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Abstract

Previous studies have shown that a wireless sys-
tem using n transmitting and n receiving antennas
can achieve a capacityn times higher than a single-
antenna system in an independent Rayleigh fading
environment. In this paper, we explore the capacities
of multiple-element antenna arrays (MEAS) in a more
realistic propagation environment simulated via the
WISE ray-tracing tool. We impose an average power
constraint and collect statistics of the capacity with
optimal power allocation, C,, and the mutual infor-
mation with an equal power allocation, I ¢4 In addi-
tion, we present expressions for the asymptotic
growth rates Cs/n and lg¢/n asn - e for two cases:
(a) independent fadings and (b) correlated fadings at
different antennas. We find that C,¢/n and I o¢/n con-
verge to constantsC,,* and l¢4*, respectively in case
(a), and to Cy° and | oo in case (b). We observe that
Cui° and quo predict very closely the slopes observed
for simulated channels, even for moderaten (i.e., 16).

[. Introduction

70 wavelengths for the broadside case and 15-20 wave-
lengths for the inline case. The presence of a dominant
line-of-sight component can also affect the MEA capaci-
ties.

Here, we explore the MEA capacities in a more real-
istic propagation environment, where the fadings are not
necessarily Rayleigh, nor independent. We determine the
capacityC, whenthe transmitter knows the chanreeid
optimum power allocatiorfwater-filling) is used. Also,
we compute the mutual informatidg,with equal power
allocation of the MEA system, and we investigate the
performance degradation as compare@jg.

We study the behavior of MEA capacities through
simulation and analysis. We employ the Wireless System
Engineering (WiSE]) [6] software tool to simulate
explicitly the channel response between a transmitter and
a receiver placed inside an office building. We model the
multiple-input-multiple-output (MIMO) Rayleigh-fading
channel as a matriid, and study hovC,s andlqbehave
asn grows large. We show almost sure convergence of
the asymptotic growth rateS,/n andle{n considering
two cases: (a) when fadings between different antenna

Signals propagating through wireless channels expe- pairs are independent and (b) when these fadings are cor-
rience path loss, distortion due to multipath fading, addi- related.

tive noise, and cochannel interference.

These

The remainder of this paper is organized as follows.

impairments, along with the constraints on power and |n Section I, we model the channel as a MIMO system
bandwidth, limit the system capacity. In the past, mul- with flat frequency response. Using this mathematical
tiple antennas have been used at the receiver to combainodel in Section I, we present information-theoretic
multipath fading of the desired signal, e.g., using max- results for the capacity of MEA systems and analyze its
imal ratio combining [1], or to suppress interfering sig- asymptotic growth rate as grows large. In Section 1V,
nals, e.g., using optimal combining [2]. Recent studies we present capacity estimates for the simulated channels
report that using MEAs at both transmitter and receiver and discuss the discrepancies between these results and
increases system capacity considerably over single-the asymptotic capacities predicted by theory. We briefly
antenna systems ([3], [4]). In [4], Foschini and Gans con- describe how WISE is used to represent the indoor propa-

sidern transmitting andh receiving antennas, with i. i. d.  gation environment that our study is based on. Conclu-
narrowband Rayleigh fading between antenna pairs. sions are presented in Section V.

Assuming that a fixed power is allocated equally over all
transmitting elements, the MEA mutual informatidg

is reported to grow linearly witm. An MEA system The following notation will be used throughout the
achieves almost more bps/Hz for every 3 dB increase paper:' for vector transposé, for transpose conjugate,
in signal-to-noise ratio (SNR), compared to a single- |, for the n x n identity matrixE[-] for expectation, and
antenna system, which only achieves one additional underlinefor vectors.

bps/Hz. A. Basic Channel Model

In practice, correlation exists between the signals . . . . .
: . . We consider a single-user, point-to-point communi-
transmitted by or received at different antennas. Correla- __ . . - o
cation channel withn transmitting andn receiving

tion may arise if the antenna elements are not spaced far . .
; . antennas, with no co-channel interference. We assume

apart enough, e.g., Lee pointed out in [5] that the

required antenna spacing to obtain a correlation coeffi-

cient between signals to be less than 0.7 is approximately  WIiSE is a ray-tracing tool that predicts RF propagation in a specific
building, based on off-line experimental measurements.

[I. Channel Model




that the channel response is flat over frequency. This
approximation is reasonable if the communication band-
width, W, is much less than the coherent bandwidth. In
our simulated channels, the maximum delay spjre'ad

24 ns. Since the coherence bandwidth is approximately Cy(1) = lgg(1) =
the reciprocal of the delay spread, the frequency response

can be considered flat as long ¥ is much less than
42 MHz.

We assume that the channel is linear time-invariant
and use the following discrete-time equivalent model:
Y = HX+ Z. (1)
Here, X = [X, Xy, ..., X7]" isannx 1 vector whosgh
component represents the signal transmitted byjthe

antenna. Similarly, the received signal and received noise

are represented by x 1 and
wherey, andz
at theith antenna. The complex path gain between trans-
mitter j and receiver is represented byi;; , far=1, 2,
...nandj =1, 2, ...,n. We further assume that:

* The total radiated power By; regardless of.

« The noiseZ is an additive white complex Gaussian
random vector. Its componentg, i1, 2, ...,n,are
i.i. d. circularly symmetric congIex Gaussian ran-
dom variables with varianc[|Z|"] = NoW

We consider the following two cases:

1.H is known only to the receiver but not the transmit-
ter. Power is distributed equally over all transmitting
antennas in this case.

2.H is known at the transmitter and receiver. Therefore,
power allocation can be optimized to maximize the
achievable rate over the channel.

In this work, we treaH as quasi-statidd is consid-
ered fixed for the whole duration of communication, thus
capacity is computed for each realization fwithout
time averaging. On the other hanH, changes if the
receiver is moved from one place to the other, which
happens over a much larger time scale. The cap&jty
and mutual informationoq associated witiH can be
viewed as random variables.

vectons, , respectively,

lll. Analysis of MEA Capacities

Channel capacity is defined as the highest rate at
which information can be sent with arbitrarily low proba-
bility of error [8]. SinceH is quasi-static, it is reasonable
to associat€, s to a specific realization dfl, for a fixed
Piot and NgW. Throughout our analysis, we assurg
fori, j =1, 2,...,n, are identically distributed with the
same variance’ = E[|H; - E[Hij]|2] . We assume that
v2is the same for all fading gailj for all positions of
the transmitting and receiving MEAs within their respec-
tive work spaces.

L Delay spread here refers to the difference between the arrival times
of the earliest- and latest-arriving rays having appreciable amplitude.

represent the signal and noise received

When n antennas are used, we denote the MEA
capacity and mutual information &,+(n) and lg(n),
respectively. For the case with= 1, the capacity is:

Prot 2
log, %HWVH_” g bps/Hz. (2)

In the high-SNR regime, each 3-dB increasdPgf/NoW
yields a capacity increase of 1 bps/Hz.

A. Capacity With Water-filling Power Allocation

In this section, we assume the transmitter has perfect
knowledge about the channel. Thi®,; can be allocated
most efficiently over the different transmitters to achieve
the highest possible bit rate, which is given by:

HQH'
Cu(n) = man |092def[|n+§wJ bps/Hz, (3)
0

where Q is the nxn covariance matrix ofX
(Q = E[XX1), and must satisfy the average power con-
straint:

n

tr(Q) = y E[X?] < Py 4)
i=1
The achievable capacity ([9]) is:
Cur(n) = 3 log (AH) (5)

i=1

wherep satisfieszBJ—/%g Pt - and thé\;’s are
[ I

the eigenvalues ofiH'

The optimal solution that gives the capacity in (5) is
analogous to the water-filling solutions for parallel Gaus-
sian channels [8].

B. Mutual Information With Equal Power Allocation

Here, we assume that equal power is radiated from
each transmitting antenna, which is a natural thing to do
when the transmitter does not know the channel. The
MEA mutual information is:

P
leg(n) = Iogzdet[ln+MDD—|HT} bps/Hz. (6)

ChNgWC!

C. Asymptotic Behavior of Capacity

We investigate the growth df,andC,s asn grows
large for two cases: (a) when path gailg, are indepen-
dent, and (b) whemi;’s are correlated. In both cases, we
assume that;’s are identically distributed complex

. . . 2 .
Gaussian with variancey”™ . We define the average
received SNR ap = Uszt/ NoW

1. Assuming Independence of Path Gains
For a givenH, the capacity ofn-antenna MEA is
given by (5). TheA's are random variables that depend



onH. For eacn, let F,, be the fraction of\; less than or
equal toA with nantennas:

@)

Note thatleq and C,s depend onH only through the
empirical distribution of\;, F,,(A\). The asymptotic prop-
erties of C,¢(n) depends on how the distributioR,,
behaves a® approaches infinity. Khorunzhy et al, and
Yin studied convergence of, in [10]-[11]. The fol-

FolA) = ZHEA S A

2. Considering Correlation between Path Gains

Let W™ be annxn matrix whose entr&PTjk is the
correlation coefficient between signals transmittedthy
antenna anéth antenna,

Wi = E[HyHL O/ JELH P1E Hy?l

In our model, we assume thatTjk does not depend on
the index of the receiving antenna, ipecan be arbitrary
as long aspO{1, 2 ...,n} . Similarly, let'R be an

(11)

i . . R . .
lowing almost sure convergence theorem is due to the "X N matrix whose entryW",, is the correlation

work by Silverstein et al in [12].

Theorem 1. Define G,(A):= F(nA\). Then, almost
surely, G,, converges to a nonrandom distribution G*,
which has a density given by:

01 1 1
ol(A) = A 4
0

70

0<A<4
8

otherwise.

The scaling byn in the definition ofF, means that the
N; are growing as orden. After rescaling, the distribu-
tion converges to a deterministic limiting distribution,
i.e. for largen, F,(nA\) looks similar for almost all real-
izations ofH. Using this theorem, we derive the asymp-
totic growth rate ofC,s(n) asn - o while keeping the
average received SNRconstant.

Proposition 1. With almost sure convergence,

wa(n)

pal C.sH(p) , where

4
Curlp) = J (logy (KA))" LHHAYAA (9)

4 +
andp satisfiesJ’ BJ—%\% UA)YA = p .
0

If we assume the transmitter always allocates an
equal powerPy,/n to each transmitting antenna, the
mutual information is given by (6). Using Theorem 1, we
can prove the following proposition.

Proposition 2. With almost sure convergence,

leg(n)

- leg{p) , where

4
led(P) = [ (logy(1+aA)” (gHA)IA.  (20)

With the above two propositions, we find thag,(n)
andle{(n) scale likenC,* and nleg", respectively. Using
L'Hopital's rule, it can be shown that at low SNR,
waD

lim =

4,
P =0 I

while at high SNRJim C,[H-1,,H=0 .

p -

between signals at receivpiand receiven,

Wrpq = E[Hpiniq/A/EHHpﬂz]E[|Hqi|2]*
and it is also assumed to be independent of the index of
the transmitting antenng,

To simplify our analysis, we assume that correlation
for Hj’'s when both transmitting and receiving antennas
are different is the product of the two one-dimensional
correlation functions mentioned above:

12)

E[HpinkD]/A/EHHpﬂZ]E[|qu12] = YRy k. (13)

We verify the validity of this assumption through WIiSE
simulation. We estimate correlation bfj's empirically
from 1000 realizations oH for n = 2. Comparing the
product of WT,, and YR, with the actual estimate of
E[H,;H,,H, close agreement is found consistently
between the two over the range of antenna spacings that
we consider.

The asymptotic results in previous section can be
extended to the case when tHg's are correlated, under
certain assumptions on the covariance matri¢&sand
WT. In particular, we assume that the empirical distribu-
tions of the eigenvalues &R and¥' converge to some
limiting distributionsFg and F, respectively. This will
be true if:

» The correlation between the fading at two antennas
depends only on the relative and not absolute posi-
tions of the antennas; and

« The antennas are arranged on a regular lattice, such
as in square grids or linear arrays, and as we scale up
the number of antennas, the relative positions of adja-
cent antennas are fixed.

Under the above conditions, it can be shown that
almost surely, ag - o

Cut(n)
== - Cur(Fr Fr.p) (142)
|
andﬂrg ~ leg(Fr Fr. P) (14b)

where C,:° and quo are constants that depend only on
the SNR and the limiting eigenvalues distributions#t
andWT. While these limits can be computed for arbitrary
SNR [13], we shall focus here only on the case when the



SNR is high. In this regime, particularly simple expres-

sions can be obtained. It can be shown that at high SNR,

Cor(Fro Fr, ) = ng(FR* Fr.p) (15)
1
= log,p + [ log,n"(x)dx
1 0
+f log,F7(x)dx
0
where for eaclx, r]R(x) is the unique solution to:
-1
1 F
| %dy = 1. (16)
on-(x) + xFg(y)

The approximation in (15) is in the sense that the dif-
ference goesto zero gs— » . Itis shown in [13] that
1
[ log;n Rx)dx< -1, (17)
0

with equality if and only if fadings are independent at the

we consider SNRs in the 18-22 dB range. For all our
simulations, we assum#' to be 10 MHz, and\, to be -
170 dBm/HZ, giving a total noise varianc®lyW of -
100.8 dBm. The capacity and mutual informati@),(n)
andlg(n), are computed for different

B. Simulation Results and Discussion

1. Capacity and Mutual Information of MEAs

In this section, we consider square arrays for com-
pactness. The receivers are placed in room A. We con-
sidern=1, 4,9, 16, 25 and 3@l = 0.5A, andp = 18 dB.
The CCDFs foIC,,s(n) are plotted in Fig. 2 (solid lines).
The rightward shift of the curves shows th@j(n)
increases withn, because spatial diversity provides addi-
tional degrees of freedom for transmission. One perfor-
mance indicator of interest is the capacity that can be
supported 95% of the time, i.e., the 5 % channel outage.
Using a single antenna yields,;°°Y1) = 5.9 bps/Hz
while MEAs with four antennas achiev@,;°-°X4) = 20
bps/Hz, which is almost three and a half times larger. For

receiver. Hence this term quantifies the capacity penalty , = 35 we can get as high as 106 bps/Hz.

due to correlation at the receiver. It can also be shown

that
1
[ log,F7 (x)dx <0, (18)
0

with equality if and only if fadings are independent at the

transmitter. This term thus quantifies the capacity penalty

due to correlation at the transmitter.

IV. Ray-Tracing Channel Simulation
A. WIiSE System Model

The CDDFs oflg{n) are also plotted in Fig. 2
(dashed lines). The advantage of having channel knowl-
edge at the transmitter for water-filling to be employed is
illustrated by the horizontal gap between the CCDFs of
Cwf(n) andlgn). For smalin such as = 4, the differ-
ence betweelcwfo'os(4) andleq°'05(4) is only about 1
bps/Hz (about 5% difference). This gap increases wijth
e.g. forn = 36,C,;*"%is 11.3 % larger thal‘bqo'OS_

The relative capacity gain o€y(n) over lg(n) is
sensitive top and n CWfO'OS(n)/ quo' 5(n) are plotted in
Fig. 3. The gain decreases@creases, and it decreases

We use the experimentally based WIiSE ray-tracing 4 5 slower rate for largar. Whenp is small, knowing

simulator [6] to generate the channel matkixfor the
indoor wireless environment of a two-floor office

the channel allows us to allocate power more efficiently
to stronger subchannels and therefore achieve higher

building in New Jersey (see Fig. 1). We place the trans- ¢apacity as compared to equal power distribution over all
mitting MEA on t.he first floor ceiling near the mlddlg pf subchannels. Whemis large, there is sufficient power to
the office building throughout our study. Receiving pe distributed over all sub-channels, therefore the rela-
MEAs are placed with random rotations at 1000 ran- ive strength of the subchannels become less important.
domly chosen positions in Room A, which is atinterme- g n = 4. the ratio decreases from 3mt-10dB to 1 at

diate distance from the transmitter. We consider a carrier p=50dB forCWfO'OS(n)ll eqo.os(n)_

frequency of 5.2 GHz (wavelength, = 0.58 cm). The
MEAs consist of multiple omnidirectional antennas,

arranged either in square grids or linear arrays within

2. Asymptotic Behavior of MEA Capacities
We study how MEA capacity behaves asgrows

horizontal planes. The separation between antenna ele!@rge in simulated channels. We only focus on the high-

ments d is the same for both the transmitting and
receiving MEAs.

Since H varies for different receiver locations, we
estimate the channel variancg, by averaging over 1000
realizations oH, and over all possible antenna paijrsy
i. We assume that the average received $IN&s defined
in Section IlI-C, should be high enough for low-error-
rate communication. If the SNRs too low, we need
excessively long codes to achieve a low error probability.
Practical constraints on current A/D converters limit the
maximum SNR that can be exploited effectively. Thus,

SNR regimep = 22 dB. SinceCy(n)/le(N) is close to 1
for high SNR, we only consider water-filling capacity
Cut-

For simplicity, we consider linear arrays where the
antenna-elements of MEA are equally spaced with two
antenna spacingsl = 0.5A and 5A. The transmitting
MEA is placed orthogonal to the long dimension of the
hallway (“broadside” arrangement as in [5]). We esti-

L Typical two sided power spectral density of thermal noise at 300 K
(room temperature) for a receiver that is modeled as @50@esistance
is -170.8dBm/Hz.



mate the variance’
matrix to computeC,+* andC,° using (9) and (15).

The average capacit@,(n) for differentn is com-
puted using 1000 realizations Hif and is plotted fod =
0.5A and5 A as the solid lines in Fig..4rhe dashed lines

and eigenvalues of the covariancepairs and causes a smaller rate of growth in capacity. Our

simulation results show that for 056 antenna spacing,
the simulated average capaciBy, is only 79% of the
predicted valuaC,,° for a broadside system with= 16

atp = 22 dB. When the antenna spacing is increased, we

represent the capacities approximated using the asymp-see more agreement betwe@; andnC,°. Indeed with

totic growth rates for the correlated case; these ared=5A, Cys(N)/nCy°

straight lines with slop&,°. The gap between simula-

tion results and the asymptotic results grows smaller for

increasingn. Ford =5 A, C,;(n)/n converges to 98 % of
Cwi°Whenn = 16. The dotted line represents the asymp-
totic capacity derived assuming independent fading,
which is a straight line of slop€,*. We observe that
even ford = 5, nC,s* is significantly larger than the
value ofC,(n) found for simulated channels. That is, the
asymptotic results of Section IlI-C-1, which do not
include the effects of correlation, overestimate MEA
system capacity.

If the assumptions in Section 1lI-C-2 hold, and the
correlation is correctly captured by our mod€|,s(n)/n
should converge almost surely ©,° in the limit of
largen. In Fig. 5, we illustrate this asymptotic behavior
of C,s(n)/n at large SNR by plotting the empirical proba-
bility density functions (PDFs) o€,+(n)/n for n =4, 9
and 16 withd = 0.5A (strong correlation betwee;'s)
and d = 5A (less correlation betweemi;’s). As n

98% whenn = 16.
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Fig. 1. Floor Plan of the office building modelled in WIiSE. Fig. 2. The CCDFs of C,; (achieved via water -filling) and
The transmitting MEA is placed with its adjacent sides loq (with equal power allocation) for n =1, 4, 9, 16, 25 &
parallel to x- and y-axes, respectively. The receiving MEA 36 at received p = 18 dB. MEA antennas are arranged in
is placed with a random orientation at each of the sample square grids with d= 0.5 A.

locations in room A.
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Fig. 3. Water-filling gain C,,{°%% / 1oq°%° (solid lines) over Fig. 4. Average capacity C,4(n) versus n. Also shown are
varying average received SNR, p, in room L147 for n=4, nCy¢ and nCy,°, which are asymptotic results for
9 and 16. Antennas at both the transmitter and the independent and correlated Hj;, respectively (see Section
receiver are arranged in square grids in this case. I1I-C). We consider linear arrays with the transmitting
MEA placed parallel to the y-axis (broadside case).
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Fig. 5. Empirical probability density function of the normalized capacity C,s(n)/n for n= 4, 9 and 16. We consider linear
arrays with antenna elements separated by 0.5 A and 5 \. The reference value is C°, as predicted by the asymptotic
theory considering correlated Hj;.
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