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Abstract—Typical multi-mode fibers exhibit strong intra-group
mode coupling and weak inter-group mode coupling. Mode
scramblers can be inserted at periodic intervals to enhance
inter-group coupling. The deterministic mode coupling of the
mode scramblers, in concert with the random mode coupling
of the fiber spans, can effect strong random mode coupling
between all modes. This reduces both modal dispersion and
mode-dependent loss, thereby decreasing receiver complexity and
increasing link capacity. In this paper, we analyze the effect of
mode scramblers on end-to-end group-delay and mode-dependent
loss standard deviations in long-haul multi-mode fiber links.
We develop analytical tools in the generalized Jones and Stokes
representations. We propose design criteria for mode scramblers
that ensure strong end-to-end coupling: the mode-group-averaged
power coupling matrix should be primitive and its non-dominant
eigenvalues should be near zero. We argue that when the mode
scramblers satisfy these criteria, the probability distribution of
the system transfer matrix asymptotically approaches that of a
system with strong random mode coupling between all modes.
Consequently, group-delay and mode-dependent loss standard
deviations become sufficient statistics of the eigenvalues of the
group-delay operator and the modal gains operator, respectively.
We also show that under certain conditions on the uncoupled
group delays, it is possible to design self-compensating mode
scramblers to reduce group delay accumulation below that of
standard strong random coupling.

Index Terms—Mode Scramblers, Long-Haul Multi-Mode Fiber
Systems, Mode-Division Multiplexing, Group-Delay Spread,
Mode-Dependent Loss, Strong Mode Coupling

I. INTRODUCTION

SPACE-DIVISION multiplexing (SDM) can increase ca-
pacity, integration, and power efficiency in long-haul

optical coherent communication systems [1]–[3]. SDM can
be implemented using parallel single-mode fibers (SMFs),
uncoupled-core or coupled-core multi-core fibers (MCFs), or
multi-mode fibers (MMFs). While each of these options has
its pros and cons, mode-division multiplexing (MDM) in
MMFs is considered attractive in achieving the highest level of
integration [4], for example, by enabling amplification using
fewer pump modes than signal modes [5].

Long-haul MDM systems in MMFs need strong mode
coupling to manage modal dispersion and mode-dependent
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gain and loss (collectively referred to as MDL) [6]. Strong
random coupling reduces the overall MDL standard deviation
(STD), thereby increasing the average capacity and reducing
the outage probability, and reduces the group-delay (GD)
STD (also known as root-mean-squared GD spread), thereby
reducing the digital signal processing (DSP) complexity at
the receiver. Systems with strong random coupling exhibit
GD and MDL STDs proportional to the square root of the
length of propagation. Additionally, strong mode coupling
improves frequency diversity, which further reduces the outage
probability [7], [8].

Graded-index MMFs are often proposed for long-haul
MDM links, owing to their relatively low uncoupled GD STD
[9], [10]. In these fibers, the spatial and polarization modes
form mode groups. The propagation constants of modes in the
same mode group are nearly equal and those in different mode
groups are significantly different. Random perturbations in
these fibers cause strong intra-group mode coupling and weak
inter-group mode coupling [11]. One way of improving inter-
group coupling is to periodically insert mode scramblers along
the link [12]. Mode scrambling can be achieved in several
ways, for example, using offset fiber launches [13], distributed
multiple point-loads [14], long-period fiber Bragg gratings
(LPFGs) [15], [16], multi-plane light converters (MPLCs) [17],
and using mode demultiplexer-multiplexer combinations [18]–
[20]. Mode scramblers must have low intrinsic MDL STD,
because signals in long-haul links may pass through hundreds
of them. The mode scramblers with low MDL tend to be
highly engineered and have deterministic transfer functions
[16]. The analysis in this paper focuses on deterministic mode
scramblers, such as those based on LPFGs.

Previous studies to design and analyze mode scramblers
have employed heuristic objectives based on off-diagonal
entries of the coupling matrix [16]. However, these criteria
are restrictive, and evaluating mode scrambler performance
requires brute-force multi-section simulations of the end-to-
end system to quantify GD spread and overall MDL. These
multi-section simulations can significantly slow down iterative
design procedures employing performance objectives of end-
to-end GD or MDL STD. There is a need for analytical tools
that impose less restrictive design criteria and enable faster
evaluation of performance objectives.

In this work, we study systems that interleave deterministic
mode scramblers with GI-MMFs from first principles and
develop analytical tools in the generalized Jones and the gener-
alized Stokes representations. We derive analytical expressions
for end-to-end GD STD and MDL STD for such systems,
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Figure 1. Diagram of long-haul MDM transmission link over K spans of
propagation with periodic amplification and mode scrambling. MS: mode
scrambler.

pessimistically assuming no random inter-group coupling in
the fiber. We find that a mode-group power coupling matrix
is a sufficient description of the mode scrambling induced by
a mode scrambler. In particular, the structure and eigenvalues
of the power coupling matrix emerge as the design criteria
relevant for achieving strong coupling. We also provide a
rigorous analysis to incorporate the effects of random inter-
group coupling in the fiber and provide closed-form expres-
sions for the GD STD. We present simulations of systems with
6 spatial modes (12 spatial and polarization modes) over 100
spans of propagation, representative of long-haul and ultra-
long-haul links. We argue that when the mode scramblers
satisfy the aforementioned design criteria, the combination
of deterministic mode scrambling and strong random intra-
group coupling is asymptotically equivalent to strong random
coupling between all modes. Consequently, the GD and MDL
STDs become sufficient statistics of the group-delay operator
and the modal gains operator, respectively, as the number of
spans growns large. We also show that the design space of
mode scramblers includes a self-compensating regime wherein
the GD STD periodically alternates between increasing and de-
creasing trends, similar to systems with group-delay compen-
sating fibers. Finally, our GD STD formulae are particularly
useful in designing and optimizing mode scrambler devices,
and can dramatically speed up evaluations of this objective in
iterative design procedures.

The remainder of the paper is organized as follows: Sec-
tion II presents the study of GD and MDL STDs in the
presence of mode scramblers in MDM-MMF systems using
the generalized Jones representation under the assumption of
strong intra-group coupling and no inter-group coupling in the
fiber. Subsections II-A and II-B provide analytical expressions
for GD STD and MDL STD, respectively. Subsection II-C
includes simulation results that verify the analytical expres-
sions. Section III provides design criteria for a strong mode
scrambler. Section IV presents the study of GD STD in
the presence of non-zero inter-group coupling in the MMF
using the generalized Stokes representation. Section V presents
the equivalence between mode-scrambler-aided coupling com-
bined with strong random intra-group coupling and strong ran-
dom coupling between all modes. Section VI discusses some
aspects of long-haul system design with mode scramblers.
Section VII presents the conclusion.

An extended version of this paper [21] includes eight
appendices providing derivations of key analytical results.

II. GD SPREAD AND MDL IN THE PRESENCE OF

MODE SCRAMBLERS

A long-haul MDM transmission system using MMF with
periodic amplification and mode scrambling is shown in Fig. 1.
We define a span as a section of MMF between successive
mode scramblers. Each span is of length LS and each span
has identical statistical properties. In the generalized Jones
representation, X(in)(ω) and Y(out)(ω) denote the complex
baseband input and output electric field vectors, respectively,
in D spatial and polarization modes at an angular frequency ω.
The matrices M1(ω),M2(ω), . . . ,MK(ω) denote the D×D
frequency-dependent random transfer matrices for the MMF
spans including the amplifiers, and R denotes the D × D
frequency-independent deterministic transfer matrix of each of
the mode scramblers. The D modes are grouped into Ng mode
groups; modes in a mode group have nearly equal propagation
constants. The set of modes in the ith mode group is denoted
by Mi and the degeneracy is given by di = |Mi|, where |·|
represents the cardinality. The D × D transfer matrix of the
system can be written as a product of the transfer matrices:

Mtot(ω) = MK(ω)RMK−1(ω)R . . .M2(ω)RM1(ω).
(S1)

In the remainder of this paper, the ω dependence of the
transfer matrices will not be explicitly shown. For simplicity in
analysis, we assume the mode-averaged gain of each amplifier
perfectly compensates for the attenuation in the preceding
MMF span, and any MDL caused by fiber splices, amplifiers,
and mode scramblers is captured in R. Therefore, we can
model M1(ω),M2(ω), . . . ,MK(ω) by unitary matrices.

In typical GI-MMFs, strong intra-group coupling occurs
over length scales of ∼1-500 m [22], [23]. During fiber
manufacturing, processes such as spinning can also increase
intra-group coupling strength. On the other hand, inter-group
coupling is weak and typically occurs over larger length
scales. In published experiments, inter-group coupling has
been observed over a wide range of lengths. Some report
significant inter-group coupling after a few tens of kilometers
[9], [10], [24], [25], whereas others report weak inter-group
coupling even after ∼ 100 km of propagation [26].

In this section, we assume strong intra-group and no
inter-group coupling in the fiber to obtain conservative es-
timates of how the GD and MDL STDs depend on the
mode scrambler transfer matrix R. Therefore, the matrices
M1(ω),M2(ω), . . . ,MK(ω) can be modeled by block unitary
matrices [6]. The assumption of no inter-group coupling yields
robust design criteria for mode scramblers in Section III. Later,
in Section IV, we discuss how inter-group coupling in the
MMF affects the GD STD.

A. Analysis of GD Spread in the Generalized Jones Space

In this subsection, we provide an analysis of GD STD
for the system shown in Fig. 1 using the generalized Jones
representation. The group-delay operator (GDO) of the end-
to-end link is defined as [27]:

Gtot = − ȷM−1
tot
∂Mtot

∂ω
, (S2)
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where ȷ =
√
−1. The GDs τtot are the eigenvalues of the GDO.

Since we are only interested in the GD STD, we assume that
the eigenvalues sum to zero

∑D
l=1 τtot,l = 0. The GD STD can

be written as

σGD(K) =

√√√√E
{
∥τtot∥2

}
D

=

√
E
{
tr
(
GH

totGtot
)}

D
,

(S3)

where E {·} denotes the expected value, ∥·∥ represents the
Eulidean or l2-norm, tr (·) denotes the matrix trace operation,
and (·)H denotes the conjugate transpose.

We can derive an analytical expression for E
{
∥τtot∥2

}
as

a function of the number of spans K:

E
{
∥τtot∥2

}
(K) ≈ K

Ng∑
i=1

σ2
intra,i +KτT

0 Dτ 0

+ τT
0

(
2

K−1∑
k=1

(K − k)D
(
D−1P

)k)
τ 0,

(S4)

where τ0,i = LS

∑
l∈Mi

β1,l/di, i = 1, 2, . . . Ng is the
average GD of the ith mode group over a span of propagation,
β1,l is the uncoupled GD per unit length of the lth mode such
that

∑D
l=1 β1,l = 0, σintra,i ∝

√
LSLintra,i is the intra-group

GD STD of the ith mode group with intra-group coupling
length Lintra,i over a span of propagation, D is the Ng ×Ng

diagonal matrix of mode group degeneracy, D[i, i] = di, and
P is the Ng ×Ng mode-group power coupling matrix of the
mode scrambler. The i, j element of P is defined as the power
transferred by the mode scrambler from mode group j to mode
group i:

P [i, j] =
∑
l∈Mi

∑
m∈Mj

|R[l,m]|2. (S5)

The diagonal elements of P indicate the power retained
by each mode group after transmission through the mode
scrambler. In the case without mode scramblers, R and P
become diagonal matrices.

The analytical expression in (S4) can be derived by ex-
panding (S2) using the definition of Mtot in (S1) and using
results from random matrix theory. The derivation assumes
MDL is negligible, in which case, R and Mtot are unitary.
This approximation is valid when the overall MDL is low. A
detailed derivation is provided in [21, Appendix B].

The expression (S4) for GD STD indirectly depends on the
mode scrambler transfer matrix R through the power cou-
pling matrix P . Equation (S4) simplifies the expression (S3)
containing D ×D-dimensional matrices to a sum containing
real-valued scalars, Ng-dimensional vectors, and Ng × Ng-
dimensional matrices. The first two terms are proportional to
K and are independent of the mode scrambler. The first term
is the intra-group coupling term. The second term is the sum
of the squares of the average delays of the mode groups. The
rest of the terms are dependent on the mode scrambler and
form an arithmetico-geometric progression with ratio D−1P .

In the absence of a mode scrambler, R is a diagonal matrix
and differs from the D × D identity matrix owing to MDL

from the amplifier and from splicing. As a result, D−1P is
diagonal and close to the Ng×Ng identity matrix, and we get

E
{
∥τtot∥2

}
(K) ≈ K

Ng∑
i=1

σ2
intra,i +KτT

0 Dτ 0

+ 2

K−1∑
k=1

(K − k) τT
0 Dτ 0

= K

Ng∑
i=1

σ2
intra,i +K2τT

0 Dτ 0,

which is proportional to K2 for large K. Consequently, σGD is
proportional to K. In the presence of a strong mode scrambler,
we expect the sum of the arithmetico-geometric progression
to be much smaller than the first two terms. Therefore, we can
write E

{
∥τtot∥2

}
(K) ≈ K

∑Ng

i=1 σ
2
intra,i +KτT

0 Dτ 0, which
is proportional to K. Consequently, σGD is proportional to√
K.

B. Analysis of MDL in the Generalized Jones Space

In this subsection, we provide an analysis of MDL STD
for the system shown in Fig. 1 using the generalized Jones
representation. The overall MDL of the system is described
by the eigenvalues of the modal gain operator (MGO) defined
as [28]:

Ftot = MtotM
H
tot. (S6)

The MGO is Hermitian-symmetric and can be written as
Ftot = VΛ

(g)
tot V

H , where Λ
(g)
tot = diag {egtot,1 , . . . , egtot,D}

is a diagonal matrix of positive eigenvalues representing the
optical power gains and V is a unitary output beam-forming
matrix [28]. Without loss of generality, the real-valued log-
arithmic power gains gtot = [gtot,1, . . . , gtot,D]T sum to zero,
gtot,1 + · · ·+ gtot,D = 0. The standard deviation of the overall
MDL σMDL is a useful quantity for characterizing MDL [28]
and is given by

σMDL(K) =

√
1

D
E
{
∥gtot∥2

}
. (S7)

σMDL and gtot are measured in log-power-gain units and can
be converted to decibels by multiplying by γ = 10/ ln 10 ≈
4.34, i.e., σMDL(dB) = γσMDL(log power gain). E

{
∥gtot∥2

}
can be written in terms of Mtot as

E
{
∥gtot∥2

}
(K) = E

{
tr
((

logMtotM
H
tot

)2)}
. (S8)

In practical systems, wherein the overall MDL is low, the
logarithm can be approximated by the first-order term. Under
this approximation, we can derive an analytical expression for
E
{
∥gtot∥2

}
(K):

E
{
∥gtot∥2

}
(K) ≈ 2

(
dT
(
D−1P

)K−1
1Ng
−D

)
, (S9)

where d is the column vector of mode-group degeneracies, and
1Ng

is the all-ones column vector of dimension Ng . Similar
to the expression for GD STD, (S9) is also an Ng × Ng-
dimensional expression and depends on the mode scrambler
transfer matrix R indirectly through the power coupling matrix
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Table I
SIMULATION PARAMETERS

Parameter Symbol Value

Number of spatial and
polarization modes

D 12

Number of mode groups Ng 3
Mode group degeneracy d [2, 4, 6]T

Number of spans K 100

Uncoupled GDs per unit
length

β1 [0.149, 0.149,
0.042, 0.042,
0.042, 0.042,
−0.080,−0.080,
−0.076,−0.076,
−0.076,−0.076]T

ps/km
Span length LS 50 km
Mode-averaged GDs over
one span

τ0 [25.2, 7.05, −13.1]T ns

Number of sections per
span in the multi-section
model

N 50

Number of fiber
realizations

10,000

Per-span MDL STD σMDL,0 0.2 dB

P . A detailed derivation of (S9) is provided in [21, Appendix
C].

C. Multi-Section Simulations

In this subsection, we verify the analytical expressions for
GD and MDL STDs in Sections II-A and II-B through multi-
section simulations similar to those discussed in [6], [29].
The simulation parameters are provided in Table I. The mode
indexing follows decreasing order of propagation constants:
[{LP01,x, LP01,y}, {LP11a,x, LP11a,y, LP11b,x, LP11b,y},
{LP02,x, LP02,y, LP21a,x, LP21a,y, LP21b,x, LP21b,y}]. Nu-
merous fibers are generated using the parameters provided in
Table I. Each of the K spans is modeled as a concatenation of
N = 50 smaller sections with random block unitary coupling
matrices to simulate strong intra-group coupling and no inter-
group coupling. For k = 1, 2, . . . ,K, we have

Mk = Tk,N+1ΛkTk,N . . .Tk,2ΛkTk,1,

where Λk is a frequency-dependent diagonal matrix given by

Λk = diag{e(ȷωβ1,1LS/N), . . . , e(ȷωβ1,DLS/N)},

and Tk,1, . . . ,Tk,N+1 are frequency-independent and inde-
pendent and identically distributed (IID) random block unitary
coupling matrices. Each of their block-diagonal components is
independently distributed according to the Haar measure.

To verify the GD and MDL STD formulae, we compare
the GD spread and MDL performance in three scrambling
scenarios.

1) No mode scrambling: In this case, the mode scram-
bler transfer matrix is diagonal, R0 = Λ

(g)
0 , where

Λ
(g)
0 = diag

{
eg0,1/2, . . . , eg0,D/2

}
is the diagonal matrix

of optical field gains, such that g0,1 + · · ·+ g0,D = 0.

2) Moderate mode scrambling: In this case, we generate a
D × D unitary matrix V that is almost diagonal and
incorporate MDL, R1 = V0.5Λ

(g)
0 V0.5.

3) Strong mode scrambling: Intuitively, any mode scrambler
with a dense transfer matrix is a suitable candidate. Thus,
we pick the normalized DFT matrix1 WD of size D×D
and incorporate MDL, R2 = W0.5

D Λ
(g)
0 W0.5

D .

In all three cases, g0 is a real-valued vector chosen such that
g0,1+ · · ·+g0,D = 0 and the per-span MDL STD, γσMDL,0 =

γ

√
tr
(
(logRRH)

2
)
/D = 0.2 dB. It is to be noted that the

sources of MDL, namely, mode scrambler devices, amplifiers,
and fiber slices, are assumed to be lumped at the end of a span.
Amplifier and fiber splice transfer matrices can be modeled
by appropriate non-unitary block-diagonal matrices. Owing to
the assumption of strong intra-group coupling, this modeling
is redundant. We have verified through simulations that in the
absence of mode scramblers, the GD and MDL STDs caused
by such devices are the same as those obtained with a diagonal
transfer matrix R0 when the per-span MDL STD is scaled
appropriately. The power coupling matrices P0, P1 and P2

corresponding to R0, R1 and R2, respectively, are shown in
Fig. 2a.

For the three scrambling scenarios, the GDO in (S2) and
the MGO in (S6) are computed after every fiber section and
for each of the fiber realizations. The eigenvalues are then
extracted to obtain numerical estimates of the GD and MDL
STDs. Analytical estimates of GD STD (S3) and MDL STD
(S7) are computed after every span of propagation.

Fig. 2b shows the normalized GD STD σGD(K)/σGD(1)
plotted as a function of the number of spans K. As indicated
by the slope of the log-log plot, in the case of no mode
scrambling, the GD STD increases linearly with the number
of spans. In the case of strong mode scrambling, the GD STD
increases with the square root of the number of spans. These
observations are consistent with the behavior of GD STD in
weak and strong random coupling regimes, respectively. In all
cases with low overall MDL, the estimates from the analytical
expression in (S3) closely match the numerical estimates from
the simulation. The discrepancy between the estimates for
large K in the moderately scrambled scenario can be attributed
to a significant overall MDL, so the assumption that Mtot is
unitary does not hold.

Fig. 2c shows the normalized MDL STD σMDL(K)/σMDL,0

plotted as a function of the number of spans K.

σMDL,0 =

√
tr
(
(logRRH)

2
)
/D is the per-span MDL

STD. The step-like pattern of the multi-section simulations
results from the MDL sources being localized at the ends
of the spans, unlike modal dispersion, which is distributed.
Overall, in the case of no mode scrambling, the MDL STD
increases linearly with the number of spans. In the case of
strong mode scrambling, the MDL STD increases with the
square root of the number of spans. These observations are
consistent with the behavior of the MDL STD in the weak and

1The l,m element of the DFT matrix is WD[l,m] = (1/
√
D) ∗

exp (2πȷ(l − 1)(m− 1)/D).
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Figure 2. Simulations of three mode scrambling scenarios. (a) Power coupling matrices; (b) GD STD as a function of the number of spans for three scrambling
scenarios. The solid lines correspond to numerical estimates from multi-section simulations and the x-markers correspond to analytical estimates from the
formula (S3). The GD STD σGD(K) is normalized by the one-span GD STD σGD(1); (c) MDL STD as a function of the number of spans for three
scrambling scenarios. The solid lines correspond to numerical estimates from multi-section simulations and the x-markers correspond to analytical estimates
from the formula in (S7). The MDL STD σMDL(K) is normalized by the per-span MDL STD σMDL,0.

strong random coupling regimes, respectively, in links with
low overall MDL. In all cases with low overall MDL, the
estimates from the analytical expression (S7) closely match
the numerical estimates from the simulation. The difference
between the estimates for large K in the case with no mode
scrambling can be attributed to large overall MDL (> 13 dB),
where the first-order approximation of the logarithm in (S8)
is not accurate.

While we show the comparison of simulation and analytical
results for only one fiber type, we have verified that the
formulae are applicable to fibers with different numbers of
modes or mode groups as long as they show strong intra-group
coupling and weak inter-group coupling.

III. DESIGN CRITERIA FOR A STRONG MODE SCRAMBLER

In this section, we derive sufficient conditions on R to
obtain GD and MDL STDs similar to those of systems with
strong random mode coupling, wherein the STDs are propor-
tional to the square root of the number of spans [6]. Owing to
our pessimistic assumption of no inter-group coupling in the
MMFs, the estimates of GD and MDL STDs obtained here
are typically higher than in practical scenarios with non-zero
inter-group coupling in the MMFs. In view of the conservative
assumption made, the obtained design criteria are robust.

As the closed-form expressions of GD STD (S4) and MDL
STD (S7) discussed in Section II depend on higher powers of
D−1P , we are interested in the spectral properties of D−1P
and the behavior of

(
D−1P

)k
as k → ∞. In this regard,

the Perron-Frobenius theory for non-negative matrices [30] is
quite useful.

Properties of D−1P
Consider the eigenvalue decomposition D−1P = UΛU−1,

where Λ = diag
{
λ1, . . . , λNg

}
is the diagonal matrix of

eigenvalues and U = [u1, . . . ,uNg
] is the matrix of right

eigenvectors. Without loss of generality, |λ1| ≥ |λ2| ≥ · · · ≥

|λNg
|. The spectral radius ρ of D−1P is defined as the

maximum absolute value of the eigenvalues, ρ(D−1P) = |λ1|.
The following are the properties of D−1P :

1) D−1P is a non-negative matrix, as is evident from
the definition of P in (S5). This means that the dom-
inant eigenvalue is equal to the spectral radius; λ1 =
ρ(D−1P).

2) If the mode scrambler is power conserving, i.e., R is
unitary, then:

a) D−1P is a right stochastic matrix, defined as a non-
negative square matrix, with each row summing to 1.
PD−1 is a left stochastic matrix,defined as a non-
negative square matrix, with each column summing to
1.

b) 1Ng
is a right eigenvector of D−1P with eigenvalue

λ1 = 1. dT is the corresponding left eigenvector.

D−1P1Ng = 1Ng

dTD−1P = dT .

Similarly, 1T
Ng

is a left eigenvector of PD−1 with
eigenvalue λ1 = 1. d is the corresponding right
eigenvector:

1T
Ng

PD−1 = 1T
Ng

PD−1d = d.

c) λ1 = 1 is also the dominant eigenvalue of D−1P . The
spectral radius, ρ(D−1P) is therefore also equal to 1.

Design Criteria for D−1P
A practical mode scrambler device is not power-conserving

and will exhibit MDL. However, a well-designed mode scram-
bler should have low intrinsic MDL. Hence, the dominant
eigenvalue of D−1P will be close to 1. The conditions on
D−1P for a mode scrambler such that the GD and MDL
STDs are proportional to the square root of K are:
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1) D−1P is a primitive matrix.
A matrix B ∈ Cn×n is said to be irreducible if and
only if for any two distinct indices 1 ≤ i, j ≤ n,
there is a sequence of nonzero elements of B of the
form {B[i, i1],B[i1, i2], . . . ,B[im, j]}. B is said to be
primitive if it has real non-negative entries and there
exists a positive integer k for which every entry in Bk

is positive. A primitive matrix is a special case of a non-
negative irreducible matrix such that only one eigenvalue
has an absolute value equal to its spectral radius. It should
be noted that:

P is primitive⇐⇒ D−1P is primitive.

2) The non-dominant eigenvalues of D−1P should be close
to zero.

The conditions can be understood as follows. In the first
condition, the power coupling matrix implies all mode groups
interact with each other in one or more passes through the
mode scrambler. For example, in the simulations presented in
Subsection II-C, P0 is a reducible matrix but P1 and P2 are
irreducible matrices. As a result, the GD STD and the MDL
STD corresponding to P0 are higher than those corresponding
to P1 and P2.

Reducibility is a fundamental issue in the problem we are
trying to solve. In the simulations in Subsection II-C, weak
inter-group coupling in the fiber spans leads to a reducible
representation of the GDO and the MGO; each mode group
can be considered an independent subsystem, and the mode-
group-averaged delays and gains would drift apart as the
number of spans increases. As a result, the D × D GDO
and MGO lead to expressions for the GD and MDL STDs
involving Ng × Ng matrices. In the case of strong random
coupling between all modes, the expressions could have been
simplified to use 1× 1 scalar representations.
(D−1P)k can be expanded as λk1u1ú

T
1 +· · ·+λkNg

uNg ú
T
Ng

,
where úT

1 , . . . , ú
T
Ng

are the rows of U−1. If D−1P is primi-
tive, then (D−1P)k tends to the rank-one matrix λK1 u1ú

T
1 as

k tends to infinity. Therefore, the contribution from the terms
with (D−1P)k reduces as k increases.

The second condition is related to the convergence rate.
If the non-dominant eigenvalues are close to zero, then
(D−1P)k ≈ λK1 u1ú

T
1 is valid even for smaller values of

k. The non-dominant eigenvalues of D−1P2 are smaller in
magnitude than those of D−1P1. Hence, the GD and MDL
STDs corresponding to P1 are higher than those of P2.

GD STD and MDL STD for a Strong Mode Scrambler

We can show that GD and MDL STDs are proportional to√
K when D−1P satisfies the above-mentioned conditions.

In the low-MDL regime, λ1 ≈ 1,u1 ≈ 1Ng
, ú1 ≈ d/D. If

D−1P is primitive with small non-dominant eigenvalues,

(D−1P)k ≈ λk1u1ú
T
1 ≈

λk1
D

1Ngd
T .

Figure 3. Non-dominant eigenvalues of D−1P for various P and D =
diag {2, 4, 6}. Each circle represents a different P of size 3 × 3 from the
set S such that D−1P is right-stochastic and PD−1 is left-stochastic. The
darkened circles represent P matrices from the set of vertices V(S) of the
convex hull S. The color indicates the GD STD after K = 100 spans of
propagation normalized to σGD(1). The τ0 parameter is taken from Table I.

From (S4) we obtain

E
{
∥τtot∥2

}
(K) ≈ K

Ng∑
i=1

σ2
intra,i +KτT

0 Dτ 0

+
1

D
τT
0

(
2

K−1∑
k=1

(K − k)λk11Ng
dT

)
τ 0.

Noting that dT τ 0 =
∑D

l=1 β1,l = 0, we get

E
{
∥τtot∥2

}
(K) ≈ K

Ng∑
i=1

σ2
intra,i +KτT

0 Dτ 0, (S10)

which is proportional to K. Therefore, σGD is proportional to√
K. Similarly, (S9) becomes

E
{
∥gtot∥2

}
(K) ≈ 2

(
1

D
λK−1
1 dT1Ng

dT1Ng
−D

)
= 2D

(
λK−1
1 − 1

)
≈ 2D (K − 1) (λ1 − 1) ,

(S11)

which is proportional to K. Therefore, σMDL is proportional
to
√
K.

Eigenvalue Space of D−1P
Fig. 3 shows the dependence of the GD STD on the

eigenvalues of D−1P for Ng = 3, d = [2, 4, 6]T , and
negligible MDL. The other simulation parameters have been
taken from Table I. We generate numerous P matrices such
that D−1P is right stochastic and PD−1 is left stochastic,
evaluate the formula in (S4) at K = 100, and study the
dependence of the normalized GD STD on the eigenvalues
of D−1P . The set of all such matrices

S =

{
P
∣∣∣∣P ∈ RNg×Ng ,P > 0,

D−1P1Ng
= 1Ng

,1T
Ng

PD−1 = 1T
Ng

}
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forms a convex hull. V(S) denotes the vertices of the convex
hull. The eigenvalues of the generated D−1P are of the form
[λ1 = 1, λ2, λ3] such that the non-dominant eigenvalues λ2
and λ3 are either complex conjugates of one another or both
real. Fig. 3 is a scatter plot of λ2 and λ3. Each solid circle
represents a P from S and the color of the circle indicates
the normalized GD STD σGD(K = 100)/σGD(1).

The figure shows that the blue region represents strong
scrambling with normalized GD STD close to

√
K = 10. In

this region, λ2 and λ3 are close to zero and the corresponding
D−1P matrices are dense and irreducible, making them suit-
able for scrambling. An example would be the all-ones matrix
with the eigenvalues λ1 = 1, λ2 = 0, and λ3 = 0. On the other
hand, the gray region represents weak scrambling with normal-
ized GD STD close to K = 100. In this region, λ2 and/or λ3
are close to 1 and the corresponding D−1P matrices are not
sufficiently dense and are not suitable for scrambling. We also
observe a cyan region around (λ2, λ3) = (−1, 0) that exhibits
normalized GD STD values less than

√
K = 10. This region

corresponds to special P matrices that satisfy τT
0 Pτ 0 < 0,

or in other words, Pτ 0 is anti-correlated with τ 0. This anti-
correlation causes the arithmetico-geometric progression terms
in (S4) to alternate in sign. These mode scramblers are “self-
compensating”, and are discussed in Section VI-C.

IV. EFFECT OF INTER-GROUP COUPLING ON GD STD

In Section II, the inter-group coupling length was assumed
to be infinite to obtain a closed-form expression of GD
STD (S4) in the generalized Jones representation. While this
assumption yields pessimistic estimates of GD STD and robust
design criteria, it is important to quantify the impact of finite
inter-group coupling that occurs in physical MMFs. Hence, in
this section, we remove this assumption and show that we can
obtain a similar closed-form expression incorporating a finite
inter-group coupling length for the case of D = 12 modes and
Ng = 3 mode groups. The mathematical framework of the
generalized Stokes space is preferred here as it conveniently
incorporates random distributed coupling between any pair
of modes, making it suitable for the analytical treatment of
accumulated GD STD.

Analysis in the generalized Stokes space involves repre-
senting the D ×D GDO in the basis of D2 − 1 generalized
Pauli matrices [31], [32]. This leads to stochastic differential
equations governing the evolution of the (D2 − 1)× 1 modal
dispersion vector in that basis. Subsequently, the expected
modal dispersion vector and GD STD can be described by
deterministic ordinary differential equations (ODEs). Although
these equations contain (D2 − 1)-dimensional vectors and
matrices, the GD STD can be well approximated by equations
containing only (D/2 − 1)-dimensional vectors and matrices
by assuming that polarization mode dispersion is negligible
and that all mode coupling interactions are captured by ap-
propriately chosen inter- and intra-group coupling lengths.
Detailed analysis is presented in [21, Appendix D] and the
closed-form expression for GD STD obtained from this anal-
ysis is similar in structure to the one derived in Section II-A.
This enables us to obtain simple correction factors to include
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Figure 4. GD STD as a function of the number of spans for various
inter-group coupling lengths and two scrambling scenarios. The solid lines
correspond to numerical estimates from multi-section simulations, the dotted
lines correspond to the numerical evaluation of the two ODEs [21, eq. S29]
and [21, eq. S30] from the Stokes analysis, the dashed lines correspond to
the analytical formula from the Stokes analysis [21, eq. S41], and the crosses
correspond to the analytical formula from the Jones analysis with corrections
for a finite inter-group coupling length (S12). The GD STD σGD(K) is
normalized by the one-span GD STD σGD(1).

the effect of inter-group coupling in (S4). We verify all the
resulting expressions using numerical modeling.

From the generalized Stokes analysis, we include simple
correction factors in (S4) to capture finite inter-group coupling
effects:

E
{
∥τtot∥2

}
(K)

≈ K
Ng∑
i=1

σ2
intra,i +K

2ζ2 (LS , Linter/2)

L2
S

τT
0 Dτ 0

+ τT
0

(
2

K−1∑
k=1

(K − k)D
(
D−1P

)k
e

(
− 2(k−1)LS

Linter

))
τ 0

×
(
ζ1 (LS , Linter/2)

LS

)2

,

(S12)

where Linter is the inter-group coupling length and

ζ1 (z, L) = L
(
1− exp

(
− z
L

))
,

ζ2 (z, L) = Lz − L2
(
1− exp

(
− z
L

))
.

Fig. 4 shows the normalized GD STD σGD(K)/σGD(1)
plotted as a function of the number of spans K for Linter ∈
{2LS , 20LS , 200LS}. We consider power coupling matrices
P0 and P2 corresponding to the cases with no scrambling and
strong scrambling, respectively, as in Section II-C. To isolate
the effects of inter-group coupling, we consider no MDL in
the mode scrambler transfer matrices. The plot compares the
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GD STDs obtained by four methods: the multi-section model,
numerical evaluation of the two ODEs [21, eq. S29] and [21,
eq. S30], and the analytical estimates from the Stokes formula
[21, eq. S41] and from the Jones formula with corrections
for finite inter-group coupling length (S12). We see good
agreement between the analytical formulae and the estimates
from numerical simulation.

V. EQUIVALENCE TO STRONG RANDOM COUPLING

In deriving the conditions for a strong mode scrambler
in Section III, we assumed that the mode scramblers with
deterministic transfer matrices are the only source of inter-
group coupling and that the fiber sections are a source of
random intra-group coupling. We showed that such a design
can replicate the effect of strong random coupling between
all modes by analyzing GD and MDL STDs. The question
of whether GD and MDL STDs expressions in Section II are
definitive indicators of system performance is yet unanswered
in this paper. However, as a result of the Central Limit
Theorem (CLT), by combining strong deterministic mode
scrambling with strong intra-group coupling, we expect the
probability distributions of modal delays and modal gains
to approach those in systems with strong random coupling
between all modes.

In this section, we (i) demonstrate close agreement between
the tail probabilities of the peak-to-peak GD spread and the
cumulative distribution function (CDF) of the capacity of two
systems: one with strong random coupling between all modes
and the other with mode-scrambler-aided coupling satisfying
the design criteria in Section III, and (ii) discuss the asymptotic
convergence of the distributions of the system transfer matrices
in both cases.

A. Group-Delay Tail Probabilities and Distribution of
Capacity

In terms of system complexity and performance, two dis-
tributions are particularly useful, namely, the tail probabilities
of the peak-to-peak GD spread and the cumulative distribution
function (CDF) of the capacity [33]. The DSP complexity of
the receiver equalizers depends on the statistics of the peak-
to-peak GD spread. The average and outage capacities can
be computed from the capacity distribution, which depends
on the distribution of modal power gains. In the presence of
strong random coupling between all modes, the distributions
of the group delays and the modal gains are well known, and
the GD STD and the MDL STD fully describe the respective
distributions [6]. Moreover, the peak-to-peak GD spread and
the GD STD are equivalent metrics. Using multi-section
simulations, we verify here that these distributions are similar
for both strong random coupling and strong deterministic
mode scrambling with strong intra-group coupling, thereby
validating the applicability of the formulae in Section II.

Fig. 5 shows the complementary CDF of the normalized
peak-to-peak GD spread after K = 100 spans of propagation
for mode-scrambler-aided coupling and strong random cou-
pling. The figure highlights the tail probabilities of the peak-to-
peak GD spread. The mode scrambler transfer matrix is chosen
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Figure 5. Complementary CDF of the peak-to-peak GD spread normalized
to the GD STD after K = 100 spans of propagation. The blue solid
line corresponds to mode-scrambler-aided deterministic coupling for D =
12, Ng = 3,D = diag {2, 4, 6} and the orange dashed line corresponds to
strong random coupling for D = 12.
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Figure 6. CDF of capacity after K = 100 spans of propagation. The
blue solid line corresponds to mode-scrambler-aided deterministic coupling
for D = 12, Ng = 3,D = diag {2, 4, 6} and the orange dashed line
corresponds to strong random coupling for D = 12, for an SNR of 10 dB.
The vertical dotted lines indicate the minimum capacities.

according to the design criteria in III. To obtain the CDF, ran-
dom fiber realizations are generated and the peak-to-peak GD
spread is computed as the difference between the maximum
and the minimum GDs, ∆τ = maxl(τtot,l)−minl(τtot,l). The
quantity is then normalized by σGD.

Fig. 6 shows the CDF of the capacity after K = 100
spans of propagation for mode-scrambler-aided coupling and
strong random coupling for a signal-to-noise ratio (SNR) of
10 dB. The per-span MDL STD σMDL,0 is set to 0.2 dB. The
channel capacity, measured in b/s/Hz, assuming channel-state
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information is not available, is defined as [8]

C = log2 det

(
ID −

SNR

D
M̂totM̂

H
tot

)
,

where M̂tot = Mtot/α0, and the SNR is in linear units.
α0 is the ensemble-averaged mode-averaged gain, and α0 =√∑D

l=1 E {egtot,l} /D. Capacity is lower bounded by Cmin =

D log2
(
1 + SNR/α2

0D
)

[8].
Fig. 5 and Fig. 6 are consistent with the assumption that

combining periodic deterministic scrambling with random
intra-group coupling results in the same distribution of modal
delays and modal gains as a system with strong random
coupling between all modes.

B. Asymptotic Convergence of the Distribution of the System
Transfer Matrix

Transfer matrices of fiber sections with strong random
coupling can be modeled by random unitary matrices dis-
tributed according to the Haar measure [33]. In a system with
strong random coupling between all modes, wherein each fiber
section effects an independent random unitary transformation,
the GDO can be written as a sum of section-wise GDOs
with IID eigenvectors. As a result of the CLT, the overall
GDO asymptotically approaches a Gaussian Unitary Ensemble
(GUE) with zero trace.

In a system with deterministic mode scrambling and strong
random intra-group coupling, we expect that the system trans-
fer matrix asymptotically approaches, in distribution, a random
unitary matrix distributed according to the Haar measure. As
a result, the GDO can be written as a sum of the span-wise
GDOs with asymptotically IID eigenvectors. Here too, the CLT
holds and the overall GDO asymptotically approaches a GUE
with zero trace.

Arguments supporting the convergence of the distribution of
Mtot according to the Haar measure on the unitary group in
the presence of strong mode scrambling, and the convergence
of Gtot to a GUE is provided in [21, Appendix G]. We
pessimistically assume no inter-group coupling in the fiber. For
simplicity, we also assume that the mode scrambler transfer
matrix R is unitary. We define a Markov Chain on the system
transfer matrix with the number of spans K as the Markov
“time-step”. In this framework, the system transfer matrix is a
continuous-valued Markov “state” on the compact topological
group of D×D unitary matrices. We argue that this Markov
chain has key properties like irreducibility, aperiodicity, and
recurrence when R satisfies the design criteria in Section III,
and consequently establishes that the Law of Large Numbers
(LLN) and the CLT hold for a series summation of certain
classes of functions of the Markov state, including the GDO.

The eigenvalue distribution of a GUE with zero trace is well
known [33]. The asymptotic convergence of the GDO there-
fore establishes that the mean and variance of the eigenvalues
are sufficient statistics The mean is zero owing to the zero-
trace property and the variance is given by (S4). While we
assumed that MDL is not present, it can be argued that when
the overall MDL is low, the distribution of the eigenvalues
of the MGO (measured in decibels) converges to a GUE

with zero trace. Although the analysis in [21, Appendix G]
indicates asymptotic convergence, our simulations demonstrate
a rapid rate of convergence to the limiting distributions. This
is supported by the close agreement shown in Fig. 5 and Fig.
6 for K = 100 spans.

VI. DISCUSSION

In this section, we discuss some aspects of long-haul system
design with mode scramblers.

A. Non-Identical Mode Scramblers

The derivation of the analytical expressions in Section II
assumed that all mode scramblers have identical transfer
matrices. While this scenario is pessimistic in terms of mode-
scrambling performance, it leads to robust design criteria. In
a practical system, the mode scramblers could have different
transfer matrices by design or due to manufacturing variations.
In such cases, the formulae can be modified to incorporate the
different power coupling matrices. In both cases, if individual
mode scrambler devices satisfy the design criteria, then the GD
and MDL STDs will resemble those of a system with strong
mode coupling. A system design can be verified by analytical
modeling using the measured power coupling matrices of
fabricated mode scramblers.

B. Spatial Whiteness of Amplifier Noise

Spatial whiteness of the total amplified spontaneous emis-
sion (ASE) noise is another consequence of strong mode
scrambling. The ASE noises from the amplifiers are not indi-
vidually spatially white owing to MDL. The D−dimensional
noise vectors from each amplifier experience mode scrambling
and transformation by the fiber matrices before they reach
the receiver. Following the analysis in [28, Discussion], the
noise correlation matrices can be written in terms of the mode-
dependent noise variances of each amplifier, the fiber transfer
matrices {Mk} and R, which has a form very similar to the
terms in the expansion of the GDO [21, eq. S3]. The equations
are provided in [21, Appendix H]. Equivalently, we can write
the noise correlation matrices as a function of the Markov
state. Their expected values are diagonal matrices and can be
computed similarly to the analysis in [21, Appendix B]. When
the number of spans is large, owing to the LLN, we can argue
that the overall noise correlation matrix converges to a constant
times the identity matrix; in other words, the noise is spatially
white.

C. Group-Delay Self-Compensation

A good design for the mode scrambler does not necessarily
solve all system-level problems. Strong mode scrambling is
equivalent to strong random coupling with an effective inter-
group coupling length of LS : σGD(K) ≈ σβ1

√
KLSLinter,eff,

where σβ1
=
√
(β2

1,1 + · · ·+ β2
1,D)/D and Linter,eff = LS . For

optimum performance, the transmission fiber must have low
uncoupled GD STD σβ1 , and the optical devices must have
low intrinsic MDL. Since modal dispersion is a distributed
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effect, placing multiple mode scramblers between successive
amplifiers can be beneficial as it reduces the multiplicative
factor

√
Linter,eff in σGD. However, there is a trade-off: the

overall MDL will increase as more mode scramblers are
used. Another approach is to co-design mode scramblers with
transmission fibers. This can potentially result in Linter,eff being
less than LS . This corresponds to the cyan region in Fig. 3,
where the power coupling matrix is such that Pτ 0 is anti-
correlated with τ 0 and exhibits GD compensating behavior.

Scrambling to reduce the GD spread involves frequently
splitting and redirecting data signals to different modes such
that no data signal consistently travels in the fastest or the
slowest mode. An optimal solution can be obtained by care-
fully redirecting data signals such that they transfer between
propagation in fast and slow modes. This results in a net
delay spread that is periodically minimal. This forms the basis
of GD compensation using multiple transmission fiber types
[32], [34], [35]. GD compensation can also be performed
by careful mode permutations. In Fig. 3, the power coupling
matrix corresponding to the minimum GD STD is

P3 =

0 0 2
0 0 4
2 4 0

 ,
which routes all the power from the first and second mode
groups to the third mode group and vice-versa. We can see
intuitively that this is the best option because the average group
delays of the first and second mode groups are positive, while
the average group delay of the third mode group is negative,
τ 0 = [25.2, 7.05, −13.1]T ns. A matrix R3 with the above
power coupling matrix is the anti-diagonal Exchange Matrix
J12 whose elements are 1 on the anti-diagonal and 0 otherwise.
The appropriate term for these devices is “mode permutators”,
as they do not scramble the modes. The technique of mode
permutation has been proposed in the literature for the man-
agement of GD spread [18]–[20] and MDL caused by splices
[36].

Fig. 7 shows the normalized GD STD plotted as a func-
tion of the number of spans K for a self-compensating
mode permutator with the above power coupling matrix.
Similarly to strong scrambling, the GD STD for the self-
compensating mode permutator increases with the square root
of the number of spans but Linter,eff is less than LS . The
alternating pattern in the GD STD is expected as a result
of the anti-correlation of P3τ 0 and τ 0. D−1P3 has the
eigenvalues [λ1 = 1, λ2 = −1, λ3 = 0], and satisfies the
following property: (D−1P3)

k = D−1P3 when k is odd and
(D−1P3)

k = (D−1P3)
2 when k is even. Therefore, (S4) for

even K becomes,

E
{
∥τtot∥2

}
(K) ≈K Ng∑

i=1

σ2
intra,i +KτT

0 D
(
INg − (D−1P3)

2
)
τ 0

 ,

which is also proportional to K, similar to the expression for
GD STD for a strong mode scrambler in (S10). However,
there is an extra factor of INg

−(D−1P)2 compared to (S10);
therefore Linter,eff < LS .
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Figure 7. Self-compensation with a mode permutator for D = diag {2, 4, 6}.
The solid lines correspond to numerical estimates from multi-section simula-
tions and the x-markers correspond to analytical estimates from the formula
in (S3). GD STD σGD(K) is normalized by one-span GD STD σGD(1).
The inset shows the power coupling matrix P3 used in obtaining the self-
compensation curve.

It should be noted that D−1P3 is an irreducible matrix
but not primitive. Hence, it does not satisfy the conditions
of a strong mode scrambler for arbitrary τ 0. For a different
transmission fiber, the optimum power coupling matrix may
differ from P3, especially if the signs of τ 0 change. We
can define an optimization problem to obtain the best power
coupling matrix for any given τ 0 by minimizing (S4) for even
and large K. We start by minimizing (S4) for K = 2 spans
by formulating the following optimization problem

minimize
P

τT
0 Pτ 0

subject to P [i, j] ≥ 0, 1 ≤ i, j ≤ Ng

D−1P1Ng
= 1Ng

dTD−1P = dT

, (S13)

where the constraints enforce that P is a non-negative matrix
and R is a unitary matrix. The constraints are convex and
the cost function is linear in P . Therefore, we have a linear
programming problem. The constraint set is feasible. It is
well-known that the optimum value in a linear programming
problem is found on the boundary of the constraint set [37].
To obtain an optimum D−1P , we need to only search over
the set of vertices of the convex hull S . If multiple vertices
attain the same minimum value of the cost function, then any
convex combination of those vertices is a valid optimum.

An optimum P obtained for the minimization problem in
(S13) does not necessarily minimize the GD STD for K > 2
spans, wherein the cost function is non-convex in P . However,
we have verified through gradient descent searches in the
constraint set that the optimum P for K = 2 and K > 2
are identical for τ 0 values similar to the one in Table I.

An important challenge for this approach lies in realizing
a device with an optimal power coupling matrix. Possible
device solutions include LPFGs and back-to-back multiplexer-
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demultiplexer using photonic lanterns, which require further
study. To obtain maximum benefit, it is also necessary to
carefully design the transmission fiber to yield a favorable τ 0.
Using mode permutators for self-compensation has limitations
caused by random inter-group mode coupling, similar to GD
compensation using different fibers [12]. The GD STD derived
from the Stokes space analysis [21, eq. S41] can be useful
in evaluating the performance of systems designed with this
technique. While this technique optimizes GD STD, its effect
on MDL STD needs further study. These are topics for future
research.

VII. CONCLUSION

In this paper, we studied the effects of the mode scrambler
transfer matrix on modal dispersion and mode-dependent
gain/loss. Using a generalized Jones representation, we derived
analytical expressions for GD STD and overall MDL STD in
terms of the mode-group power coupling matrix for systems
with strong random intra-group coupling and weak inter-group
coupling in the MMF. Through multi-section simulations, we
verified the analytical expressions in the low-MDL regime.
We also proposed the following design criteria for a mode
scrambler to obtain GD and MDL STDs proportional to the
square root of the number of spans of propagation: the power
coupling matrix P should be primitive and the non-dominant
eigenvalues of D−1P should be close to zero. Systems using
such mode scramblers exhibit inter-group coupling lengths
equal to the span length LS . Using a generalized Stokes
representation, we re-derived analytical expressions for GD
STD to incorporate the effects of inter-group coupling in the
MMF.

We argued that deterministic mode scrambling in the pres-
ence of strong intra-group coupling is asymptotically equiva-
lent to strong random coupling. We also verified that the tail
probabilities of peak-to-peak GD spread and channel capacity
match in the two scenarios. Finally, we discussed the self-
compensation regime wherein the GD STD periodically in-
creases and decreases and has an effective inter-group coupling
length less than LS .
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APPENDIX A
EXPECTATION OVER THE GROUP OF BLOCK UNITARY

MATRICES

In this appendix, we analytically compute
E
{
TblockATH

block

}
, where A is a deterministic matrix

and Tblock = diag
{
T11,T22, . . . ,TNgNg

}
is a block-

diagonal random unitary matrix whose ith block diagonal
matrix Tii is independently distributed according to the Haar
measure on the group of di × di unitary matrices. The i, j
submatrix of E

{
TblockATH

block

}
can be written as

E
{
TblockATH

block

}
ij
= E

{
TiiAijT

H
jj

}
=

{
0di×dj , i ̸= j,
1
di
tr (Aii) Idi , i = j,

(S14)

where 0di×dj is the di × dj zero matrix. The result for i = j
in (S14) comes from the integration with respect to the Haar
measure on the unitary group [38]. Alternatively, in terms of
{Γi} matrices, we can write E

{
TblockATH

block

}
as

E
{
TblockATH

block

}
=

Ng∑
i=0

1

di
tr (Aii)Γi

=

Ng∑
i=0

1

di
tr (ΓiA)Γi. (S15)

APPENDIX B
DERIVATION OF GD STD IN THE GENERALIZED JONES

REPRESENTATION

In this appendix, we provide the derivation of E
{
∥τtot∥2

}
.

From the definitions of Mtot and Gtot, and assuming Mtot is
unitary, we get

* These authors contributed equally. The authors are with the E.L Ginz-
ton Laboratory, Department of Electrical Engineering, Stanford University,
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IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.

Gtot = − ȷMH
tot
∂Mtot

∂ω
= ȷ

∂MH
tot

∂ω
Mtot

= G1 +MH
1 RHG2RM1 + · · ·+

MH
1 RH . . .MH

K−1R
HGKRMK−1 . . .RM1,

(S16)

where Gk = −ȷMH
k

∂Mk

∂ω is the GDO of the kth span for
k = 1, . . . ,K. Using the expansion of Gtot in (S16), we
obtain E

{
∥τtot∥2

}
as a sum of K2 terms, as shown in (S17).

Assuming that each fiber span is statistically identical, (S17)
simplifies to (S18).

To obtain E
{
∥τtot∥2

}
, we find analytical expressions for

each term in (S18).

Analytical Expression for E {Gk}
Assuming strong intra-group coupling and negligible inter-

group coupling, for k = 1, 2, . . . ,K, Mk and Gk are block
diagonal:

Gk =


Gk,11 0 . . . 0
0 Gk,22 . . . 0
...

...
. . .

...
0 0 . . . Gk,NgNg

 , (S19)

where Gk,ii is a di × di submatrix corresponding to the ith
mode group with degeneracy di and can be written as

Gk,ii = Tk,iiΛk,iiT
H
k,ii,

where Tk,ii is a di× di unitary matrix, and Λk,ii is a di× di
diagonal matrix of the GDs of the ith mode group. In the
presence of strong intra-group coupling,

E {Gk,ii} = E
{
Tk,iiΛk,iiT

H
k,ii

}
=

1

di
tr (Λk,ii) Idi

= τ0,iIdi
, (S20)

where Idi is the di×di identity matrix. The expectation is over
the random unitary group of di×di Haar unitary matrices [38].
Therefore, we can write E {Gk} as

E {Gk} =
Ng∑
i=1

τ0,iΓi = τ 0 · Γ⃗, (S21)

where Γ⃗ is an Ng× 1 vector of matrices {Γi}, i = 1, . . . , Ng .
Γi is a D × D diagonal matrix whose entries are 1 only at
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E
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= E
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tr
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k=1

E
{
tr
(
GH

k+1RMkGkM
H
k RH

)}
+ 2

K−2∑
k=1

E
{
tr
(
GH

k+2RMk+1RMkGkM
H
k RHMH

k+1R
H
)}

+ . . .

+ 2E
{
tr
(
GH

KRMK−1 . . .RM1G1M
H
1 RH . . .MH

K−1R
H
)})

.

(S17)

E
{
∥τtot∥2

}
(K) =

(
KE

{
tr
(
GH

1 G1

)}
+ 2(K − 1)E

{
tr
(
GH

2 RM1G1M
H
1 RH

)}
+ 2(K − 2)E

{
tr
(
GH

3 RM2RM1G1M
H
1 RHMH

2 RH
)}

+ . . .

+ 2E
{
tr
(
GH

KRMK−1 . . .RM1G1M
H
1 RH . . .MH

K−1R
H
)})

.

(S18)

the indices corresponding to the modes of the ith mode group.
The l,m element of Γi can be written as

Γi[l,m]
.
= δlm1 (l ∈Mi) , (S22)

where 1(·) is the indicator function. An example of Γ1,Γ2,Γ3

for Ng = 3 mode groups with degeneracies D = diag {2, 4, 6}
is given below:

Γ1 =

 I2 02×4 02×6

04×2 04×4 04×6

06×2 06×4 06×6

 ,
Γ2 =

02×2 02×4 02×6

04×2 I4 04×6

06×2 06×4 06×6

 ,
Γ3 =

02×2 02×4 02×6

04×2 04×4 04×6

06×2 06×4 I6

 .
The {Γi} matrices have some important properties:

ΓH
i = ΓT

i = Γi. (S23a)

tr (Γi) = di. (S23b)

Γn
i = Γi. (S23c)

tr
(
ΓH
i Γj

)
= δijdi. (S23d)

Owing to strong intra-group coupling, we can represent
E {Gk} in an Ng-dimensional subspace with the basis set
{Γi}, i = 1, . . . , Ng .

Analytical Expression for E
{
MkGkM

H
k

}
From the definition of Gk, we get

MkGkM
H
k = −j ∂Mk

∂ω
MH

k , (S24)

which is the GDO for the backward-propagating signal with
transfer function MH

k . The fiber is statistically identical under
forward or backward propagation. Therefore,

E
{
MkGkM

H
k

}
= E {Gk} =

Ng∑
i=1

τ0,iΓi = τ 0 · Γ⃗. (S25)

Analytical Expression for tr
(
E
{
GH

k Gk

})
We can write the trace of E

{
GH

k Gk

}
as the sum of the

traces of its block-diagonal components:

tr
(
E
{
GH

k Gk

})
=

Ng∑
i=1

tr
(
E
{
GH

k,iiGk,ii

})
=

Ng∑
i=1

tr
(
E
{
Tk,iiΛ

2
k,iiT

H
k,ii

})
=

Ng∑
i=1

(
diτ

2
0,i + σ2

intra,i

)
(S26)

= τT
0 Dτ 0 +

Ng∑
i=1

(
σ2

intra,i

)
. (S27)

The first term in (S27) is the group-delay spread contribution
from the average modal delays and the second term is the
contribution from the strong intra-group coupling.
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Analytical Expression for tr
(
E
{
GH

2 RM1G1M
H
1 RH

})
Using the independence of the fiber spans and the results

in (S21) and (S24), we obtain

tr
(
E
{
GH

2 RM1G1M
H
1 RH

})
= tr

(
E
{
GH

2

}
RE {G1}RH

)
= tr

(
E {G1}RE {G1}RH

)
=

Ng∑
i=1

Ng∑
j=1

τ0,iτ0,jtr
(
ΓiRΓjR

H
)

= τT
0 Pτ 0, (S28)

where P is the mode-group power coupling matrix whose i, j
element is defined as

P [i, j] = tr
(
ΓiRΓjR

H
)

=
∑
l∈Mi

∑
m∈Mj

|R[l,m]|2. (S29)

Analytical Expression for
tr
(
E
{
GH

3 RM2RM1G1M
H
1 RHMH

2 RH
})

Using the independence of the fiber spans and the results
in (S21), (S24), and (S28), we obtain

tr
(
E
{
GH

3 RM2RM1G1M
H
1 RHMH

2 RH
})

= tr

(
E
{
GH

3

}
R

× E
{
M2RE

{
M1G1M

H
1

}
RHMH

2

}
RH

)
= tr

(
E
{
GH

3

}
RE

{
M2RE {G1}RHMH

2

}
RH

)
, (S30)

E
{
M2RE {G1}RHMH

2

}
= E

M2R

 Ng∑
i=1

τ0,iΓi

RHMH
2


=

Ng∑
i=1

τ0,iE
{
M2RΓiR

HMH
2

}
=

Ng∑
i=1

τ0,i

Ng∑
j=1

1

dj
tr
((

RΓiR
H
)
jj

)
Γj

=

Ng∑
i=1

Ng∑
j=1

1

dj
P [j, i]τ0,iΓj =

(
D−1Pτ 0

)
· Γ⃗. (S31)

Using (S30) and (S31), we obtain

tr
(
E
{
GH

3 RM2RM1G1M
H
1 RHMH

2 RH
})

= tr

 Ng∑
i=1

Ng∑
j=1

1

dj
P [j, i]τ0,iE

{
GH

3

}
RΓjR

H


=

Ng∑
i=1

Ng∑
j=1

1

dj
P [j, i]τ0,i tr

(
E
{
GH

3

}
RΓjR

H
)

=

Ng∑
i=1

Ng∑
j=1

1

dj
P [j, i]τ0,i tr

(
E
{
GH

3

}
RΓjR

H
)

=

Ng∑
i=1

Ng∑
j=1

Ng∑
l=1

1

dj
P [j, i]τ0,iτ0,lP [l, j]

= τT
0 PD−1Pτ 0. (S32)

Analytical Expression for E
{
∥τtot∥2

}
(K)

From (S27), (S28), and (S32), we can deduce a pattern in
the terms in (S18). For k > 1, the kth term of (S18) can
be written as 2(K−k+1)τT

0 P
(
D−1P

)(k−2)
τ 0. Therefore,

(S18) simplifies to

E
{
∥τtot∥2

}
(K)

= K

τT
0 Dτ 0 +

Ng∑
i=1

(
σ2

intra,i

)
+ 2 (K − 1) τT

0 Pτ 0

+ 2 (K − 2) τT
0 P

(
D−1P

)
τ 0

+ . . .

+ 2 (K − k + 1) τT
0 P

(
D−1P

)(k−2)
τ 0

+ . . .

+ 2τT
0 P

(
D−1P

)(K−2)
τ 0

= K

Ng∑
i=1

σ2
intra,i +KτT

0 Dτ 0

+ τT
0

(
2

K−1∑
k=1

(K − k)D
(
D−1P

)k)
τ 0.

(S33)

APPENDIX C
DERIVATION OF MDL STD IN THE GENERALIZED JONES

REPRESENTATION

In this appendix, we derive the approximate analytical
expression for E

{
∥gtot∥2

}
which is defined as,

E
{
∥gtot∥2

}
(K) = E

{
tr
((

logMtotM
H
tot

)2)}
.

When the overall MDL is low, we can approximate as follows:

E
{
∥gtot∥2

}
(K) ≈ E

{
tr
((

MtotM
H
tot − ID

)2)}
≈ 2E

{
tr
(
MtotM

H
tot − ID

)}
= 2tr

(
E
{
MtotM

H
tot

})
− 2D. (S34)
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Using the definition of Mtot, we get

E
{
MtotM

H
tot

}
= E

{
MKR . . .M2RM1M

H
1 RHMH

2 . . .RHMH
K

}
= E

{
MKR . . .M2RRHMH

2 . . .RHMH
K

}
= E

{
MKR . . .E

{
M2RRHMH

2

}
. . .RHMH

K

}
. (S35)

By repeatedly using (S15) in (S35), we get

E
{
M2RRHMH

2

}
=

Ng∑
i=1

Ng∑
j=1

1

dj
P [j, i]Γi

=

Ng∑
i=1

(
D−1P1Ng

)
i
Γi,

(S36)

E
{
M3E

{
M2RRHMH

2

}
MH

3

}
=

Ng∑
i=1

((
D−1P

)2
1Ng

)
i
Γi,

(S37)

...

E
{
MKR . . .E

{
M2RRHMH

2

}
. . .RHMH

K

}
=

Ng∑
i=1

((
D−1P

)K−1
1Ng

)
i
Γi.

(S38)

Using (S38) in (S34) we get

E
{
∥gtot∥2

}
(K) ≈ 2

(
dT
(
D−1P

)K−1
1Ng
−D

)
. (S39)

APPENDIX D
MODELING MODE SCRAMBLERS IN THE GENERALIZED

STOKES SPACE

Assuming no MDL, the evolution of the modal dispersion
along the fiber link can be modeled via stochastic differential
equations in the generalized Stokes space by [31], [32]

∂τ̃

∂z
= β̃1 + β̃0 × τ̃ , (S40)

β̃0(z) = β̃1 +w(z) (S41)

where τ̃ is the (D2 − 1) × 1 dispersion vector representing
the GDO in the generalized Stokes space, β̃0 is the (D2 −
1)× 1 birefringence vector, β̃1 = ∂β̃0/∂ω is a (D2 − 1)× 1
vector representing the deterministic GD of the GI-MMF fiber,
z is the propagation distance, and w(z) is the (D2 − 1) × 1
additive noise vector representing mode coupling. Conversion
from the generalized Jones representation to the generalized
Stokes representation and the cross product is explained in
Appendix E.

Following [32], we assume w(z) is distributed as w(z) ∼
N (0,H) where H is a positive-definite real-valued covariance
matrix, and W(l) =

∫ l

0
H0.5w(z)dz is a (D2 − 1) × 1-

dimensional Wiener process, such that W(0) = 0 and
W(z) ∼ N (0, zI).

(S40) and (S41) can be combined compactly into

∂τ̃ =
(
β̃1 + ωβ̃1 × τ̃

)
∂z − τ̃ ×H0.5∂W.

The moments of τ̃ can be described by two deterministic
ordinary differential equations (ODE)s [32]:

∂

∂z
E {τ̃} = β̃1 − Q̃E {τ̃} , (S42)

∂

∂z
E
{
∥τ̃∥2

}
= 2β̃

T

1 E {τ̃} , (S43)

where Q is evaluated from H and the structure coefficients f ,
defined in Appendix E by

Q̃[j, l] =
1

2

D2−1∑
m,k=1

f [k,m, l]f [k,m, j]H[k, k].

The GD STD can be obtained as [32]

σGD =

√
E
{
∥τ̃∥2

}
/D.

We can include the effect of the mode scrambler R at a
specified propagation distance zk into the dispersion evolu-
tion equations (S42) and (S43) by an abrupt rotation of the
expected dispersion vector:

E
{∥∥τ̃ (z+k )∥∥2} = E

{∥∥τ̃ (z−k )∥∥2} , (S44a)

E
{
τ̃
(
z+k
)}

= R̃E
{
τ̃
(
z−k
)}
, (S44b)

where R̃ is the mode scrambler matrix in generalized Stokes
space given by

R̃[i, j] = tr
(
ΛjR

HΛiR
)
.

We assume the mode scrambler does not add any modal
dispersion and has negligible MDL.

We integrate (S42) and (S43) for arbitrary initial conditions,

E {τ̃ (0)} = R̃τ̃ init, (S45a)

E
{
∥τ̃ (0)∥2

}
= σ2

init, (S45b)

yielding

E {τ̃} = Q̃−1
(
I− exp (−zQ̃)

)
β̃1

+ exp (−zQ̃)R̃τ̃ init,
(S46)

E
{
∥τ̃∥2

}
= 2β̃

T

1

(
Q̃−1z − Q̃−2

(
I− exp (−zQ̃)

))
β̃1

+ 2β̃
T

1

(
I− exp (−zQ̃)

)
R̃τ̃ init + σ2

init.

(S47)

For a system with multiple spans and mode scramblers after
every span, the GD STD of the k-th span can be obtained
by repeated application of the boundary conditions (S45) and
integration of (S42) and (S43) with the appropriate initial
conditions. To obtain a closed-form expression, we leverage
the structure of Q̃ and β̃1 to simplify (S46) and (S47)
substantially. We directly evaluate for a GI-MMF with D = 12
modes and Ng = 3 mode groups and find that only a small
subset of the D2 − 1 elements of τ̃ are needed to accurately
compute σGD.
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A. Direct Evaluation for D = 12 Modes and Ng = 3 Mode
Groups

In deriving the analytic formula of GD STD, we use the
same indexing of modes as in Section II and make the
following assumptions to simplify the analysis:
(a) Modes within the same mode group strongly couple to

each other with intra-group coupling length Lintra.
(b) Modes not in the same mode group weakly couple to

each other with inter-group coupling length Linter.
(c) There is negligible polarization mode dispersion.
(d) The only source of intra-group delay spread comes from

the third mode group as its spatial modes LP02 and LP21

are not exactly degenerate.
Under these assumptions, the uncoupled GD per unit lengths
will satisfy the following:

β1,1 = β1,2,

β1,3 = β1,4 = β1,5 = β1,6,

β1,7 = β1,8 = β1,9 = β1,10,

β1,11 = β1,12.

We assign the following uncoupled inter- and intra-group delay
differences:

∆β1,1−2 = β1,1 − β1,3,
∆β1,2−3 = β1,3 − β1,7,
∆β1,3−3 = β1,7 − β1,11,

where ∆β1,1−2 is the uncoupled inter-group delay difference
between mode groups 1 and 2, ∆β1,2−3 is the uncoupled inter-
group delay difference between mode groups 2 and 3, and
∆β1,3−3 is the uncoupled intra-group delay difference between
the spatial modes LP02 and LP21 of mode group 3.

Following the above-mentioned assumptions, H is diagonal
with diagonal elements of either 2L−1

inter or 2L−1
intra. Using the

generalized Pauli matrix basis Γ̃i (1 ≤ i ≤ D2 − 1) defined
in the Appendix of [31], for D = 12 with mode-group
degeneracy d = [2, 4, 6]T ,

H[k, k] ={
2/Lintra, k ∈ [1, 18] ∪ [27, 30] ∪ [55, 58] ∪ [71, 143]

2/Linter, k ∈ [19, 26] ∪ [31, 54] ∪ [59, 70].

Direct evaluation of Q̃ yields

Q̃ =

[
Q̃I 0(D2−D

2 )×(D
2 −1)

0(D
2 −1)×(D2−D

2 ) Q̃II

]

=

[
Q̃I 0138×5

05×138 Q̃II

]
.

We obtain a larger block Q̃I with dimension (D2 −D/2) ×
(D2−D/2) and a smaller block Q̃II with dimension (D/2−
1)× (D/2− 1). Q̃I is diagonal with elements Q̃I[i, i] ∝ L−1

intra
and Q̃II is real and symmetric.

Eigenvalue decomposition of Q̃II yields Q̃II = VIIDIIV
T
II.

VII and DII are shown in equations (S48) and (S49). We see
that DII contains two eigenvalues equal to 2L−1

inter and three

composed of linear combinations of L−1
intra and L−1

inter. Similarly,
direct evaluation of β̃1 yields

β̃1 =

[
0138×1

β̃1,II

]
,

where

β̃1,II = 2 (∆β1,1−2 + 3∆β1,2−3 +∆β1,3−3) ṽ5

+ 4∆β1,1−2ṽ4 + 4∆β1,3−3ṽ1.

Similarly to Q̃, β̃1 can be partitioned into two parts.
Furthermore, β̃1,II can be decomposed into three eigenvectors
of Q̃II: ṽ1, ṽ4, and ṽ5. Eigenvectors ṽ4 and ṽ5 share the same
eigenvalue 2L−1

inter, which is related to the inter-group coupling
length. Eigenvector ṽ1 has eigenvalue L−1

intra+L
−1
inter, which will

be dominated by Lintra since Lintra ≪ Linter in typical GI-MMF
fibers. Therefore, we define

β̃1,inter = 2 (∆β1,1−2 + 3∆β1,2−3 +∆β1,3−3) ṽ5

+ 4∆β1,1−2ṽ4

(S50a)

β̃1,intra = 4∆β1,3−3ṽ1 (S50b)

so we can decompose β̃1,II as

β̃1,II = β̃1,inter + β̃1,intra.

We note that ṽT
2 β̃1,II and ṽT

3 β̃1,II extract the uncoupled GD
differences between LP21a and LP21b, and between LP11a and
LP11b, respectively. Owing to our assumptions on the source
of intra-group delay spread, the uncoupled GD differences
between these modes are 0.

Through direct evaluation, we observe a reduction in the
dimensionality of the terms in (S46) and (S47) since β̃1 is
non-zero in only the last D/2−1 elements. Only the last term
in (S46), namely, exp (−zQ̃)R̃τ̃ init, is non-zero in all D2− 1
elements, since R̃ is generally non-zero in all (D2−1)×(D2−
1) elements. However, the first D2 −D/2 elements of R̃τ̃ init
will decay exponentially with the intra-group coupling length
since Q̃I[i, i] ∝ L−1

intra. Hence to the zeroth order, the evolution
of τ̃ can be captured by its last D/2− 1 elements expressed
by τ̃ II. Rewriting (S46) and (S47) using this simplification
gives

E {τ̃ II} = Q̃−1
II

(
I− exp (−zQ̃II)

)
β̃1,II

+ exp (−zQ̃II)R̃IIτ̃ init,II,

E
{
∥τ̃∥2

}
= 2β̃

T

1,II

(
Q̃−1

II z − Q̃−2
II

(
I− exp (−zQ̃II)

))
β̃1,II

+ 2β̃
T

1,II

(
I− exp (−zQ̃II)

)
R̃IIτ̃ init,II + σ2

init,

where we have used E
{
∥τ∥2

}
≈ E

{
∥τ̃ II∥2

}
and R̃II is the

lower (D/2−1)× (D/2−1) block of R̃. We define ζ1 (z, L)
and ζ2 (z, L),

ζ1 (z, L) = L
(
1− exp

(
− z
L

))
,

ζ2 (z, L) = Lz − L2
(
1− exp

(
− z
L

))
.
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VII =


0 0 −1/2

√
3/2 0

0 0
√
3/2 1/2 0

−
√
2/4

√
3/8 0 0

√
2/2

−
√
30/20 −

√
5/8 0 0

√
30/10

2
√
5/5 0 0 0

√
5/5

 = [ṽ1, ṽ2, ṽ3, ṽ4, ṽ5] (S48)

DII =


L−1

intra + L−1
inter 0 0 0 0

0 L−1
intra + L−1

inter 0 0 0
0 0 2

3L
−1
intra +

4
3L

−1
inter 0 0

0 0 0 2L−1
inter 0

0 0 0 0 2L−1
inter

 (S49)

Using (S50a) and (S50b) we obtain

E {τ̃ II} = ζ1

(
z,
Linter

2

)
β̃1,inter

+ ζ1

(
z,
Lmix

2

)
β̃1,intra

+ exp (−zQ̃II)R̃IIτ̃ init,II,

(S52)

and

E
{
∥τ̃∥2

}
= 2ζ2

(
z,
Linter

2

)∥∥∥β̃1,inter

∥∥∥2
+ 2ζ2

(
z,
Lmix

2

)∥∥∥β̃1,intra

∥∥∥2
+ 2ζ1

(
z,
Linter

2

)
β̃
T

1,interR̃IIτ̃ init,II

+ 2ζ1

(
z,
Lmix

2

)
β̃
T

1,intraR̃IIτ̃ init,II

+ σ2
init,

(S53)

where 2L−1
mix = L−1

intra + L−1
inter.

Employing the simplifications in (S52) and (S53), equations
(S40) and (S41) can be solved for the system described in
Section II. The initial conditions are E {τ (0)} = 0 and
E
{
∥τ (0)∥2

}
= 0. The following piecewise analytic expres-

sion is obtained. For z ∈ [KLS , (K + 1)LS),

E
{
∥τ̃ (z)∥2

}
= 2ζ2

(
z −KLS ,

Linter

2

)∥∥∥β̃1,inter

∥∥∥2
+ 2ζ2

(
z −KLS ,

Lmix

2

)∥∥∥β̃1,intra

∥∥∥2
+ 2ζ1

(
z −KLS ,

Linter

2

)
β̃
T

1,interP̃
(

K−1∑
k=1

(
D̃−1P̃

)k)
τ̃ 0

+ 2ζ1

(
z −KLS ,

Lmix

2

)
β̃
T

1,intraP̃
(

K−1∑
k=1

(
D̃−1P̃

)k)
τ̃ 0

+Kσ̃2
0 + 2τ̃T

0

(
K−1∑
k=1

(K − k)D̃
(
D̃−1P̃

)k)
τ̃ 0

(S54)

where

τ̃ 0 = ζ1

(
LS ,

Linter

2

)
β̃1,inter

+ ζ1

(
LS ,

Lmix

2

)
β̃1,intra,

σ̃2
0 = 2ζ2

(
LS ,

Linter

2

)∥∥∥β̃1,inter

∥∥∥2
+ 2ζ2

(
LS ,

Lmix

2

)∥∥∥β̃1,intra

∥∥∥2 ,
D̃−1 = exp

(
−LSQ̃II

)
,

P̃ = R̃II.

τ̃ 0 and σ̃2
0 are the expected dimensionally reduced disper-

sion vector and norm-square of the dispersion vector after
a span length of accumulation with no mode scrambling,
respectively. P̃ is the analogous quantity to the power cou-
pling matrix P in generalized Stokes space. D̃−1 captures
the distortion of the Stokes power coupling matrix by finite
coupling lengths after a span length.

B. Comparison to the Generalized Jones Space

Comparing (S54) evaluated at z = KLS with the Jones
formula reveals the following connections:

σ̃2
0 ←→

Ng∑
i=1

σ2
intra,i + τT

0 Dτ 0,

τ̃ 0 ←→ τ 0,

P̃ ←→ P ,
D̃−1P̃ ←→ D−1P .

The main difference between the two formulae is the inclusion
of the exponentially decaying terms arising from the finite
intra- and inter-group coupling lengths and that τ̃ 0 also
contains contributions from the intra-group delay spread. We
can obtain the Jones formula from (S54), up to a scale factor
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of
√
D, by ignoring the effect of mode scrambling on the

intra-group delay spread accumulation,

ζ1

(
z −KLS ,

Lmix

2

)
β̃
T

1,intraP̃
(

K−1∑
k=1

(
D̃−1P̃

)k)
τ̃ 0 ≈ 0,

and making the following approximations:

ζ1

(
LS ,

Linter

2

)
≈ LS ,

ζ2

(
LS ,

Linter

2

)
≈ L2

S

2
,

D̃−1 ≈ ṽ4ṽ
T
4 + ṽ5ṽ

T
5 .

APPENDIX E
OPERATOR REPRESENTATIONS IN THE GENERALIZED

STOKES SPACE

In the generalized Stokes space, the GD operator can be
represented in the basis of generalized Pauli matrices Γ̃i

(1 ≤ i ≤ D2 − 1). We use the algorithm in Appendix A of
[31] to generate the generalized Pauli matrices. The (D2−1)-
dimensional vector τ̃ = [τ1 . . . τD2−1]

T is the generalized
Stokes space vector corresponding to Gtot, where τ̃ i =

tr
(
Γ̃iGtot

)
. Similarly, for a fiber with propagation constants

β0,1, . . . , β0,D and uncoupled group delays β1,1, . . . , β1,D, the
generalized Stokes space vectors for the propagation constants
β̃0 and the group delays β̃1 can be evaluated from

β̃0,i = tr
(
Γ̃idiag {β0,1, · · · , β0,D}

)
,

β̃1,i = tr
(
Γ̃idiag {β1,1, · · · , β1,D}

)
.

β̃1 of a fiber with group delays diag {(β1,1, · · · , β1,D)} can
be found using β̃1 = tr (diag {τ1, · · · , τD}) The dot product
operations between two D2 − 1-dimensional vectors a and b
in the generalized Stokes Space is

a · b =

D2−1∑
i=1

aibi.

The cross product between a and b is

a× b =

D2−1∑
i,j,k=1

f [i, j, k]aibjek,

where ek are the orthogonal unit-length basis vectors of the
generalized Stokes space and f [i, j, k] is a structure coefficient
given by

f [i, j, k] =
ȷ

D2
tr
(
Γ̃k

(
Γ̃iΓ̃j − Γ̃jΓ̃i

))
.

A more detailed review of Stokes space operator representa-
tions can be found in Appendix A of [32].

APPENDIX F
DERIVATION OF GD STD IN THE GENERALIZED STOKES

REPRESENTATION

In this appendix, we provide the derivation of (S54). We
repeatedly use (S44) to obtain the initial conditions at ev-
ery new span and use (S52) and (S53) to solve for E {τ̃}
and E

{
∥τ̃∥2

}
in each span. We assume the initial modal

dispersion and GD STD are 0. We evaluate the GD STD
accumulation for the first three spans and notice the same
pattern of terms as in (S33).

For z ∈ [0, LS) the initial conditions are

E {τ̃ (0)} = 0

E
{
∥τ̃ (0)∥2

}
= 0.

The solution of the evolution equations is:

E {τ̃ II} = ζ1

(
z,
Linter

2

)
β̃1,inter

+ ζ1

(
z,
Lmix

2

)
β̃1,intra

E
{
∥τ̃∥2

}
= 2ζ2

(
z,
Linter

2

)∥∥∥β̃1,inter

∥∥∥2
+ 2ζ2

(
z,
Lmix

2

)∥∥∥β̃1,intra

∥∥∥2 .
For z ∈ [LS , 2LS) the boundary conditions are

E
{
τ̃
(
L+
S

)}
= P̃ τ̃ 0 = P̃ζ1

(
LS ,

Linter

2

)
β̃1,inter

+ P̃ζ1
(
LS ,

Lmix

2

)
β̃1,intra

E
{∥∥τ̃ (L+

S

)∥∥2} = σ̃2
0 = 2ζ2

(
LS ,

Linter

2

)∥∥∥β̃1,inter

∥∥∥2
+ 2ζ2

(
LS ,

Lmix

2

)∥∥∥β̃1,intra

∥∥∥2 .
The solution of the dispersion evolution equations is

E {τ̃ II} = ζ1

(
z − LS ,

Linter

2

)
β̃1,inter

+ ζ1

(
z − LS ,

Lmix

2

)
β̃1,intra

+ exp
(
− (z − LS) Q̃II

)
P̃ τ̃ 0

E
{
∥τ̃∥2

}
= 2ζ2

(
z − LS ,

Linter

2

)∥∥∥β̃1,inter

∥∥∥2
+ 2ζ2

(
z − LS ,

Lmix

2

)∥∥∥β̃1,intra

∥∥∥2
+ 2ζ1

(
z − LS ,

Linter

2

)
β̃
T

1,interP̃ τ̃ 0

+ 2ζ1

(
z − LS ,

Lmix

2

)
β̃
T

1,intraP̃ τ̃ 0 + σ̃2
0 .
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For z ∈ [2LS ,3LS), the boundary conditions are

E
{
τ̃
(
2L+

S

)}
= P̃

(
1 + D̃−1P̃

)
τ̃ 0

E
{∥∥τ̃ (2L+

S

)∥∥2} = 2σ̃2
0 + 2τ̃T

0 P̃ τ̃ 0.

The solution of the evolution equations is

E {τ̃ II} = ζ1

(
z − 2LS ,

Linter

2

)
β̃1,inter

+ ζ1

(
z − 2LS ,

Lmix

2

)
β̃1,intra

+ exp
(
− (z − 2LS) Q̃II

)
P̃
(
1 + D̃−1P̃

)
τ̃ 0

E
{
∥τ̃∥2

}
= 2ζ2

(
z − 2LS ,

Linter

2

)∥∥∥β̃1,inter

∥∥∥2
+ 2ζ2

(
z − 2LS ,

Lmix

2

)∥∥∥β̃1,intra

∥∥∥2
+ 2ζ1

(
z − 2LS ,

Linter

2

)
β̃
T

1,interP̃
(
1 + D̃−1P̃

)
τ̃ 0

+ 2ζ1

(
z − 2LS ,

Lmix

2

)
β̃
T

1,intraP̃
(
1 + D̃−1P̃

)
τ̃ 0

+ 2σ̃2
0 + 2τ̃T

0 P̃ τ̃ 0.

We recover the same pattern of terms as in (S33). Contin-
uing this pattern, we can obtain (S54).

APPENDIX G
MODE SCRAMBLING AS A MARKOV CHAIN

The theory of Markov chains is useful in the analysis of
mode scrambling. The theorems, definitions, and notation in
the following analysis are taken from Meyn and Tweedie
[39]. We define a Markov chain Φ = {Φ0,Φ1, . . . } on the
evolution of the system transfer matrix for an integer number
of spans over the state space X. For k ≥ 1,

Φk = RMkΦk−1, (S59)

where the initial state can be chosen to be Φ0 = ID, the D×D
identity matrix, {Mk} are random d-block-unitary matrices
with block sizes given by the degeneracy vector d, and R is the
deterministic transfer matrix of the mode scramblers. It is easy
to see that Φ is indeed a time-homogeneous Markov chain [39]
when {Mk} are independent of each other–the conditional
probability distribution of Φk given Φk−1 is independent of
Φk−2, ...,Φ0.

The Markov state Φk is a D × D continuous, complex-
valued matrix. For the rest of this analysis, we assume the
following:

• {Mk} are independent and identically distributed (IID)
random matrices distributed according to the Haar mea-
sure on the group of d-block-unitary matrices Ud

• R is a unitary matrix satisfying the design criteria for
strong mode scrambling in Section III.

• The eigenvalues of R are of the form {eȷθi , 1 ≤ i ≤ D}
such that {θi} are rational multiples of 2π.

Under the first two assumptions, the state space X is the
compact topological group of D×D unitary matrices UD. We
use the third assumption to prove an important property of the
Markov chain in Lemma 1 and repeatedly use the property
in theorems thereafter. Postulate 1 attempts to remove the
dependence of the proof on this condition on R. However,
in the practical case, any R ∈ UD can be approximated to
arbitrary precision to satisfy this condition.

The Markov state is related to the total system transfer
matrix after k spans, Mtot(k) = RHΦk. We are interested
in the distribution of Mtot(k) and Gtot(k) for large k. This is
equivalent to finding the distribution of Φk.

In this appendix, we prove that the chain Φ is ψ-irreducible,
aperiodic, positive, Harris recurrent, and uniformly ergodic.
These properties ensure that the Law of Large Numbers (LLN)
and the Central Limit Theorem (CLT) hold for a large class
of functions on the Markov state, including the GDO.

Transition Probability and Function

Let B(X) denote the Borel σ-field over X. The one-step
transition probability of the Markov chain Φ is defined for
every x ∈ X, and every set A ∈ B(X),

P (x,A) = prob(Φ1 ∈ A|Φ0 = x)

= prob(RMx ∈ A)

=

∫
Ud

µd(dm)1(Rmx ∈ A), (S60)

where M is a random d-block-unitary matrix distributed ac-
cording to the Haar measure. Similarly, we can write the k-step
transition probability, P k(x,A) = prob(Φk ∈ A|Φ0 = x).

The one-step transition function f : UD × Ud → UD is
defined as

f(x,m1) = Rm1x. (S61)

Similarly, the k-step transition function is the map fk : UD ×
(Ud × Ud × . . . k times)→ UD and is defined as

fk(x,m1, . . . ,mk) = Rmk . . .Rm1x. (S62)

Existence of an Invariant Measure

Definition (Invariant measure [39]). A Markov chain is said
to admit an σ-invariant measure π on B(X) if, ∀A ∈ B(X),

π(A) =

∫
X

π(dx)P (x,A). (S63)

Theorem 1. The Haar measure µ on X = UD is an invariant
measure of the Markov chain in (S59).
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Proof. Let µd denote the Haar measure on Ud. We can write∫
X

π(dx)P (x,A) =

∫
UD

µ(dx)

∫
Ud

µd(dm)1(Rmx ∈ A)

=

∫
Ud

µd(dm)

∫
UD

µ(dx)1(x ∈ mHRHA)

=

∫
Ud

µd(dm)µ(mHRHA)

=

∫
Ud

µd(dm)µ(A)

= µ(A)

∫
Ud

µd(dm) = µ(A)µd(Ud)

= µ(A),

where we have used the invariance property of the Haar
measure: for any unitary matrix V ∈ UD and set B ⊆ UD,
µ(V B) = µ(BV ) = µ(B); for any unitary matrix V ∈ Ud
and set B ⊆ Ud, µd(V B) = µd(BV ) = µd(B).

Forward Accessibility, ψ-Irreducibility, and Aperiodicity

Following [39], we define Ak
+(x), k ≥ 1 as the set of all

reachable states from x after k steps:

Ak
+(x) = {fk(x,m1, . . . ,mk) : mi ∈ Ud, 1 ≤ i ≤ k}, (S64)

A+(x) as the set of all reachable states for any number of
forward steps:

A+(x) =

∞⋃
k=0

Ak
+(x). (S65)

We also define A1+ as the set of all reachable states of ID in
one or more steps:

A1+ =

∞⋃
k=1

Ak
+(ID). (S66)

A+(x) can be written as x ∪ (A1+)x.

Definition (Forward accessibility [39]). A Markov chain is
said to be forward accessible if, for each x0 ∈ UD, A+(x0)
has a non-empty interior.

Definition (ψ-irreduciblity [39]). A Markov chain is said to
be ϕ-irreducible if there exists a measure ϕ on B(X) such that
whenever ϕ(A) > 0, we have L(x,A) > 0 for all x ∈ X,
where L(x,A) is the return time probability:

L(x,A) = prob(τA <∞|Φ0 = x)

= prob(Φ ever enters A),

where τA is the first return time, τA = min{n ≥ 1 : Φn ∈
A}. A Markov chain is ψ-irreducible if it is ϕ-irreducible for
some measure ϕ. The measure ψ is a maximal irreducibility
measure.

For the sake of brevity, the definition of aperiodicity is not
repeated here and can be found in [39].

Theorem 2. Φ in (S59) is forward accessible.

Proof. Lemma 1 proves that A1+ is a subgroup of UD that
contains the block-diagonal subgroup Ud.

R ∈ A1+ satisfies the strong scrambler design criteria and
R is not a part of any block-diagonal proper subgroup of
UD. Therefore, using the theorems of Borevich and Krupetskii
in [40], we obtain that A1+ is the group UD itself. A1+ =
UD =⇒ A+(x) = UD, ∀x ∈ UD.
We use the following properties of topological groups (CITE):

1) Every subgroup of a topological group is either clopen
or has empty interior.

2) Proper subgroups of a connected topological group have
empty interior.

3) UD is a compact, connected topological group.

Remark. If Postulate 1 holds, then the theorem is proved for
any R ∈ UD.

Lemma 1. A1+ is a subgroup of UD when the phases of the
eigenvalues of R are rational multiples of 2π.

Proof. The three group axioms are associativity, existence of
identity, and existence of inverse. Closure and associativity are
proved below and hold for both Lemma 1 and Postulate 1
Closure A1+ is closed under matrix multiplication. Consider

a1, a2 ∈ A1+. They can be written as

a1 = fk1
(ID,m

(1)
1 , . . . ,m

(1)
k1

),

a2 = fk2(ID,m
(2)
1 , . . . ,m

(2)
k2

),

for some positive integers k1, k2, and
m

(1)
1 , . . . ,m

(1)
k1
,m

(2)
1 , . . . ,m

(2)
k2
∈ Ud. Let k = k1 + k2,

we have

(a1a2) = fk(ID,m
(1)
1 , . . . ,m

(1)
k1
,m

(2)
1 , . . . ,m

(2)
k2

) ∈ A1+

(a2a1) = fk(ID,m
(2)
1 , . . . ,m

(2)
k2
,m

(1)
1 , . . . ,m

(1)
k1

) ∈ A1+,

thus proving closure.
Associativity Consider a1, a2, a3 ∈ A1+. They can be written

as

a1 = fk1(ID,m
(1)
1 , . . . ,m

(1)
k1

),

a2 = fk2
(ID,m

(2)
1 , . . . ,m

(2)
k2

),

a3 = fk3
(ID,m

(3)
1 , . . . ,m

(3)
k3

),

for some positive integers k1, k2, k3, and
m

(1)
1 , . . . ,m

(1)
k1
,m

(2)
1 , . . . ,m

(2)
k2
,m

(3)
1 , . . . ,m

(3)
k3
∈ Ud.

Let k = k1 + k2 + k3, we have

fk(ID,m
(1)
1 , . . . ,m

(1)
k1
,m

(2)
1 , . . . ,m

(2)
k2
,m

(3)
1 , . . . ,m

(3)
k3

)

= (a1a2)a3

= a1(a2a3),

thus proving associativity.
Existence of Identity and Inverse The phases {θi} of the

eigenvalues of R are rational multiples of 2π. Therefore,
for some finite positive integer n,

fn(ID, ID, . . . , ID) = Rn = ID ∈ A1+,

thus proving the existence of identity. Moreover, we can
see that, for any m ∈ Ud,

fn(ID,m, ID, . . . , ID) = Rnm = m.
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Therefore, Ud ⊂ A1+. Furthermore, RH =
fn−1(ID, ID, . . . , ID) ∈ A1+. As a result, for any a =
fk(ID,m1, . . . ,mk) ∈ A1+, aH can be written as

aH = mH
1 RH . . .mH

k RH .

As each of mH
1 , . . . ,m

H
k ,R

H ∈ A1+, we have aH ∈
A1+, thus proving the existence of inverse.

Postulate 1. A1+ is a subgroup of UD for any R ∈ UD.

Arguments. Closure and associativity proved above hold for
any R ∈ UD.

Existence of Identity and Inverse For any R ∈ UD, we
postulate that we can find a diagonal unitary matrix Λ
such that RΛ has eigenvalues of the form {eȷθi , 1 ≤ i ≤
D} such that {θi} are rational multiples of 2π. For some
finite positive integer n,

fn(ID,Λ, . . . ,Λ) = (RΛ)
n
= ID ∈ A1+.

Thus proving the existence of identity. Moreover, we can
see that, for any m ∈ Ud,

fn(ID,Λm,Λ, . . . ,Λ) = (RΛ)
n
m = m.

Therefore, Ud ⊂ A1+. Furthermore, RH =
Λfn−1(ID,Λ, . . . ,Λ) ∈ A1+. As a result, for any
a = fk(ID,m1, . . . ,mk) ∈ A1+, aH can be written as

aH = mH
1 RH . . .mH

k RH .

As each of mH
1 , . . . ,m

H
k ,R

H ∈ A1+, we have aH ∈
A1+, thus proving the existence of inverse.

□

Corollary 2.1. Φ in (S59) is ψ-irreducible and aperiodic.

Proof. The set A1+ is a minimal set for Φ, i.e., it is closed,
invariant, and does not contain any closed invariant set as
a proper subset. ψ-Irreducibility and aperiodicity are direct
properties of a closed and connected minimal set [39, Theorem
7.2.4, Proposition 7.3.4].

Theorem 3. Φ in (S59) is ψ-irreducible for ψ = µ, the Haar
measure on UD.

Proof. From Lemma 1, Φ is ϕ-irreducible for ϕ = µ. This is
because, for any A ∈ B(UD) such that µ(A) > 0, is reachable
from every x ∈ UD. In other words, L(x,A) > 0.

The measure ψ is equivalent to [39]

ψ′(A) =

∫
X

ϕ(dy)K 1
2
(y,A), (S67)

where, for x ∈ X, A ∈ B(UD),

K 1
2
(x,A) =

∞∑
n=0

Pn(x,A)2−(n+1). (S68)

Substituting ϕ = µ and X = UD in (S67) we get,

ψ′(A) =

∫
UD

µ(dy)K 1
2
(y,A)

=

∞∑
n=0

2−(n+1)

∫
UD

µ(dy)Pn(y,A)

=

∞∑
n=0

2−(n+1)µ(A)

= µ(A).

Recurrence and Positive Harris Property

Definition (Occupation time). For any set A ∈ B(UD), the
occupation time ηA is the number of visits by Φ to A after
time step zero:

ηA =

∞∑
n=1

1(Φn ∈ A). (S69)

Definition (Positive chain). A Markov chain is said to be pos-
itive if it is ψ-irreducible and admits an invariant probability
measure [39].

Definition (Harris). A set A is called Harris recurrent if it is
visited infinitely often

prob(ηA =∞|Φ0 ∈ A).

A Markov chain is Harris (recurrent) if it is ψ-irreducible and
every set A such that ψ(A) > 0 is Harris recurrent [39].

Theorem 4. Φ in (S59) is positive Harris.

Proof. Lemma 2 proves that Φ is a Feller chain. Φ is ψ-
irreducible according to the Haar measure and the support of
ψ is UD which has a non-empty interior. As a result, Φ is a ψ-
irreducible T-chain [39, Theorem 6.01]. Φ is non-evanescent
as prob(Φ → ∞|Φ0 = x) = 0,∀x ∈ UD. Non-evanescent
ψ-irreducible T-chains are Harris (recurrent) [39, Theorem
9.2.2]).

Definition (Feller). The transition kernel P acts on a bounded
function h through the following mapping. For x ∈ X,

Ph(x) =

∫
P (x, dy)h(y). (S70)

A Markov chain is said to be Feller if P maps the set of
bounded continuous functions C(X) to C(X).

Lemma 2. Φ in (S59) is a Feller chain.
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Proof. Consider a bounded continuous function h : UD →
UD.

Ph(x) =

∫
UD

P (x, dy)h(y)

=

∫
UD

∫
Ud

µd(dm)1(Rmx ∈ dy)h(y)

=

∫
Ud

µd(dm)

∫
UD

1(Rmx ∈ dy)h(y)

=

∫
Ud

µd(dm)h(Rmx)

=

∫
Ud

µd(dm)(h ◦ f(·,m))(x)

= E {h ◦ f(·,M)} (x),

where the expectation is over the d-block unitary matrices dis-
tributed according to the Haar measure µd. Ph is continuous
and bounded as h and f(·,m),m ∈ Ud are continuous and
bounded.

Uniform Ergodicity

Remark. The aperiodic ergodic theorem [39, Theorem 13.0.1]
says that for an aperiodic Harris recurrent chain Φ with an
invariant probability measure π is positive Harris and the
invariant measure is unique (up to a scaling) and finite such
that for every initial condition x0 ∈ X,

sup
A∈B(X)

|Pn(x0, A)− π(A)| → 0, (S71)

as n→∞. The chain is also said to be ergodic.

Definition (V-uniformly ergodic [39]). Define the V -norm
distance between two probability transition functions P1 and
P2 and for a positive function ∞ > V ≥ 0 as follows,

|||P1 − P2|||V = sup
x∈X

∥P1(x, ·)− P2(x, ·)∥V
V (x)

, (S72)

and the outer product of the function 1 and the measure π

[1⊗ π](x,A) = π(A), x ∈ X, A ∈ B(X). (S73)

An ergodic chain Φ is called V -uniformly ergodic if, for n→
∞,

|||Pn − 1⊗ π|||V → 0. (S74)

Remark. Suppose Φ is ψ irreducible and aperiodic, then for
V ≥ 1, Φ is V -uniformly ergodic [39, Theorem 16.0.1].

Law of Large Numbers and Central Limit Theorem

We are interested in a series Sn(g) for a function g on
X = UD,

Sn(d) =

n∑
k=1

g(Φk). (S75)

Definition (Law of Large Numbers). We say that the LLN
holds if

lim
n→∞

1

n
Sn(g) = π(g) a.s. (S76)

We now state sufficient conditions for the LLN to hold for
a Markov chain [39, Theorem 17.0.1]:

• Φ is a positive Harris chain.
• Φ has an invariant probability π.
• π(|g|) <∞.

Definition (Central Limit Theorem). We say that the CLT
holds if there exists a constant 0 < γ2g < ∞ such that for
each x ∈ X,

1√
(n)γg

Sn(ḡ)
distr.−−→ N (0, 1), (S77)

where ḡ = g − π(g).

We now state sufficient conditions for the CLT to hold for a
Markov chain [39, Theorem 17.0.1]:

• Φ is a positive Harris chain.
• Φ has an invariant probability π.
• Φ is V -uniformly ergodic.

When these conditions are satisfied, then, for any g2 ≤ V ,
γ2g = Eπ

{
ḡ2(Φ0)

}
+ 2

∑∞
k=1 Eπ {ḡ(Φ0)ḡ(Φk)} is well-

defined, non-negative and finite and coincides with the asymp-
totic variance:

lim
n→∞

1

n
Eπ

{
S2
n(ḡ)

}
= γ2g .

The CLT holds when γ2g > 0. If γ2g = 0, then

lim
n→∞

1√
n
Sn(g) = 0 a.s.

The group delay operator Gtot can be written as a function of
{Φn}. For each matrix element Gtot[i, j], i, j = 1, . . . , D, a
function gi,j can be defined. We know from Appendix B that

K →∞ =⇒ E {Gtot(K)} /K → 0D×D.

Therefore, ḡi,j = 0. Similarly, as

K →∞ =⇒ E
{
GH

totGtot(K)
}
/K → σ2

GD(K)ID.

Therefore, γ2g,(i,j) =
(∑Ng

l=1 σ
2
intra,l + τT

0 Dτ 0

)
/D. Combin-

ing these observations with the fact that Gtot is Hermitian
symmetric, we can conclude that Gtot(K) approaches a zero-
trace Gaussian unitary ensemble as K →∞.

APPENDIX H
AMPLIFIED SPONTANEOUS EMISSION NOISE

Following the analysis in [28, Discussion], we can write the
contribution of the kth amplifier to the output noise as

MKR . . .RMk+1Σ0nk, (S78)

where nk ∼ N (0D×1, ID), and Σ0 = diag {σ1, . . . , σD} is
the diagonal matrix of noise standard deviations of the local
uncoupled modes. The corresponding noise correlation matrix
is equal to

Σk = MKR . . .Mk+1Σ
2
0M

H
k+1 . . .R

HMH
K . (S79)

Similar to the analysis in Appendix B, taking an expectation
over all random realizations of {Mk} yields, for 1 ≤ k ≤
K − 1:

E {Σk} =
((

D−1P
)K−k−1

κ0

)
· Γ⃗, (S80)
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where κ0 is the Ng-dimensional mode-group-averaged noise
variances vector:

κ0,i =
1

di

∑
l∈Mi

σ2
l .

The overall expected noise correlation matrix can be written
as: ∑

k

E {Σk} =
(
κ0 +D−1Pκ0 + . . .

· · ·+ (D−1P)K−2κ0

)
· Γ⃗.

(S81)

In the scenario of strong mode scrambling, for large K,
(D−1P)K approaches a rank one matrix. The term (κ0 +
D−1Pκ0 + · · ·+ (D−1P)K−2κ0) tends to a constant times
the vector K1Ng×1. Therefore,

∑
k E {Σk} tends to a constant

times KID.
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