∆

∆

=
−

          (3) 

Even without constraints, this optimization problem is not 
convex.  However, the objective function is a generalized 
Rayleigh quotient, which has a globally optimal solution 
corresponding to the generalized eigenvector with maximal 
generalized eigenvalue [11].  

Unfortunately, the generalized eigenvector solution is not 
very energy efficient once it is scaled to meet the passivity 
constraints of the SLMs, and therefore does not perform very 
well in the presence of additive noise.  In order to overcome 
this drawback, a noise term could be added to the 
denominator of (3), but adding the noise term causes the 
problem to no longer have a guaranteed optimum solution 
(since the Rayleigh quotient form is lost and the solution is 
no longer invariant to scaling).  

An objective function that is proportional to the received 
intensity can be used to find energy-efficient SLM settings.  
Given that optical signals are often transmitted in binary NRZ 
format, we use an objective function that corresponds to the 
minimum distance between the received “0” and “1” 

symbols, dmin.  The unconstrained optimization problem with 
dmin as the objective function becomes 

min
maximize  d ,PHx x

x
=             (4) 

where we have defined (2 ) .P Ψ I I ΨH
main∆= −  

Since the inner matrix P is never negative semidefinite, 
this maximization problem is clearly non-convex, but it does 
have a global solution, as do all unconstrained quadratic 
optimization problems [6].  However, the global solution 
property is once again lost when the passivity constraints of 
the SLMs are included (5); therefore heuristics will need to 
be used to solve this optimization problem.   

maximize

subject to 1, 1, ..., ,

PH

N
k

x x

x k N x C≤ = ∈
                  (5) 

B. Dual Problem Formulation 

In order to guide the development of these heuristics and 
obtain bounds on the achievable dmin, we formulate the dual 
of problem (5).  The first step to construct the dual problem is 
to form the Lagrangian, which for problem (5) is 

( ) TL( ,λ) +diag(λ) λ ,P 1Hx x x= −            (6) 

where λ is the dual variable. 
Before proceeding with the formulation of the dual 

problem, we examine one of the optimality conditions 
implied by the Lagrangian because it leads to an interesting 
insight about optimal SLM settings. 

L( ,λ)
diag( ) 0

λ
1Hx

x x
∂

= − =
∂

           (7) 

Equation (7) implies that each of the components of an 
optimal x will have a magnitude equal to one.  In other words, 
at the optimal setting, the SLM will modify only the phase 
(and not the magnitude) of the light in the spatial frequency 
domain.  Intuitively, this result should not be unexpected 
because dmin is proportional to the magnitude of the input 
signal, and the magnitude of the input signal is maximized 
when the SLM is purely reflective. 

Since an SLM that could modulate both phase and 
magnitude would modify only phase at an optimal setting, the 
optimization problem with only the passivity constraint (5) is 
actually equivalent to an optimization problem with a phase-
only constraint (|xk|=1).  The dual of both of these 
optimization problems is 

Tminimize λ

subject to +diag(λ) 0

λ 0

1

P ≥

≥

            (8) 

This problem is a standard semidefinite program (SDP), 
and can be solved straightforwardly (but with high 
computational intensity) using an interior point method [6].  



 

The optimal value of the objective function in (8) provides an 
upper bound on the achievable minimum distance.  This 
upper bound is a key result of the optimization analysis that 
will be used as a metric in developing efficient heuristics 
presented in the rest of the paper.     

IV. OPTIMIZATION ALGORITHMS 

In order to recover more direct information to assist us in 
finding solutions to the original problem, it is useful to find 
the dual of the dual problem (8), which is the SDP: 

ii

maximize Tr( )

subject to 0

1

PX

X

X

≥

=

            (9) 

Both (8) and (9) are well-known problems because they 
appear as duals of the two-way partitioning problem [6], 
whose cost function is identical in form to that of (5), but 
where the constraints are replaced with binary component-
wise equality constraints (xi

2=1).  In that context, one of the 
interpretations of the dual variable X is that it represents a 
covariance matrix of the original variable x; it provides 
information about a probability distribution that can be used 
to generate potential solutions to the original problem.   

In the two-way partitioning problem, a well-known 
heuristic algorithm involves generating a set of random 
vectors x′ from a multivariate, zero-mean normal distribution 
with covariance X.  Each x′ is converted to a valid solution of 
the problem by taking the sign of each of the individual 
components, and then the solution that achieves the highest 
objective function is chosen. 

Unlike the two-way partitioning problem, the variables in 
(5) are complex-valued, and therefore it is not immediately 
clear how to apply the covariance matrix X to generate 
random complex numbers with unit magnitudes.  We 
therefore describe an extension to the SDP-based heuristic 
algorithm used in the two-way partitioning problem.  This 
heuristic has high computational complexity and assumes 
knowledge of the channel, so following the SDP-based 
heuristic we describe the single coordinate ascent algorithm 
which is well-suited to an adaptive hardware implementation. 

A. SDP-based Heuristic 

In order to extend the two-way partitioning heuristic, we 
first revisit the objective function in (5) by splitting x into its 
real and imaginary components xR and xI. 

( ) ( )P P PH H H
R R R R I II Ix jx x jx x x x x+ + = +        (10) 

As clearly shown by (10), the objective function is 
separable in the real and imaginary components of x, and 
therefore (5) can be rewritten as 

T

2 22

maximize

subject to 1, 1, ..., ,

P 0
0 P

N
k Nk

z z

z z k N z++ ≤ = ∈

 
           (11) 

where zT = [xR
T xI

T].  The dual of (11) is identical to (8) but 
with the positive semidefinite constraint repeated twice.  
Leaving the redundant constraint in the dual of (11) and 
forming the dual once more leads to the covariance matrix 

.
X 0

Z =
0 X
 
  

           (12) 

Clearly, the interpretation of Z is that the original 
covariance matrix X obtained by solving (9) can be used to 
generate a set of pairs of random vectors (xR′ and xI′) which 
are independent, identically distributed.  To create valid 
solutions for (5) from these vectors, each component of the 
vector defined by xR′ + jxI′ is rescaled such that its magnitude 
is equal to one (i.e. the angle information is preserved); to 
complete the heuristic we simply choose the solution that 
achieves the highest dmin. 

As the results in the next section show, this heuristic 
algorithm finds solutions that very nearly achieve the upper 
bound on dmin calculated from solving (8).  However, the 
algorithm involves a high degree of computation (solving an 
SDP and then generating a large number of samples from a 
random distribution) and, in addition, it assumes knowledge 
of the field patterns of the modes of the fiber.   

B. Single Coordinate Ascent 

One of the simplest optimization algorithms (both in terms 
of computational complexity and hardware implementation) 
is single coordinate ascent (SCA) [7].  At each step of the 
SCA algorithm, all of the variables in the problem are fixed 
except for one.  The current variable (which in this case is the 
angle of the kth component of x, θk) is perturbed in the 
positive and negative directions by a small step (∆θ) and the 
objective function is measured at all three possible settings 
(θk, θk+∆θ, and θk-∆θ).  The algorithm then simply picks the 
setting with the highest objective function and moves on to 
the next variable. 

This algorithm can be applied with any initial condition, 
but since the problem is non-convex the algorithm may 
converge to different solutions with different initial settings. 
In particular, the algorithm can be applied to the solution 
generated by the SDP-based heuristic to improve its 
performance even further.  Another initial condition of 
interest for this algorithm is the default setting of the SLMs 
which focuses the light onto the center of the fiber. 

SCA is ideally suited to an adaptive solution because of its 
low complexity.  The hardware need only have the capability 
to measure (or estimate) the objective function dmin at the 
receiver and increment or decrement the variable settings.  
Measurement of dmin can be accomplished by adding to the 
receiver a secondary slicer with an adjustable threshold set by 
a tracking loop (Fig. 4). 

For each new SLM setting, dmin is measured in the 
following manner; first, the tracking algorithm resets the 
threshold of the error sampler to the highest possible level.  
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Fig. 4. Additional error slicer and tracking algorithm hardware in the receiver 
to enable measurement of dmin. 
Each time the error slicer indicates that the input data was 
below its threshold and the data slicer indicates that the input 
data was above its threshold, the tracking algorithm lowers 
err_thresh by a small amount (e.g. by subtracting 1 LSB from 
the control code of the DAC that generates err_thresh).  At 
some point, the algorithm reaches a point where no received 
1’s lie below err_thresh; dmin can then be calculated from 
thresh and err_thresh, as shown in Fig. 42. The hardware can 
detect that it has reached this point by waiting for a period of 
many consecutive bits in which err_thresh was not adjusted 
downwards.  Another option involves simply running the 
tracking algorithm over a fixed number of received bits and 
then estimating dmin from the final err_thresh.   

Clearly, negative values of dmin cannot be correctly 
measured by this algorithm.  If the eye is closed with the 
initial SLM settings, known training patterns (e.g. a single 
pulse response) can be used to simplify the measurement of 
dmin.  SCA can then be applied to open the eye so that dmin can 
be measured from live data.   

Even if the eye is open, the finite window over which dmin 
is measured, additive noise, and quantization in the 
measurement will result in errors in the estimated margin.  In 
order to explore the ideal capabilities of SCA, we will assume 
that these effects are negligible in the rest of this paper. 

V. SIMULATION RESULTS 

In this section we will first provide insight into the 
mechanism by which an SLM compensates for modal 
dispersion.  We will then explore the performance of the 
above algorithms as a function of the system complexity.   

A. Fiber and System Parameters 

To calculate the spatial field patterns of the modes (Ψ) and 
their associated group delays, we assume 1km of weakly 
guiding multimode fiber with a 0.2% step index profile and a 
64 µm core.  The target data rate is 10 Gb/s at a wavelength 
of 850 nm.  

Ignoring the polarization degree of freedom, there are 88 
total modes in this fiber.  As shown in Fig. 5, the differences 
between the group delays of the modes spread over 25 
symbol intervals at 10 Gb/s. 

 
2 This algorithm can be extended to deal with nonlinearities by calculating 
the distance between the minimum high and maximum low levels. 
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Fig. 5. Number of modes per symbol time at 10 Gb/s for a 0.2% step-index 
fiber with 64 µm core and an 850 nm laser.  There are 88 total modes. 

Unless otherwise noted, we will use a phase-only SLM for 
the rest of this paper.  For the purposes of the following 
example, we use a 400-pixel SLM (in a 20×20 array) with 1° 
of phase resolution.   

B. Example Optimization Results 

The first optimization procedure uses only the SDP-based 
heuristic, whereas the second procedure applies SCA to the 
solution generated by the first procedure. The third procedure 
uses SCA starting from an initial SLM setting in which the 
light is focused in the center of the fiber. 

The impacts of the three optimizations on the pulse 
response at 10 Gb/s are shown in Fig. 6.  There are several 
important points to notice from these responses.  First, severe 
ISI is present in the un-optimized pulse response of Fig. 6(a), 
whereas ISI is almost completely absent in all three of the 
optimized pulse responses.  Additionally, all three procedures 
have actually refocused the energy of the transmitted light 
into a useful mode as opposed to simply canceling the ISI.  

The upper bound on dmin is 0.984, and all three procedures 
achieve a value within 7% of this bound, proving that these 
algorithms are all capable of generating extremely good 
solutions.  The difference between the performance achieved 
by SCA alone and the performance achieved by the SDP 
heuristic followed by SCA is negligible.  This is encouraging  
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Fig. 6. Pulse responses for (a) SLM set to focus in the center of the fiber.   
(b) SCA applied to the focused setting. (c) SDP-based heuristic. (d) SCA 
applied to SDP-based heuristic solution. The intensities have been 
normalized to the total intensity present in the original pulse response of (a). 



 

because it means that an adaptive system based on SCA can 
achieve a dmin comparable to that of much more sophisticated 
(and difficult to implement) algorithms.   

  
                     (a)             (b) 

 
                     (c)             (d) 
Fig. 7. Field patterns for (a) SLM set to focus in the center of the fiber.  (b) 
SCA applied to the focused setting. (c) SDP-based heuristic. (d) SCA applied 
to SDP-based heuristic solution. 

The field patterns chosen by the three optimization 
procedures are shown alongside the focused setting in Fig. 7.  
Interestingly, despite the fact that the pulse responses of all 
three optimized settings look very similar, the actual field 
patterns at the input of the fiber are somewhat different.  This 
can be explained by the fact that the algorithms are free to 
choose a linear combination of the modes that arrive within 
the same symbol time, and therefore there can be a high 
degree of flexibility in the actual choice of field pattern. 

C. Performance and System Complexity Tradeoffs 

Using the optimization framework we have developed, we 
proceed to explore the performance of the algorithms as we 
vary the complexity of the system.  The first parameter we 
examine is the number of pixels in the SLM.  The size of the 
SLM array sets the spatial resolution of the field pattern 
imaged onto the input of the fiber – a larger array achieves 
higher resolution.  As shown in Fig. 8, the performance 
returns diminish very quickly past an array of size of roughly 
400 pixels.  Intuitively, this can be explained by the fact that 
once the system has achieved high enough spatial resolution 
that the field pattern is roughly constant over the entire pixel, 
further increases in the resolution do not drastically alter the 
image generated by the SLMs, and therefore the performance 
of the equalization remains roughly constant. 

The other important point to notice from Fig. 8 is that 
across the entire range of array sizes for which SDP-based 
optimizations were performed, SCA alone achieved nearly 
equivalent dmin – the three curves are nearly indistinguishable.  
Since the optimization problem is non-convex, there is no 
guarantee that this phenomenon will hold true for all fibers 
and/or systems, but it is nonetheless encouraging that for all  
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Fig. 8. Performance (dmin) versus number of pixels for an SLM with 1° of 
phase resolution.  

the optimizations we have run, SCA performs extremely well. 
Another parameter of interest is the phase quantization of 

the SLM, since it drives the complexity of the electronics that 
control the pixels in the array.  Having concluded from Fig. 8 
that an array of 400 pixels can achieve performance 
comparable to that of much larger arrays, we show in Fig. 9 
the performance of an array of this size versus the phase 
resolution of the SLM.  While performance generally 
increases with higher resolution, binary phase SLMs achieve 
a dmin within 10% of the dmin achieved with 1° resolution. 
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Fig. 9. Performance (dmin) versus phase resolution for a 400-pixel SLM. 

Based on the curves shown in Figs. 8 and 9, a 20×20 
binary phase SLM appears to be an attractive point in the 
tradeoff space between system complexity and performance.   

VI. MIMO OVER MULTIMODE FIBER 

The orthogonality of the principal modes of a multimode 
fiber can further be exploited to create multiple 
communication channels over a single multimode fiber [12].  
Unlike the single channel system described so far, in order to 
achieve this MIMO system spatial filtering for each channel 
must be performed at both the transmitter (to selectively 
excite the modes assigned to a particular channel) and at the 
receiver (to filter out light from the other channels).  For this 
initial exploration, we will assume that each channel has its 
own transmitter with associated SLM, and that the light from 
the N parallel channels can be combined into the fiber 
without incurring any loss.  Similarly, we assume that the 
demultiplexing of the received light onto the N parallel SLMs 
is lossless.  Finally, we assume that modes have been 
assigned to the channels a priori.  This final assumption 
simplifies the simulations so that the basic characteristics of 
MIMO systems can be explored.  In actual implementations, 



 

the system will need to employ initialization algorithms to 
guarantee that each channel picks a different set of modes. 

The system’s impulse response must be extended to 
include the spatial filtering performed by the receive SLMs of 
each channel.  In addition, light from one channel that is 
unfiltered by the receive SLMs of the other channels will 
cause inter-channel interference (ICI).  Incorporating these 
effects, the impulse response from transmitter j to receiver i is 

(t) (t) ,FH
outij ij ijI m m=           (13) 

where we have defined ( )diag .Ψ ΨH txH rx
i jijm x x= ⋅  

The minimum margin of each channel (dmini) is set by both 
the self-induced ISI and the ICI caused by all of the other 
channels.  For example, in a two-channel MIMO system, 
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There are several different methods to combine the 
margins of each channel to construct a single objective 
function for the optimization.  We will assume that the data 
rate on the N channels are identical and are dictated by the 
achievable rate on the worst channel, and therefore we choose 
min {dmini, i = 1,…,N} as the objective function.   

Using this objective function, SCA was performed on a 
example two-channel system, and the optimized pulse 
responses are shown in Fig. 10.  The optimization was very 
successful in minimizing both ISI and ICI.  The slight loss in 
pulse amplitude as compared to the SISO system is due to the 
addition of the SLMs at the receiver – the MIMO system has 
two cascaded spatial filters (with efficiencies < 1), as 
compared to the single SLM used in the SISO system. 
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Fig. 10. Optimized pulse responses for a two-channel MIMO system at 10 
Gb/s per channel over 1 km of a single multimode fiber. Each channel has a 
20×20 binary phase SLM at both the transmitter and the receiver. 

VI. CONCLUSION 

We have developed an optimization framework for 
analyzing the use of SLMs to equalize modal dispersion in 
communication links on multimode optical fiber.  SLM 
settings which literally refocus the transmitted energy into the 

desired modes can be found using either a sophisticated, 
SDP-based heuristic, or a simple SCA algorithm with nearly 
identical performance.  The dual optimization problem was 
constructed to provide upper bounds against which to 
compare the performance achieved by these algorithms.   

Exploration of the tradeoffs between the complexity of the 
system and the achievable performance indicates that a 400-
pixel SLM with binary phase control performs equalization of 
modal dispersion nearly as effectively as much more 
complicated systems.  In addition, preliminary results show 
that a MIMO system can effectively exploit modal diversity 
to create orthogonal communication channels over a single 
multimode fiber. 

Spatial filtering based on SLMs is a very promising 
approach to greatly increase the data-carrying capability of 
widely installed multimode fibers.  There is still a large 
amount of research to be done in the modeling of multimode 
fiber, in particular the time-varying properties of mode 
mixing and the associated changes in the principle modes.  In 
addition to further exploring this area from a theoretical and 
simulation perspective, we are actively engaged in building a 
hardware implementation of the SLM-based multimode fiber 
communication system.  
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