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Abstract—Typical multi-mode fibers exhibit strong intra-group
mode coupling and weak inter-group mode coupling. Mode scram-
blers can be inserted at periodic intervals to enhance inter-group
coupling. The deterministic mode coupling of the mode scramblers,
in concert with the random mode coupling of the fiber spans,
can effect strong random mode coupling between all modes. This
reduces both modal dispersion and mode-dependent loss, thereby
decreasing receiver complexity and increasing link capacity. In
this paper, we analyze the effect of mode scramblers on end-to-
end group-delay and mode-dependent loss standard deviations
in long-haul multi-mode fiber links. We develop analytical tools
in the generalized Jones and Stokes representations. We propose
design criteria for mode scramblers that ensure strong end-to-
end coupling: the mode-group-averaged power coupling matrix
should be primitive and its non-dominant eigenvalues should be
near zero. We argue that when the mode scramblers satisfy these
criteria, the probability distribution of the system transfer ma-
trix asymptotically approaches that of a system with strong ran-
dom mode coupling between all modes. Consequently, group-delay
and mode-dependent loss standard deviations become sufficient
statistics of the eigenvalues of the group-delay operator and the
modal gains operator, respectively. We also show that under certain
conditions on the uncoupled group delays, it is possible to design
self-compensating mode scramblers to reduce group delay accu-
mulation below that of standard strong random coupling.

Index Terms—Group-delay spread, long-haul multi-mode fiber
systems, mode-dependent loss, mode-division multiplexing, mode
scramblers, strong mode coupling.

I. INTRODUCTION

S PACE-DIVISION multiplexing (SDM) can increase capac-
ity, integration, and power efficiency in long-haul optical

coherent communication systems [1], [2], [3]. SDM can be im-
plemented using parallel single-mode fibers (SMFs), uncoupled-
core or coupled-core multi-core fibers (MCFs), or multi-mode
fibers (MMFs). While each of these options has its pros and cons,
mode-division multiplexing (MDM) in MMFs is considered
attractive in achieving the highest level of integration [4], for
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example, by enabling amplification using fewer pump modes
than signal modes [5].

Long-haul MDM systems in MMFs need strong mode cou-
pling to manage modal dispersion and mode-dependent gain
and loss (collectively referred to as MDL) [6]. Strong random
coupling reduces the overall MDL standard deviation (STD),
thereby increasing the average capacity and reducing the outage
probability, and reduces the group-delay (GD) STD (also known
as root-mean-squared GD spread), thereby reducing the digital
signal processing (DSP) complexity at the receiver. Systems
with strong random coupling exhibit GD and MDL STDs pro-
portional to the square root of the length of propagation. Ad-
ditionally, strong mode coupling improves frequency diversity,
which further reduces the outage probability [7], [8].

Graded-index MMFs are often proposed for long-haul MDM
links, owing to their relatively low uncoupled GD STD [9],
[10]. In these fibers, the spatial and polarization modes form
mode groups. The propagation constants of modes in the same
mode group are nearly equal and those in different mode groups
are significantly different. Random perturbations in these fibers
cause strong intra-group mode coupling and weak inter-group
mode coupling [11]. One way of improving inter-group coupling
is to periodically insert mode scramblers along the link [12].
Mode scrambling can be achieved in several ways, for ex-
ample, using offset fiber launches [13], distributed multiple
point-loads [14], long-period fiber Bragg gratings (LPFGs) [15],
[16], multi-plane light converters (MPLCs) [17], and using mode
demultiplexer-multiplexer combinations [18], [19], [20]. Mode
scramblers must have low intrinsic MDL STD, because signals
in long-haul links may pass through hundreds of them. The mode
scramblers with low MDL tend to be highly engineered and have
deterministic transfer functions [16]. The analysis in this paper
focuses on deterministic mode scramblers, such as those based
on LPFGs.

Previous studies to design and analyze mode scramblers
have employed heuristic objectives based on off-diagonal en-
tries of the coupling matrix [16]. However, these criteria are
restrictive, and evaluating mode scrambler performance requires
brute-force multi-section simulations of the end-to-end system
to quantify GD spread and overall MDL. These multi-section
simulations can significantly slow down iterative design pro-
cedures employing performance objectives of end-to-end GD
or MDL STD. There is a need for analytical tools that impose
less restrictive design criteria and enable faster evaluation of
performance objectives.
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In this work, we study systems that interleave deterministic
mode scramblers with GI-MMFs from first principles and de-
velop analytical tools in the generalized Jones and the general-
ized Stokes representations. We derive analytical expressions
for end-to-end GD STD and MDL STD for such systems,
pessimistically assuming no random inter-group coupling in the
fiber. We find that a mode-group power coupling matrix is a
sufficient description of the mode scrambling induced by a mode
scrambler. In particular, the structure and eigenvalues of the
power coupling matrix emerge as the design criteria relevant for
achieving strong coupling. We also provide a rigorous analysis
to incorporate the effects of random inter-group coupling in the
fiber and provide closed-form expressions for the GD STD. We
present simulations of systems with 6 spatial modes (12 spatial
and polarization modes) over 100 spans of propagation, repre-
sentative of long-haul and ultra-long-haul links. We argue that
when the mode scramblers satisfy the aforementioned design
criteria, the combination of deterministic mode scrambling and
strong random intra-group coupling is asymptotically equivalent
to strong random coupling between all modes. Consequently, the
GD and MDL STDs become sufficient statistics of the group-
delay operator and the modal gains operator, respectively, as the
number of spans growns large. We also show that the design
space of mode scramblers includes a self-compensating regime
wherein the GD STD periodically alternates between increasing
and decreasing trends, similar to systems with group-delay com-
pensating fibers. Finally, our GD STD formulae are particularly
useful in designing and optimizing mode scrambler devices,
and can dramatically speed up evaluations of this objective in
iterative design procedures.

The remainder of the paper is organized as follows: Section II
presents the study of GD and MDL STDs in the presence of mode
scramblers in MDM-MMF systems using the generalized Jones
representation under the assumption of strong intra-group cou-
pling and no inter-group coupling in the fiber. Sections II-A and
II-B provide analytical expressions for GD STD and MDL STD,
respectively. Section II-C includes simulation results that verify
the analytical expressions. Section III provides design criteria
for a strong mode scrambler. Section IV presents the study of
GD STD in the presence of non-zero inter-group coupling in the
MMF using the generalized Stokes representation. Section V
presents the equivalence between mode-scrambler-aided cou-
pling combined with strong random intra-group coupling and
strong random coupling between all modes. Section VI discusses
some aspects of long-haul system design with mode scramblers.
Section VII presents the conclusion.

An extended version of this paper [21] includes eight appen-
dices providing derivations of key analytical results.

II. GD SPREAD AND MDL IN THE PRESENCE OF MODE

SCRAMBLERS

A long-haul MDM transmission system using MMF with
periodic amplification and mode scrambling is shown in Fig. 1.
We define a span as a section of MMF between successive
mode scramblers. Each span is of length LS and each span
has identical statistical properties. In the generalized Jones

Fig. 1. Diagram of long-haul MDM transmission link over K spans of propa-
gation with periodic amplification and mode scrambling. MS: Mode scrambler.

representation, X(in)(ω) and Y(out)(ω) denote the complex
baseband input and output electric field vectors, respectively,
in D spatial and polarization modes at an angular frequency ω.
The matrices M1(ω),M2(ω), . . . ,MK(ω) denote the D ×D
frequency-dependent random transfer matrices for the MMF
spans including the amplifiers, and R denotes the D ×D
frequency-independent deterministic transfer matrix of each of
the mode scramblers. The D modes are grouped into Ng mode
groups; modes in a mode group have nearly equal propaga-
tion constants. The set of modes in the ith mode group is
denoted by Mi and the degeneracy is given by di = |Mi|,
where | · | represents the cardinality. The D ×D transfer ma-
trix of the system can be written as a product of the transfer
matrices:

Mtot(ω) = MK(ω)RMK−1(ω)R . . .M2(ω)RM1(ω). (1)

In the remainder of this paper, the ω dependence of the
transfer matrices will not be explicitly shown. For simplicity in
analysis, we assume the mode-averaged gain of each amplifier
perfectly compensates for the attenuation in the preceding MMF
span, and any MDL caused by fiber splices, amplifiers, and
mode scramblers is captured in R. Therefore, we can model
M1(ω),M2(ω), . . . ,MK(ω) by unitary matrices.

In typical GI-MMFs, strong intra-group coupling occurs over
length scales of ∼1-500 m [22], [23]. During fiber manufactur-
ing, processes such as spinning can also increase intra-group
coupling strength. On the other hand, inter-group coupling is
weak and typically occurs over larger length scales. In published
experiments, inter-group coupling has been observed over a wide
range of lengths. Some report significant inter-group coupling
after a few tens of kilometers [9], [10], [24], [25], whereas
others report weak inter-group coupling even after ∼ 100 km
of propagation [26].

In this section, we assume strong intra-group and no
inter-group coupling in the fiber to obtain conservative es-
timates of how the GD and MDL STDs depend on the
mode scrambler transfer matrix R. Therefore, the matrices
M1(ω),M2(ω), . . . ,MK(ω) can be modeled by block unitary
matrices [6]. The assumption of no inter-group coupling yields
robust design criteria for mode scramblers in Section III. Later,
in Section IV, we discuss how inter-group coupling in the MMF
affects the GD STD.

A. Analysis of GD Spread in the Generalized Jones Space

In this subsection, we provide an analysis of GD STD for the
system shown in Fig. 1 using the generalized Jones representa-
tion. The group-delay operator (GDO) of the end-to-end link is

Authorized licensed use limited to: Stanford University Libraries. Downloaded on February 18,2025 at 00:58:02 UTC from IEEE Xplore.  Restrictions apply. 



VIJAY et al.: MODAL STATISTICS IN MODE-DIVISION-MULTIPLEXED SYSTEMS USING MODE SCRAMBLERS 847

defined as [27]:

Gtot = − jM−1
tot

∂Mtot

∂ω
, (2)

where j =
√−1. The GDs τ tot are the eigenvalues of the GDO.

Since we are only interested in the GD STD, we assume that the
eigenvalues sum to zero

∑D
l=1 τtot,l = 0. The GD STD can be

written as

σGD(K) =

√√√√E

{
‖τ tot‖2

}
D

=

√
E
{

tr
(
GH

totGtot
)}

D
, (3)

where E{·} denotes the expected value, ‖ · ‖ represents the
Eulidean or l2-norm, tr(·) denotes the matrix trace operation,
and (·)H denotes the conjugate transpose.

We can derive an analytical expression for E{‖τ tot‖2} as a
function of the number of spans K:

E

{
‖τ tot‖2

}
(K) ≈ K

Ng∑
i=1

σ2
intra,i +KτT

0 Dτ 0

+ τT
0

(
2

K−1∑
k=1

(K − k)D
(
D−1P)k) τ 0, (4)

where τ0,i = LS

∑
l∈Mi

β1,l/di, i = 1, 2, . . . Ng is the average
GD of the ith mode group over a span of propagation, β1,l

is the uncoupled GD per unit length of the lth mode such
that

∑D
l=1 β1,l = 0, σintra,i ∝

√
LSLintra,i is the intra-group GD

STD of the ith mode group with intra-group coupling length
Lintra,i over a span of propagation, D is the Ng ×Ng diago-
nal matrix of mode group degeneracy, D[i, i] = di, and P is
the Ng ×Ng mode-group power coupling matrix of the mode
scrambler. The i, j element of P is defined as the power trans-
ferred by the mode scrambler from mode group j to mode group
i:

P [i, j] =
∑
l∈Mi

∑
m∈Mj

|R[l,m]|2. (5)

The diagonal elements of P indicate the power retained by each
mode group after transmission through the mode scrambler. In
the case without mode scramblers, R and P become diagonal
matrices.

The analytical expression in (4) can be derived by expanding
(2) using the definition of Mtot in (1) and using results from
random matrix theory. The derivation assumes MDL is negligi-
ble, in which case, R and Mtot are unitary. This approximation
is valid when the overall MDL is low. A detailed derivation is
provided in [21, Appendix B].

The expression (4) for GD STD indirectly depends on the
mode scrambler transfer matrix R through the power coupling
matrix P . Eq. (4) simplifies the expression (3) containing D ×
D-dimensional matrices to a sum containing real-valued scalars,
Ng-dimensional vectors, and Ng ×Ng-dimensional matrices.
The first two terms are proportional to K and are independent
of the mode scrambler. The first term is the intra-group coupling
term. The second term is the sum of the squares of the average

delays of the mode groups. The rest of the terms are depen-
dent on the mode scrambler and form an arithmetico-geometric
progression with ratio D−1P .

In the absence of a mode scrambler, R is a diagonal matrix
and differs from the D ×D identity matrix owing to MDL from
the amplifier and from splicing. As a result, D−1P is diagonal
and close to the Ng ×Ng identity matrix, and we get

E

{
‖τ tot‖2

}
(K) ≈ K

Ng∑
i=1

σ2
intra,i +KτT

0 Dτ 0

+ 2
K−1∑
k=1

(K − k) τT
0 Dτ 0

= K

Ng∑
i=1

σ2
intra,i +K2τT

0 Dτ 0,

which is proportional to K2 for large K. Consequently, σGD is
proportional to K. In the presence of a strong mode scrambler,
we expect the sum of the arithmetico-geometric progression to
be much smaller than the first two terms. Therefore, we can
write E{‖τ tot‖2}(K) ≈ K

∑Ng

i=1 σ
2
intra,i +KτT

0 Dτ 0, which is

proportional to K. Consequently, σGD is proportional to
√
K.

B. Analysis of MDL in the Generalized Jones Space

In this subsection, we provide an analysis of MDL STD
for the system shown in Fig. 1 using the generalized Jones
representation. The overall MDL of the system is described
by the eigenvalues of the modal gain operator (MGO) defined
as [28]:

Ftot = MtotM
H
tot. (6)

The MGO is Hermitian-symmetric and can be written as Ftot =

VΛ
(g)
tot V

H , where Λ(g)
tot = diag{egtot,1 , . . . , egtot,D} is a diago-

nal matrix of positive eigenvalues representing the optical power
gains andV is a unitary output beam-forming matrix [28]. With-
out loss of generality, the real-valued logarithmic power gains
gtot = [gtot,1, . . . , gtot,D]T sum to zero, gtot,1 + · · ·+ gtot,D = 0.
The standard deviation of the overall MDL σMDL is a useful
quantity for characterizing MDL [28] and is given by

σMDL(K) =

√
1

D
E

{
‖gtot‖2

}
. (7)

σMDL and gtot are measured in log-power-gain units and can be
converted to decibels by multiplying by γ = 10/ ln 10 ≈ 4.34,
i.e., σMDL(dB) = γσMDL(log power gain). E{‖gtot‖2} can be
written in terms of Mtot as

E

{
‖gtot‖2

}
(K) = E

{
tr
((

logMtotM
H
tot

)2)}
. (8)

In practical systems, wherein the overall MDL is low, the
logarithm can be approximated by the first-order term. Under
this approximation, we can derive an analytical expression for
E{‖gtot‖2}(K):

E

{
‖gtot‖2

}
(K) ≈ 2

(
dT

(
D−1P)K−1

1Ng
−D

)
, (9)
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TABLE I
SIMULATION PARAMETERS

where d is the column vector of mode-group degeneracies, and
1Ng

is the all-ones column vector of dimension Ng . Similar to
the expression for GD STD, (9) is also anNg ×Ng-dimensional
expression and depends on the mode scrambler transfer matrix
R indirectly through the power coupling matrix P . A detailed
derivation of (9) is provided in [21, Appendix C].

C. Multi-Section Simulations

In this subsection, we verify the analytical expressions for
GD and MDL STDs in Sections II-A and II-B through multi-
section simulations similar to those discussed in [6], [29].
The simulation parameters are provided in Table I. The mode
indexing follows decreasing order of propagation constants:
[{LP01,x, LP01,y}, {LP11a,x, LP11a,y, LP11b,x, LP11b,y},
{LP02,x, LP02,y, LP21a,x, LP21a,y, LP21b,x, LP21b,y}]. Nu-
merous fibers are generated using the parameters provided in
Table I. Each of the K spans is modeled as a concatenation of
N = 50 smaller sections with random block unitary coupling
matrices to simulate strong intra-group coupling and no inter-
group coupling. For k = 1, 2, . . . ,K, we have

Mk = Tk,N+1ΛkTk,N . . .Tk,2ΛkTk,1,

where Λk is a frequency-dependent diagonal matrix given by

Λk = diag
{
e(jωβ1,1LS/N), . . . , e(jωβ1,DLS/N)

}
,

and Tk,1, . . . ,Tk,N+1 are frequency-independent and indepen-
dent and identically distributed (IID) random block unitary
coupling matrices. Each of their block-diagonal components is
independently distributed according to the Haar measure.

To verify the GD and MDL STD formulae, we compare the
GD spread and MDL performance in three scrambling scenarios.

1) No mode scrambling: In this case, the mode scrambler
transfer matrix is diagonal, R0 = Λ

(g)
0 , where Λ

(g)
0 =

diag{eg0,1/2, . . . , eg0,D/2} is the diagonal matrix of op-
tical field gains, such that g0,1 + · · ·+ g0,D = 0.

2) Moderate mode scrambling: In this case, we generate
a D ×D unitary matrix V that is almost diagonal and
incorporate MDL, R1 = V0.5Λ

(g)
0 V0.5.

3) Strong mode scrambling: Intuitively, any mode scrambler
with a dense transfer matrix is a suitable candidate. Thus,
we pick the normalized DFT matrix1WD of size D ×D

and incorporate MDL, R2 = W0.5
D Λ

(g)
0 W0.5

D .
In all three cases, g0 is a real-valued vector chosen such that

g0,1 + · · ·+ g0,D = 0 and the per-span MDL STD, γσMDL,0 =

γ
√

tr((logRRH)2)/D = 0.2 dB. It is to be noted that the
sources of MDL, namely, mode scrambler devices, amplifiers,
and fiber slices, are assumed to be lumped at the end of a span.
Amplifier and fiber splice transfer matrices can be modeled
by appropriate non-unitary block-diagonal matrices. Owing to
the assumption of strong intra-group coupling, this modeling
is redundant. We have verified through simulations that in the
absence of mode scramblers, the GD and MDL STDs caused by
such devices are the same as those obtained with a diagonal
transfer matrix R0 when the per-span MDL STD is scaled
appropriately. The power coupling matrices P0, P1 and P2

corresponding to R0, R1 and R2, respectively, are shown in
Fig. 2(a).

For the three scrambling scenarios, the GDO in (2) and the
MGO in (6) are computed after every fiber section and for each
of the fiber realizations. The eigenvalues are then extracted to
obtain numerical estimates of the GD and MDL STDs. Analyt-
ical estimates of GD STD (3) and MDL STD (7) are computed
after every span of propagation.

Fig. 2(b) shows the normalized GD STD σGD(K)/σGD(1)
plotted as a function of the number of spans K. As indicated by
the slope of the log-log plot, in the case of no mode scrambling,
the GD STD increases linearly with the number of spans. In the
case of strong mode scrambling, the GD STD increases with
the square root of the number of spans. These observations are
consistent with the behavior of GD STD in weak and strong
random coupling regimes, respectively. In all cases with low
overall MDL, the estimates from the analytical expression in (3)
closely match the numerical estimates from the simulation. The
discrepancy between the estimates for largeK in the moderately
scrambled scenario can be attributed to a significant overall
MDL, so the assumption that Mtot is unitary does not hold.

Fig. 2(c) shows the normalized MDL STD σMDL(K)/σMDL,0

plotted as a function of the number of spans K. σMDL,0 =√
tr((logRRH)2)/D is the per-span MDL STD. The step-like

pattern of the multi-section simulations results from the MDL
sources being localized at the ends of the spans, unlike modal
dispersion, which is distributed. Overall, in the case of no mode
scrambling, the MDL STD increases linearly with the number
of spans. In the case of strong mode scrambling, the MDL STD
increases with the square root of the number of spans. These
observations are consistent with the behavior of the MDL STD

1The l,m element of the DFT matrix is WD[l,m] = (1/
√
D) ∗

exp (2πj(l − 1)(m− 1)/D).
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Fig. 2. Simulations of three mode scrambling scenarios. (a) Power coupling matrices; (b) GD STD as a function of the number of spans for three scrambling
scenarios. The solid lines correspond to numerical estimates from multi-section simulations and the x-markers correspond to analytical estimates from the formula
(3). The GD STD σGD(K) is normalized by the one-span GD STD σGD(1); (c) MDL STD as a function of the number of spans for three scrambling scenarios.
The solid lines correspond to numerical estimates from multi-section simulations and the x-markers correspond to analytical estimates from the formula in (7). The
MDL STD σMDL(K) is normalized by the per-span MDL STD σMDL,0.

in the weak and strong random coupling regimes, respectively, in
links with low overall MDL. In all cases with low overall MDL,
the estimates from the analytical expression (7) closely match
the numerical estimates from the simulation. The difference
between the estimates for large K in the case with no mode
scrambling can be attributed to large overall MDL (> 13 dB),
where the first-order approximation of the logarithm in (8) is not
accurate.

While we show the comparison of simulation and analytical
results for only one fiber type, we have verified that the formulae
are applicable to fibers with different numbers of modes or mode
groups as long as they show strong intra-group coupling and
weak inter-group coupling.

III. DESIGN CRITERIA FOR A STRONG MODE SCRAMBLER

In this section, we derive sufficient conditions on R to obtain
GD and MDL STDs similar to those of systems with strong
random mode coupling, wherein the STDs are proportional
to the square root of the number of spans [6]. Owing to our
pessimistic assumption of no inter-group coupling in the MMFs,
the estimates of GD and MDL STDs obtained here are typically
higher than in practical scenarios with non-zero inter-group
coupling in the MMFs. In view of the conservative assumption
made, the obtained design criteria are robust.

As the closed-form expressions of GD STD (4) and MDL
STD (7) discussed in Section II depend on higher powers of
D−1P , we are interested in the spectral properties of D−1P
and the behavior of (D−1P)k as k → ∞. In this regard, the
Perron-Frobenius theory for non-negative matrices [30] is quite
useful.

Properties of D−1P: Consider the eigenvalue decomposition
D−1P = UΛU−1, where Λ = diag{λ1, . . . , λNg

} is the diag-
onal matrix of eigenvalues and U = [u1, . . . ,uNg

] is the matrix
of right eigenvectors. Without loss of generality, |λ1| ≥ |λ2| ≥
· · · ≥ |λNg

|. The spectral radius ρ of D−1P is defined as the

maximum absolute value of the eigenvalues, ρ(D−1P) = |λ1|.
The following are the properties of D−1P :

1) D−1P is a non-negative matrix, as is evident from the
definition of P in (5). This means that the dominant
eigenvalue is equal to the spectral radius; λ1 = ρ(D−1P).

2) If the mode scrambler is power conserving, i.e., R is
unitary, then:

a) D−1P is a right stochastic matrix, defined as a non-
negative square matrix, with each row summing to 1.
PD−1 is a left stochastic matrix, defined as a non-negative
square matrix, with each column summing to 1.

b) 1Ng
is a right eigenvector of D−1P with eigenvalue λ1 =

1. dT is the corresponding left eigenvector.

D−1P1Ng
= 1Ng

dTD−1P = dT .

Similarly, 1T
Ng

is a left eigenvector of PD−1 with eigen-
value λ1 = 1. d is the corresponding right eigenvector:

1T
Ng

PD−1 = 1T
Ng

PD−1d = d.

c) λ1 = 1 is also the dominant eigenvalue of D−1P . The
spectral radius, ρ(D−1P) is therefore also equal to 1.

Design Criteria for D−1P: A practical mode scrambler de-
vice is not power-conserving and will exhibit MDL. However, a
well-designed mode scrambler should have low intrinsic MDL.
Hence, the dominant eigenvalue of D−1P will be close to 1.
The conditions on D−1P for a mode scrambler such that the
GD and MDL STDs are proportional to the square root of K
are:

1) D−1P is a primitive matrix.
A matrix B ∈ C

n×n is said to be irreducible if and
only if for any two distinct indices 1 ≤ i, j ≤ n, there
is a sequence of nonzero elements of B of the form
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{B[i, i1],B[i1, i2], . . . ,B[im, j]}. B is said to be prim-
itive if it has real non-negative entries and there exists a
positive integer k for which every entry in Bk is positive.
A primitive matrix is a special case of a non-negative
irreducible matrix such that only one eigenvalue has an
absolute value equal to its spectral radius. It should be
noted that:

P is primitive ⇐⇒ D−1P is primitive.

2) The non-dominant eigenvalues of D−1P should be close
to zero.

The conditions can be understood as follows. In the first
condition, the power coupling matrix implies all mode groups
interact with each other in one or more passes through the
mode scrambler. For example, in the simulations presented in
Section II-C, P0 is a reducible matrix but P1 and P2 are
irreducible matrices. As a result, the GD STD and the MDL
STD corresponding to P0 are higher than those corresponding
to P1 and P2.

Reducibility is a fundamental issue in the problem we are try-
ing to solve. In the simulations in Section II-C, weak inter-group
coupling in the fiber spans leads to a reducible representation of
the GDO and the MGO; each mode group can be considered an
independent subsystem, and the mode-group-averaged delays
and gains would drift apart as the number of spans increases. As
a result, the D ×D GDO and MGO lead to expressions for the
GD and MDL STDs involving Ng ×Ng matrices. In the case
of strong random coupling between all modes, the expressions
could have been simplified to use 1× 1 scalar representations.
(D−1P)k can be expanded as λk

1u1ú
T
1 + · · ·+ λk

Ng
uNg

úT
Ng

,

where úT
1 , . . . , ú

T
Ng

are the rows of U−1. If D−1P is primitive,

then (D−1P)k tends to the rank-one matrix λK
1 u1ú

T
1 as k

tends to infinity. Therefore, the contribution from the terms with
(D−1P)k reduces as k increases.

The second condition is related to the convergence rate. If the
non-dominant eigenvalues are close to zero, then (D−1P)k ≈
λK
1 u1ú

T
1 is valid even for smaller values of k. The non-dominant

eigenvalues of D−1P2 are smaller in magnitude than those of
D−1P1. Hence, the GD and MDL STDs corresponding to P1

are higher than those of P2.
GD STD and MDL STD for a Strong Mode Scrambler: We

can show that GD and MDL STDs are proportional to
√
K

when D−1P satisfies the above-mentioned conditions. In the
low-MDL regime, λ1 ≈ 1,u1 ≈ 1Ng

, ú1 ≈ d/D. If D−1P is
primitive with small non-dominant eigenvalues,

(D−1P)k ≈ λk
1u1ú

T
1 ≈ λk

1

D
1Ng

dT .

From (4) we obtain

E

{
‖τ tot‖2

}
(K) ≈ K

Ng∑
i=1

σ2
intra,i +KτT

0 Dτ 0

+
1

D
τT
0

(
2

K−1∑
k=1

(K − k) λk
11Ng

dT

)
τ 0.

Fig. 3. Non-dominant eigenvalues of D−1P for various P and D =
diag{2, 4, 6}. Each circle represents a different P of size 3× 3 from the set S
such that D−1P is right-stochastic and PD−1 is left-stochastic. The darkened
circles represent P matrices from the set of vertices V(S) of the convex hull S.
The color indicates the GD STD afterK = 100 spans of propagation normalized
to σGD(1). The τ0 parameter is taken from Table I.

Noting that dT τ 0 =
∑D

l=1 β1,l = 0, we get

E

{
‖τ tot‖2

}
(K) ≈ K

Ng∑
i=1

σ2
intra,i +KτT

0 Dτ 0, (10)

which is proportional to K. Therefore, σGD is proportional to√
K. Similarly, (9) becomes

E

{
‖gtot‖2

}
(K) ≈ 2

(
1

D
λK−1
1 dT1Ng

dT1Ng
−D

)
= 2D

(
λK−1
1 − 1

)
≈ 2D (K − 1) (λ1 − 1) , (11)

which is proportional to K. Therefore, σMDL is proportional to√
K.
Eigenvalue Space of D−1P: Fig. 3 shows the dependence

of the GD STD on the eigenvalues of D−1P for Ng = 3,
d = [2, 4, 6]T , and negligible MDL. The other simulation pa-
rameters have been taken from Table I. We generate numerous
P matrices such that D−1P is right stochastic and PD−1 is left
stochastic, evaluate the formula in (4) atK = 100, and study the
dependence of the normalized GD STD on the eigenvalues of
D−1P . The set of all such matrices

S =

{
P
∣∣∣∣P ∈ R

Ng×Ng ,P > 0,

D−1P1Ng
= 1Ng

,1T
Ng

PD−1 = 1T
Ng

}
forms a convex hull. V(S) denotes the vertices of the convex
hull. The eigenvalues of the generated D−1P are of the form
[λ1 = 1, λ2, λ3] such that the non-dominant eigenvalues λ2 and
λ3 are either complex conjugates of one another or both real.
Fig. 3 is a scatter plot of λ2 and λ3. Each solid circle represents
a P from S and the color of the circle indicates the normalized
GD STD σGD(K = 100)/σGD(1).
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The figure shows that the blue region represents strong scram-
bling with normalized GD STD close to

√
K = 10. In this

region, λ2 and λ3 are close to zero and the correspondingD−1P
matrices are dense and irreducible, making them suitable for
scrambling. An example would be the all-ones matrix with the
eigenvalues λ1 = 1, λ2 = 0, and λ3 = 0. On the other hand, the
gray region represents weak scrambling with normalized GD
STD close to K = 100. In this region, λ2 and/or λ3 are close
to 1 and the corresponding D−1P matrices are not sufficiently
dense and are not suitable for scrambling. We also observe a
cyan region around (λ2, λ3) = (−1, 0) that exhibits normalized
GD STD values less than

√
K = 10. This region corresponds to

special P matrices that satisfy τT
0 Pτ 0 < 0, or in other words,

Pτ 0 is anti-correlated with τ 0. This anti-correlation causes the
arithmetico-geometric progression terms in (4) to alternate in
sign. These mode scramblers are “self-compensating”, and are
discussed in Section VI-C.

IV. EFFECT OF INTER-GROUP COUPLING ON GD STD

In Section II, the inter-group coupling length was assumed to
be infinite to obtain a closed-form expression of GD STD (4)
in the generalized Jones representation. While this assumption
yields pessimistic estimates of GD STD and robust design
criteria, it is important to quantify the impact of finite inter-group
coupling that occurs in physical MMFs. Hence, in this section,
we remove this assumption and show that we can obtain a
similar closed-form expression incorporating a finite inter-group
coupling length for the case of D = 12 modes and Ng = 3
mode groups. The mathematical framework of the generalized
Stokes space is preferred here as it conveniently incorporates
random distributed coupling between any pair of modes, making
it suitable for the analytical treatment of accumulated GD STD.

Analysis in the generalized Stokes space involves represent-
ing the D ×D GDO in the basis of D2 − 1 generalized Pauli
matrices [31], [32]. This leads to stochastic differential equations
governing the evolution of the (D2 − 1)× 1 modal dispersion
vector in that basis. Subsequently, the expected modal dispersion
vector and GD STD can be described by deterministic ordi-
nary differential equations (ODEs). Although these equations
contain (D2 − 1)-dimensional vectors and matrices, the GD
STD can be well approximated by equations containing only
(D/2− 1)-dimensional vectors and matrices by assuming that
polarization mode dispersion is negligible and that all mode
coupling interactions are captured by appropriately chosen inter-
and intra-group coupling lengths. Detailed analysis is presented
in [21, Appendix D] and the closed-form expression for GD
STD obtained from this analysis is similar in structure to the
one derived in Section II-A. This enables us to obtain simple
correction factors to include the effect of inter-group coupling
in (4). We verify all the resulting expressions using numerical
modeling.

From the generalized Stokes analysis, we include simple
correction factors in (4) to capture finite inter-group coupling
effects:

E

{
‖τ tot‖2

}
(K)

Fig. 4. GD STD as a function of the number of spans for various inter-group
coupling lengths and two scrambling scenarios. The solid lines correspond to
numerical estimates from multi-section simulations, the dotted lines correspond
to the numerical evaluation of the two ODEs [21, eq. S29] and [21, eq. S30] from
the Stokes analysis, the dashed lines correspond to the analytical formula from
the Stokes analysis [21, eq. S41], and the crosses correspond to the analytical
formula from the Jones analysis with corrections for a finite inter-group coupling
length (12). The GD STD σGD(K) is normalized by the one-span GD STD
σGD(1).

≈ K

Ng∑
i=1

σ2
intra,i +K

2ζ2 (LS , Linter/2)

L2
S

τT
0 Dτ 0

+ τT
0

(
2

K−1∑
k=1

(K − k)D
(
D−1P)k e(− 2(k−1)LS

Linter

))
τ 0

×
(
ζ1 (LS , Linter/2)

LS

)2

, (12)

where Linter is the inter-group coupling length and

ζ1(z, L) = L
(
1− exp

(
− z

L

))
,

ζ2(z, L) = Lz − L2
(
1− exp

(
− z

L

))
.

Fig. 4 shows the normalized GD STD σGD(K)/σGD(1) plot-
ted as a function of the number of spans K for Linter ∈ {2LS ,
20LS , 200LS}. We consider power coupling matrices P0 and
P2 corresponding to the cases with no scrambling and strong
scrambling, respectively, as in Section II-C. To isolate the effects
of inter-group coupling, we consider no MDL in the mode
scrambler transfer matrices. The plot compares the GD STDs
obtained by four methods: the multi-section model, numerical
evaluation of the two ODEs [21, eq. S29] and [21, eq. S30], and
the analytical estimates from the Stokes formula [21, eq. S41]
and from the Jones formula with corrections for finite inter-group
coupling length (12). We see good agreement between the ana-
lytical formulae and the estimates from numerical simulation.
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V. EQUIVALENCE TO STRONG RANDOM COUPLING

In deriving the conditions for a strong mode scrambler
in Section III, we assumed that the mode scramblers with
deterministic transfer matrices are the only source of inter-group
coupling and that the fiber sections are a source of random
intra-group coupling. We showed that such a design can
replicate the effect of strong random coupling between all
modes by analyzing GD and MDL STDs. The question of
whether GD and MDL STDs expressions in Section II are
definitive indicators of system performance is yet unanswered
in this paper. However, as a result of the Central Limit Theorem
(CLT), by combining strong deterministic mode scrambling
with strong intra-group coupling, we expect the probability
distributions of modal delays and modal gains to approach those
in systems with strong random coupling between all modes.

In this section, we (i) demonstrate close agreement between
the tail probabilities of the peak-to-peak GD spread and the
cumulative distribution function (CDF) of the capacity of two
systems: one with strong random coupling between all modes
and the other with mode-scrambler-aided coupling satisfying
the design criteria in Section III, and (ii) discuss the asymptotic
convergence of the distributions of the system transfer matrices
in both cases.

A. Group-Delay Tail Probabilities and Distribution of
Capacity

In terms of system complexity and performance, two dis-
tributions are particularly useful, namely, the tail probabilities
of the peak-to-peak GD spread and the cumulative distribution
function (CDF) of the capacity [33]. The DSP complexity of the
receiver equalizers depends on the statistics of the peak-to-peak
GD spread. The average and outage capacities can be computed
from the capacity distribution, which depends on the distribution
of modal power gains. In the presence of strong random coupling
between all modes, the distributions of the group delays and the
modal gains are well known, and the GD STD and the MDL
STD fully describe the respective distributions [6]. Moreover,
the peak-to-peak GD spread and the GD STD are equivalent met-
rics. Using multi-section simulations, we verify here that these
distributions are similar for both strong random coupling and
strong deterministic mode scrambling with strong intra-group
coupling, thereby validating the applicability of the formulae in
Section II.

Fig. 5 shows the complementary CDF of the normalized
peak-to-peak GD spread afterK = 100 spans of propagation for
mode-scrambler-aided coupling and strong random coupling.
The figure highlights the tail probabilities of the peak-to-peak
GD spread. The mode scrambler transfer matrix is chosen ac-
cording to the design criteria in Section III. To obtain the CDF,
random fiber realizations are generated and the peak-to-peak
GD spread is computed as the difference between the maximum
and the minimum GDs, Δτ = maxl(τtot,l)−minl(τtot,l). The
quantity is then normalized by σGD.

Fig. 6 shows the CDF of the capacity after K = 100 spans
of propagation for mode-scrambler-aided coupling and strong
random coupling for a signal-to-noise ratio (SNR) of 10 dB. The

Fig. 5. Complementary CDF of the peak-to-peak GD spread normalized to the
GD STD after K = 100 spans of propagation. The blue solid line corresponds
to mode-scrambler-aided deterministic coupling for D = 12,Ng = 3,D =
diag{2, 4, 6} and the orange dashed line corresponds to strong random coupling
for D = 12.

Fig. 6. CDF of capacity after K = 100 spans of propagation. The blue
solid line corresponds to mode-scrambler-aided deterministic coupling for
D = 12,Ng = 3,D = diag{2, 4, 6} and the orange dashed line corresponds
to strong random coupling forD = 12, for an SNR of 10 dB. The vertical dotted
lines indicate the minimum capacities.

per-span MDL STD σMDL,0 is set to 0.2 dB. The channel capac-
ity, measured in b/s/Hz, assuming channel-state information is
not available, is defined as [8]

C = log2 det

(
ID − SNR

D
M̂totM̂

H
tot

)
,

where M̂tot = Mtot/α0, and the SNR is in linear units. α0

is the ensemble-averaged mode-averaged gain, and α0 =√∑D
l=1 E{egtot,l}/D. Capacity is lower bounded by Cmin =

D log2(1 + SNR/α2
0D) [8].
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Figs. 5 and 6 are consistent with the assumption that combin-
ing periodic deterministic scrambling with random intra-group
coupling results in the same distribution of modal delays and
modal gains as a system with strong random coupling between
all modes.

B. Asymptotic Convergence of the Distribution of the System
Transfer Matrix

Transfer matrices of fiber sections with strong random cou-
pling can be modeled by random unitary matrices distributed
according to the Haar measure [33]. In a system with strong
random coupling between all modes, wherein each fiber section
effects an independent random unitary transformation, the GDO
can be written as a sum of section-wise GDOs with IID eigen-
vectors. As a result of the CLT, the overall GDO asymptotically
approaches a Gaussian Unitary Ensemble (GUE) with zero trace.

In a system with deterministic mode scrambling and strong
random intra-group coupling, we expect that the system transfer
matrix asymptotically approaches, in distribution, a random
unitary matrix distributed according to the Haar measure. As
a result, the GDO can be written as a sum of the span-wise
GDOs with asymptotically IID eigenvectors. Here too, the CLT
holds and the overall GDO asymptotically approaches a GUE
with zero trace.

Arguments supporting the convergence of the distribution of
Mtot according to the Haar measure on the unitary group in the
presence of strong mode scrambling, and the convergence ofGtot

to a GUE is provided in [21, Appendix G]. We pessimistically
assume no inter-group coupling in the fiber. For simplicity, we
also assume that the mode scrambler transfer matrixR is unitary.
We define a Markov Chain on the system transfer matrix with
the number of spans K as the Markov “time-step”. In this
framework, the system transfer matrix is a continuous-valued
Markov “state” on the compact topological group of D ×D
unitary matrices. We argue that this Markov chain has key
properties like irreducibility, aperiodicity, and recurrence when
R satisfies the design criteria in Section III, and consequently
establishes that the Law of Large Numbers (LLN) and the CLT
hold for a series summation of certain classes of functions of the
Markov state, including the GDO.

The eigenvalue distribution of a GUE with zero trace is well
known [33]. The asymptotic convergence of the GDO therefore
establishes that the mean and variance of the eigenvalues are
sufficient statistics The mean is zero owing to the zero-trace
property and the variance is given by (4). While we assumed that
MDL is not present, it can be argued that when the overall MDL
is low, the distribution of the eigenvalues of the MGO (measured
in decibels) converges to a GUE with zero trace. Although the
analysis in [21, Appendix G] indicates asymptotic convergence,
our simulations demonstrate a rapid rate of convergence to the
limiting distributions. This is supported by the close agreement
shown in Figs. 5 and 6 for K = 100 spans.

VI. DISCUSSION

In this section, we discuss some aspects of long-haul system
design with mode scramblers.

A. Non-Identical Mode Scramblers

The derivation of the analytical expressions in Section II as-
sumed that all mode scramblers have identical transfer matrices.
While this scenario is pessimistic in terms of mode-scrambling
performance, it leads to robust design criteria. In a practical
system, the mode scramblers could have different transfer ma-
trices by design or due to manufacturing variations. In such
cases, the formulae can be modified to incorporate the different
power coupling matrices. In both cases, if individual mode
scrambler devices satisfy the design criteria, then the GD and
MDL STDs will resemble those of a system with strong mode
coupling. A system design can be verified by analytical modeling
using the measured power coupling matrices of fabricated mode
scramblers.

B. Spatial Whiteness of Amplifier Noise

Spatial whiteness of the total amplified spontaneous emission
(ASE) noise is another consequence of strong mode scrambling.
The ASE noises from the amplifiers are not individually spatially
white owing to MDL. The D−dimensional noise vectors from
each amplifier experience mode scrambling and transformation
by the fiber matrices before they reach the receiver. Following
the analysis in [28, Discussion], the noise correlation matrices
can be written in terms of the mode-dependent noise variances of
each amplifier, the fiber transfer matrices {Mk} and R, which
has a form very similar to the terms in the expansion of the
GDO [21, eq. S3]. The equations are provided in [21, Appendix
H]. Equivalently, we can write the noise correlation matrices
as a function of the Markov state. Their expected values are
diagonal matrices and can be computed similarly to the analysis
in [21, Appendix B]. When the number of spans is large, owing
to the LLN, we can argue that the overall noise correlation matrix
converges to a constant times the identity matrix; in other words,
the noise is spatially white.

C. Group-Delay Self-Compensation

A good design for the mode scrambler does not necessarily
solve all system-level problems. Strong mode scrambling is
equivalent to strong random coupling with an effective inter-
group coupling length of LS : σGD(K) ≈ σβ1

√
KLSLinter,eff,

where σβ1
=
√

(β2
1,1 + · · ·+ β2

1,D)/D and Linter,eff = LS . For

optimum performance, the transmission fiber must have low
uncoupled GD STD σβ1

, and the optical devices must have low
intrinsic MDL. Since modal dispersion is a distributed effect,
placing multiple mode scramblers between successive amplifiers
can be beneficial as it reduces the multiplicative factor

√
Linter,eff

in σGD. However, there is a trade-off: the overall MDL will
increase as more mode scramblers are used. Another approach is
to co-design mode scramblers with transmission fibers. This can
potentially result inLinter,eff being less thanLS . This corresponds
to the cyan region in Fig. 3, where the power coupling matrix
is such that Pτ 0 is anti-correlated with τ 0 and exhibits GD
compensating behavior.

Scrambling to reduce the GD spread involves frequently split-
ting and redirecting data signals to different modes such that no
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Fig. 7. Self-compensation with a mode permutator for D = diag{2, 4, 6}.
The solid lines correspond to numerical estimates from multi-section simulations
and the x-markers correspond to analytical estimates from the formula in (3).
GD STD σGD(K) is normalized by one-span GD STD σGD(1). The inset shows
the power coupling matrix P3 used in obtaining the self-compensation curve.

data signal consistently travels in the fastest or the slowest mode.
An optimal solution can be obtained by carefully redirecting data
signals such that they transfer between propagation in fast and
slow modes. This results in a net delay spread that is periodically
minimal. This forms the basis of GD compensation using mul-
tiple transmission fiber types [32], [34], [35]. GD compensation
can also be performed by careful mode permutations. In Fig. 3,
the power coupling matrix corresponding to the minimum GD
STD is

P3 =

⎡⎢⎣0 0 2

0 0 4

2 4 0

⎤⎥⎦ ,

which routes all the power from the first and second mode
groups to the third mode group and vice-versa. We can see
intuitively that this is the best option because the average group
delays of the first and second mode groups are positive, while
the average group delay of the third mode group is negative,
τ 0 = [25.2, 7.05, −13.1]T ns. A matrix R3 with the above
power coupling matrix is the anti-diagonal Exchange MatrixJ12

whose elements are 1 on the anti-diagonal and 0 otherwise. The
appropriate term for these devices is “mode permutators”, as they
do not scramble the modes. The technique of mode permutation
has been proposed in the literature for the management of GD
spread [18], [19], [20] and MDL caused by splices [36].

Fig. 7 shows the normalized GD STD plotted as a function
of the number of spans K for a self-compensating mode per-
mutator with the above power coupling matrix. Similarly to
strong scrambling, the GD STD for the self-compensating mode
permutator increases with the square root of the number of spans
but Linter,eff is less than LS . The alternating pattern in the GD
STD is expected as a result of the anti-correlation of P3τ 0 and
τ 0.D−1P3 has the eigenvalues [λ1 = 1, λ2 = −1, λ3 = 0], and
satisfies the following property: (D−1P3)

k = D−1P3 when k
is odd and (D−1P3)

k = (D−1P3)
2 when k is even. Therefore,

(4) for even K becomes,

E

{
‖τ tot‖2

}
(K) ≈⎛⎝K

Ng∑
i=1

σ2
intra,i +KτT

0 D
(
INg

− (D−1P3)
2
)
τ 0

⎞⎠ ,

which is also proportional to K, similar to the expression for
GD STD for a strong mode scrambler in (10). However, there is
an extra factor of INg

− (D−1P)2 compared to (10); therefore
Linter,eff < LS .

It should be noted thatD−1P3 is an irreducible matrix but not
primitive. Hence, it does not satisfy the conditions of a strong
mode scrambler for arbitrary τ 0. For a different transmission
fiber, the optimum power coupling matrix may differ from
P3, especially if the signs of τ 0 change. We can define an
optimization problem to obtain the best power coupling matrix
for any given τ 0 by minimizing (4) for even and large K. We
start by minimizing (4) for K = 2 spans by formulating the
following optimization problem

minimize
P

τT
0 Pτ 0

subject to P [i, j] ≥ 0, 1 ≤ i, j ≤ Ng

D−1P1Ng
= 1Ng

dTD−1P = dT , (13)

where the constraints enforce that P is a non-negative matrix
andR is a unitary matrix. The constraints are convex and the cost
function is linear inP . Therefore, we have a linear programming
problem. The constraint set is feasible. It is well-known that the
optimum value in a linear programming problem is found on
the boundary of the constraint set [37]. To obtain an optimum
D−1P , we need to only search over the set of vertices of the
convex hull S . If multiple vertices attain the same minimum
value of the cost function, then any convex combination of those
vertices is a valid optimum.

An optimumP obtained for the minimization problem in (13)
does not necessarily minimize the GD STD for K > 2 spans,
wherein the cost function is non-convex inP . However, we have
verified through gradient descent searches in the constraint set
that the optimum P for K = 2 and K > 2 are identical for τ 0

values similar to the one in Table I.
An important challenge for this approach lies in realizing a

device with an optimal power coupling matrix. Possible de-
vice solutions include LPFGs and back-to-back multiplexer-
demultiplexer using photonic lanterns, which require further
study. To obtain maximum benefit, it is also necessary to care-
fully design the transmission fiber to yield a favorable τ 0. Using
mode permutators for self-compensation has limitations caused
by random inter-group mode coupling, similar to GD compen-
sation using different fibers [12]. The GD STD derived from the
Stokes space analysis [21, eq. S41] can be useful in evaluating
the performance of systems designed with this technique. While
this technique optimizes GD STD, its effect on MDL STD needs
further study. These are topics for future research.
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VII. CONCLUSION

In this paper, we studied the effects of the mode scram-
bler transfer matrix on modal dispersion and mode-dependent
gain/loss. Using a generalized Jones representation, we de-
rived analytical expressions for GD STD and overall MDL
STD in terms of the mode-group power coupling matrix for
systems with strong random intra-group coupling and weak
inter-group coupling in the MMF. Through multi-section simu-
lations, we verified the analytical expressions in the low-MDL
regime. We also proposed the following design criteria for a
mode scrambler to obtain GD and MDL STDs proportional
to the square root of the number of spans of propagation:
the power coupling matrix P should be primitive and the
non-dominant eigenvalues of D−1P should be close to zero.
Systems using such mode scramblers exhibit inter-group cou-
pling lengths equal to the span length LS . Using a generalized
Stokes representation, we re-derived analytical expressions for
GD STD to incorporate the effects of inter-group coupling in the
MMF.

We argued that deterministic mode scrambling in the presence
of strong intra-group coupling is asymptotically equivalent to
strong random coupling. We also verified that the tail probabil-
ities of peak-to-peak GD spread and channel capacity match in
the two scenarios. Finally, we discussed the self-compensation
regime wherein the GD STD periodically increases and de-
creases and has an effective inter-group coupling length less
than LS .
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