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Abstract—Next-generation optical fiber systems will employ
coherent detection to improve power and spectral efficiency, and
to facilitate flexible impairment compensation using digital signal
processors (DSPs). In a fully digital coherent system, the electric
fields at the input and the output of the channel are available
to DSPs at the transmitter and the receiver, enabling the use of
arbitrary impairment precompensation and postcompensation
algorithms. Linear time-invariant (LTI) impairments such as
chromatic dispersion and polarization-mode dispersion can be
compensated by adaptive linear equalizers. Non-LTI impairments,
such as laser phase noise and Kerr nonlinearity, can be compen-
sated by channel inversion. All existing impairment compensation
techniques ultimately approximate channel inversion for a subset
of the channel effects. We provide a unified multiblock nonlinear
model for the joint compensation of the impairments in fiber
transmission. We show that commonly used techniques for over-
coming different impairments, despite their different appearance,
are often based on the same principles such as feedback and
feedforward control, and time-versus-frequency-domain repre-
sentations. We highlight equivalences between techniques, and
show that the choice of algorithm depends on making tradeoffs.

Index Terms—Adaptive signal processing, optical fiber commu-
nication.

I. INTRODUCTION

C OHERENT detection has emerged as one of the key tech-
nologies in the development of high-speed, high-spectral-

efficiency, dynamically reconfigurable optical networks suitable
for long-distance transmission. By recovering the electric field
in the two fiber polarizations, a coherent receiver allows infor-
mation symbols to be encoded in all the degrees of freedom
available in a fiber, leading to improved power and spectral ef-
ficiency.

Interest in coherent optical communications began in the late
1980s. Carrier synchronization was an early challenge due to the
high carrier-linewidth-to-symbol-rate ratio compared to wire-
less and digital subscriber line (DSL) systems. Using narrow

Manuscript received June 08, 2009; revised July 02, 2009. First published
July 24, 2009; current version published February 03, 2010.

E. M. Ip is with NEC Labs America, Princeton, NJ 08540 USA (e-mail: ezra.
ip@nec-labs.com).

J. M. Kahn is with the Department of Electrical Engineering, Stanford Uni-
versity, Stanford, CA 94305-9515 USA (e-mail: jmk@ee.stanford.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JLT.2009.2028245

linewidth lasers and optimized phase-locked loops (PLLs), co-
herent 4-Gb/s binary phase shift keying (BPSK) was demon-
strated in [1], while 310-Mb/s quadriphase shift keying (QPSK)
was demonstrated in [2]. Development in coherent optical sys-
tems was stalled in the 1990s by the invention of the erbium-
doped fiber amplifier (EDFA), which enabled repeaterless trans-
mission over long-haul distances. The combined spectra of the
C-band (1530–1570 nm) and L-band (1570–1610 nm) offer a
bandwidth of 10 THz. But with the rapid growth of Internet
traffic, driven by new applications, such as video and music
sharing, this bandwidth is rapidly becoming fully utilized. Thus,
there is renewed interest in high-spectral-efficiency transmis-
sion.

Another factor contributing to the resurgence of coherent
systems is the recent advance in very large scale integration
(VLSI), which has made digital compensation of fiber impair-
ments at giaghertz baud rates feasible. Digital compensation
can be done either at the transmitter prior to upconversion onto
an optical carrier, or at the receiver after the optical signal
has been downconverted to the electronic domain. In both
cases, provided the baseband signal in the electronic domain is
sampled above the Nyquist rate, the digitized signal has the full
information of the analog electric field, enabling digital signal
processing (DSP) compensation to have no loss in performance
compared to analog impairment compensation performed in
either the optical or electronic domain. DSP has the advantage
that signals can be delayed, split, amplified, and manipulated in
other manner without degradation in signal quality. DSP-based
receivers are already ubiquitous in wireless and DSL systems
operating at comparatively low data rates.

In recent years, research on coherent systems has progressed
at a rapid rate. Real-time coherent detection of polarization mul-
tiplexed 40-Gb/s QPSK (PM-QPSK) was demonstrated in [3],
while 100-Gb/s systems and beyond are currently being devel-
oped. As the baud rate, constellation size, and transmission dis-
tances are increased, DSP algorithms will become increasingly
complex to overcome a diversity of optical phenomena that cur-
rently limit achievable capacity.

A key difference between optical fiber transmission and
other media, such as wireless or DSL, is that signal propagation
is nonlinear, due to the tight confinement of light leading to
high electric field intensity. Although nonlinearity also arises in
radio-frequency (RF) transmission due to amplifier saturation,
this nonlinearity is localized and instantaneous, and can be pre-
compensated effectively. In optical fiber, nonlinearity imposes
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Fig. 1. Fully coherent optical system with digital signal processing at the transmitter and the receiver.

a fundamental limit on channel capacity. Digital compensation
algorithms that can reduce deterministic nonlinear effects, and
thereby increase capacity, are a subject of ongoing research.

Conversely, some channel impairments that degrade capacity
in other channels are unimportant in fiber. For example, multi-
path fading is of critical importance in wireless transmission.
In response, techniques such as orthogonal frequency-division
multiplexing (OFDM) and multiple-input–multiple-output
(MIMO) transmission have been developed. “Single-mode”
fiber (SMF) actually supports two orthogonal polarization
modes, making it a 2 2 MIMO system. Polarization-mode
dispersion (PMD), while somewhat analogous to multipath
propagation, is described by a channel matrix that is unitary
in the absence of polarization-dependent loss (PDL). While
in direct detection (DD) systems, PMD leads to fading, in co-
herent systems, PMD can be compensated losslessly by a linear
equalizer. Nevertheless, coherent optical OFDM (CO-OFDM)
has gained increasing interest, in part, because the transmitted
spectrum can be dynamically optimized, which may be useful
for dense wavelength-division multiplexing (DWDM) systems
impacted by tight optical filtering. OFDM can also reduce the
oversampling requirement compared to single-carrier (SC)
transmission. Hence, techniques borrowed from other areas of
communications often serve somewhat different purposes in
optical fiber.

In this paper, we review DSP compensation algorithms for the
compensation of various fiber impairments. Some techniques,
such as linear equalization for combating chromatic dispersion
(CD) and PMD, are already well understood and have been ex-
perimentally verified, while others, like nonlinear compensa-
tion, are emerging techniques with high computational cost, and
will require further improvement in hardware for practical im-
plementation.

The organization of this paper is as follows. In Section II, we
present an analytical model of a fully digital coherent optical
system that will serve as the basis for the sections to follow. We
review signal propagation in fiber, and derive a linear, time-in-
variant (LTI) systems model that is accurate for low power and
short transmission distances. In Section III, we review SC versus
OFDM transmission. In Sections IV, we discuss linear equal-
izers for compensating LTI impairments, while in Sections V
and VI, algorithms for combating laser phase noise and non-
linear impairments are presented. We will review algorithms

for both SC and OFDM, comparing their complexities and their
scaling with respect to system parameters.

II. THEORY

A. System Model

A canonical model of a fully digital, coherent optical
system is shown in Fig. 1. At the transmitter, a digital signal
processor (DSP) converts input symbols into four digitized
waveforms corresponding to the in-phase (I) and quadrature
(Q) components of the two transmitted polarizations. These are
converted to the analog domain by arbitrary waveform genera-
tors (AWGs), shown here as digital-to-analog (D/A) converters.
Their outputs drive a pair of Mach–Zehnder (MZ) modulators
for performing electrical-to-optical upconversion. The dually
polarized modulated signal is then transmitted over a channel
consisting of multiple spans of SMF, with amplification and
dispersion compensation after each span. At the receiver,
the optical signal is mixed with a local oscillator (LO) laser
through an optical hybrid, followed by balanced detection. The
optical front-end operations correspond to optical-to-electrical
downconversion, and the four outputs are the baseband I and
Q signals corresponding to the two received polarizations.
These are sampled and digitized by analog-to-digital (A/D)
converters, and then processed by a DSP, yielding the output
symbols.

The system shown in Fig. 1 is sufficiently general to de-
scribe all coherent systems of interest in this paper. For example,
the transmitter’s DSP can perform any arbitrary algorithm in-
cluding dispersion and nonlinearity precompensation, and in the
case of OFDM transmission, a subcarrier modulator may be in-
cluded. Similarly, the receiver’s DSP can perform any arbitrary
algorithm including dispersion and nonlinearity postcompensa-
tion, laser phase noise compensation, symbol synchronization,
and in the case of OFDM, a subcarrier demodulator may also
be included. Alternatively, if digital impairment compensation
is only performed at one of the transmitter or the receiver, the
DSP at the unused end may be omitted. In SC transmission, an
additional stage of MZs may be inserted for pulse shaping [4].
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B. Signal Propagation

Signal propagation in a fiber is described by a dual polariza-
tion nonlinear Schrödinger equation (NLSE) [5]

(1)

where and are the linear and nonlinear operators, and
is the Jones vector of the electric

field whose components are complex valued; their real and
imaginary parts correspond to the I and Q of their respective
polarizations. The 2 2 matrices , , , and are the
fiber’s loss, group velocity, dispersion and dispersion slope,
with arbitrary polarization dependence for each parameter.

is a Pauli spin matrix [6]. Typically, the

polarization dependences of , , and are negligible so
they can be replaced by scalars. We can also define a coordinate
system that propagates at the mean group velocity of the two
polarizations, so for a fiber with only first-order PMD, we have

(2)

where

(3)

is a generalized rotation matrix. The columns of are
the Jones vectors of the fiber’s principal states of polarization
(PSPs), while is the differential group delay (DGD) per unit
length. Higher order PMD can be represented by assuming the
fiber is a concatenation of first-order PMD sections, with each
section having independent DGD and arbitrary polarization ro-
tation between the PSPs of adjacent sections [7].

C. Linear Time-Invariant (LTI) Model

In the absence of nonlinearity , integration of (1) in
the frequency domain yields

(4)

where is fiber’s frequency response, and
and are the Fourier transforms of the fiber’s input and
output, respectively. is the DGD. If the fiber has
higher order PMD, (4) can be generalized by setting
to be the left-sided product of the transfer functions of the
individual first-order PMD sections

(5)

Fig. 2. LTI model of a coherent optical system.

For long-haul transmission (Fig. 1), fiber attenuation is typ-
ically fully compensated after each span using EDFAs and/or
Raman amplifiers. Optical amplifiers add spontaneous emis-
sion, which is a noise electric field well modeled as an addi-
tive white Gaussian noise (AWGN) process. The system can
therefore be modeled as shown in Fig. 2 [4], where

and are the baseband,
analog electric fields at the transmitter and the receiver, and they
are related by

(6)

(7)

where is the total frequency response of the
channel, and is the equivalent noise vector. For
studying equalization algorithms for linear impairments, the
most commonly used channel model is

(8)

where is the residual CD at the receiver, and PMD is
restricted to first order. Loss is assumed to be fully compen-
sated by amplification. Qualitatively, CD spreads the energy of
a transmitted symbol to cause intersymbol interference (ISI).
CD impacts both polarizations identically. Polarization effects
comprise a constant rotation that arises from mismatch between
the transmitter and the receiver references and first-order PMD
which causes a relative delay between the two PSPs.

In amplified systems, the term in (6) is dominated by
LO-spontaneous beat noise, whereas in unamplified systems,
LO shot noise dominates. Provided that PDL is negligible, it can
be shown that in the normalized (6), is an AWGN process
with the spectrum

(9)

where is the two-sided power spectral density (psd) per
polarization (or per quadrature per polarization). Since
the noises in orthogonal polarizations are independent, the two
signal polarizations in the LTI model can be treated as two in-
dependent channels and encoded separately without loss in ca-
pacity. From an information theory point of view, polarization
multiplexing is no different to other forms of transmission over
independent channels such as OFDM or WDM. When transmit-
ting over multiple independent and identical channels, signal-to-
noise ratio (SNR) and other parameters are defined as shown in
Table I. In particular, to maintain the same capacity per channel,

Authorized licensed use limited to: Stanford University. Downloaded on February 15,2010 at 11:44:39 EST from IEEE Xplore.  Restrictions apply. 



IP AND KAHN: FIBER IMPAIRMENT COMPENSATION 505

TABLE I
PARAMETER DEFINITIONS FOR SINGLE AND MULTICHANNEL TRANSMISSION

For SC transmission, the effective bandwidth � is the symbol rate � .
For OFDM, the signals of interest are the individual subcarriers. Thus, �
is the received power at the subchannel of interest, and � � ����� is
the effective bandwidth (see Section III for definitions).

the received power needs to increase by the number of chan-
nels (two in the case of polarization multiplexing). Total
capacity is then increased by , while the required SNR per
bit is constant.

In Fig. 2, the impulse responses of the E-O and O-E con-
verters are shown as and , respectively. These are typ-
ically lowpass filters. includes the frequency responses of
the D/As, MZ modulators (including pulse carvers), and optical
multiplexing elements, while includes the responses of op-
tical demultiplexing elements, the balanced photoreceivers, and
the A/Ds.

Although the DSPs at the transmitter and the receiver can
process signals at different rates, in this paper, we will assume a
sampling interval of . The definition of for SC and OFDM
transmission will be clarified in the following sections.

III. SINGLE-CARRIER AND MULTIPLE-CARRIER TRANSMISSION

In SC transmission without precompensation of impairments,
the signal transmitted on each wavelength channel is

(10)

where is the input symbol (a 2 1 complex-valued vector)
transmitted at the th symbol period, and is the pulse shape.
A disadvantage of SC transmission is that given the modula-
tion format and pulse shape, the spectrum is fixed. The spec-
trum of RZ signals was studied in [8]. In a frequency selective
channel, this is a suboptimal power allocation strategy. Consider
the amplitude spectrum of a WDM channel shown in Fig. 3(a),
where attenuation at high frequencies is caused by DWDM com-
ponents such as interleavers and optical add/drop multiplexers
(ROADMs). For fixed total transmitted power

Fig. 3. (a) Amplitude response of channel, (b) optimum power allocation given
by waterfilling, and (c) implementation of optimum spectrum using OFDM.

, the optimal power allocation strategy is given by water-
filling [Fig. 3(b)]. For a channel with no PDL and a noise psd
given by (9), the optimum spectrum is

(11)

where denotes the larger of or zero, and is chosen such
that the shaded region in Fig. 3(b) is .

In multiple-carrier transmission, the available spectrum is di-
vided into subcarrier “bins” [Fig. 3(c)]. By letting the frequency
separation between subcarriers become infinitesimally
small, and by modulating each of the subcarrier with the
correct power, the transmitted spectrum can be made arbitrarily
close to (11). Different modulation formats and error-correction
codes can be used on each subcarrier to approach capacity [9].

Orthogonal frequency-division multiplexing (OFDM) is a
multiple-carrier format where demodulation and modulation
onto subcarriers is performed digitally via the fast Fourier
transform (FFT) and inverse fast Fourier transform (IFFT).
Compared to hardware-based frequency-division multiplexing
(FDM) using unlocked oscillators, OFDM subcarriers are
orthogonal over the duration of an “OFDM symbol” by design,
so the signals transmitted in different subchannels can overlap
in frequency and still be separable, enabling high spectral effi-
ciency. Fig. 4(a) shows the operations performed by the OFDM
modulators and demodulators. At the input, and are
complex-valued vector of length modulating the subcarriers
at th OFDM symbol period in the two signal polarizations.
is usually a power of two in order to exploit the computationally
efficient IFFT algorithm, which converts the frequency-domain
symbols into a time-domain signal. To mitigate against the
channel’s ISI, a cyclic prefix of length is inserted, forming
a vector of “samples” that comprise an “OFDM
symbol” [Fig. 4(b)]. The samples are transmitted serially at a
rate of , where is the sample period. Provided
exceeds the ISI duration, after propagation, the central
samples in the received OFDM symbol is given by the circular
convolution between the transmitted OFDM symbol and the
channel’s discrete-time impulse response. Thus, after stripping
the prefix and taking the FFT, the received symbols can be
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Fig. 4. (a) Dual-polarization OFDM modulator and demodulator, and (b) cyclic
prefix insertion in an OFDM symbol.

recovered using a bank of “single-tap” equalizers which invert
the phase distortions by CD and PMD at each subcarrier [10].

A dual-polarization OFDM signal has the form

(12)

where the approximation assumes the OFDM spectrum is en-
tirely confined within the passband of the transmitter’s D/A,
which has no amplitude or phase distortion. The separation be-
tween subcarriers is , and the OFDM symbol
period is .

Typically, only the center subcarriers are modulated
to prevent image band distortion by the transmitter’s D/A
[Fig. 3(c)]. As the highest frequency component of the dis-
crete-time OFDM signal is less than the Nyquist frequency

, having unused subcarriers is equivalent to oversam-
pling by . Depending on the characteristic of the D/A,

is generally sufficient for OFDM, whereas for
SC, a higher oversampling rate of is needed to
the shallower rolloff of the SC spectrum compared to OFDM
(see Section IV-A).

A disadvantage of OFDM is that insertion of the cyclic
prefix requires the signaling rate to be increased to produce
the same throughput, which leads to noise enhancement. From
a frequency-domain perspective in (12), the cyclic prefix is
equivalent to using only of the available
bandwidth within each subcarrier. is therefore the “band-
width occupancy factor,” and is the effective width
of the guard band between subcarriers. Assuming transmission
is linear and no aliasing effects, OFDM requires the SNR at
the receiver to be higher by to achieve the same bit error
ratio (BER) as SC. Higher launch power makes OFDM more
susceptible to nonlinear effects. Furthermore, for large , the
field of an OFDM signal becomes Gaussian, which has high

TABLE II
PARAMETER EQUIVALENCE BETWEEN SC AND OFDM SIGNALS

Defined in Section IV-A.

peak-to-average power ratio (PAPR). This further enhances
nonlinearity. In Section VI, we will see that nonlinear tolerance
can be improved using dispersion unmanaged transmission.
In this regime, there is little performance difference in perfor-
mance between SC and OFDM.

Table II shows the parameter equivalences between SC
and OFDM transmission. In SC, the fundamental time unit
is the symbol interval , whereas the equivalent time unit
in OFDM is the sample interval .
Since OFDM has subcarriers signaling at a rate of

, we define the “effective symbol rate”
of OFDM to be . In Section IV, we will
show that is a useful parameter for computing the prefix
length requirement, as it enables the formulas derived for SC
to be reused. We note that SC transmission is a special case of
OFDM where and . However, whereas
SC transmission typically often uses a dedicated pulse carver
to control the pulse shape , in OFDM described above,
rectangular pulses of width are
used for all subcarriers.1

IV. LINEAR EQUALIZATION

Since CD and PMD are LTI impairments described by uni-
tary matrices in the frequency domain, they can be compensated
losslessly by a linear equalizer. Depending on the modulation
format (SC or OFDM), the ISI duration of the channel and the
rate of its variation, different equalizer realizations can be used.
In this section, we review time-domain equalization, frequency-
domain equalization, and hybrid structures, highlighting their
advantages and disadvantages, and discuss their computational
requirements. We will review common adaptive algorithms used
with these equalizer realizations.

1It is possible to perform pulse shaping in OFDM. See [11].
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Fig. 5. Normalized residual CD versus equalizer length for oversampling rates of (a) 1, (b) 3/2, and (c) 2. For each plot, the curves denote: o: NRZ, x: 33% RZ,
�: 50% RZ, and �: 67% RZ.

A. Time-Domain Equalizer (TDE)

In SC transmission, we sample each polarization of the re-
ceived signal at a rate of , where
is a rational oversampling ratio

(13)

is the received pulse shape be-
tween the th input and the th output polarizations pair, as de-
fined in Fig. 2, and is noise at the th
output polarization. If successive transmitted symbols, received
samples, and noise samples are written as vectors, and the two
polarization signals are padded together, we note that (13) can
be expressed as an equation of the form , where

is a matrix with a band diagonal structure, where the width
of the band corresponds to the ISI duration. To estimate the

th transmitted symbol, we select the nearest neighbors to
sample which lies closest in time to the peak of the

th symbol. For each polarization, we form the vector

(14)
Linear equalization is then given by a matrix multiplication

(15)

which corresponds to a finite impulse response (FIR) filter
per input–output polarization pair. The equalizer is a
complex-valued matrix of size , and the partitions

are
column vectors of length . A direct implementation of (15)
thus requires complex multiplications by symbol. The
optimum Wiener filter which minimizes mean squared error
(MSE) is given by [12]

(16)

where and . We can further par-
tition these autocorrelation and cross-correlation matrices into
submatrices of size , and vectors

of length . Let be the element at the
intersection of the th row and th column of , and let
be the element at the th row of . Assuming the transmitted
symbols are independent and identically distributed (i.i.d.), it
can be shown that [13]

for (17)

and

for
(18)

where . When a noninteger oversampling rate
is used , there are unique values of corresponding
to all the possible sampling phases relative to the symbol peak.
Thus, the equalizer in fact comprises a bank of matrices
whose coefficients are the unique solutions of (16). These
are used successively by the receiver to recover the transmitted
symbols, at the symbol rate of .

1) Equalizer Length and Oversampling: It was shown in [13]
that when the receiver A/D is well modeled by a fifth-order But-
terworth filter response with a 3-dB cutoff frequency equal to
40% of the symbol rate, a minimum oversampling rate of 3/2
is necessary to mitigate against sampling time offset, and to en-
able the compensation of an arbitrary amount of residual CD
and PMD by increasing the equalizer length. When an insuf-
ficient oversampling rate is used, aliasing by the A/D causes
signal cancellation in the frequency domain. The resulting noise
enhancement leads to unacceptable power penalty [14], [15].
Fig. 5 shows the equalizer length required to overcome residual
CD with 2-dB power penalty. For oversampling rates of 3/2 or
higher, the residual CD compensated increases linearly with ,
but for symbol-rate sampling, the maximum tolerable residual
CD only reaches an asymptote, as the combination of phase dis-
tortion and aliasing causes signal cancellation.

The slope of Fig. 5 describes the increase in computational
complexity as a function of residual dispersion. A channel
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Fig. 6. Frequency-domain implementation of convolution using overlap-and-
save.

whose residual dispersion is has an ISI duration of
symbols due to CD

(19)

Similarly, the worst case ISI arising from PMD depends on the
maximum DGD , and spans symbols

(20)

Finally, all other LTI distortions, including optical and electrical
filtering, may contribute significant ISI over symbols. The
required equalizer length is the sum of the individual ISI dura-
tions multiplied by the oversampling rate

(21)

Unless the dispersion map is carefully controlled to ensure near-
zero residual CD at the receiver, the greatest contribution to (21)
usually arises from .

2) Computational Requirement: Since the matrix multiplica-
tion operation in (15) is evaluated every symbol, the complexity
of direct implementation is complex multiplications per
symbol. A benefit of direct implementation is its low latency,
corresponding to one complex multiplication and ad-
ditions.

B. Frequency-Domain Equalizer (FDE)

For large , FIR filtering is more efficiently implemented
in the frequency domain using the overlap-and-add or overlap-
and-save methods [16]. The overlap-and-save method is shown
in Fig. 6 considering only one polarization. The received signal
at the th polarization is partitioned into overlapping blocks

of length
that is an integer power of two. We perform a -point circular
convolution between and the equalizer by taking the
FFT of the two vectors, multiply them together, and then taking
the IFFT. The last samples of the circular convolution are the
same as the linear convolution. These output samples are saved.
The next input block is obtained by advancing sam-
ples, and the process is repeated.

1) Computational Requirement: A -point FFT or IFFT
requires complex multiplications to compute,
while multiplying by requires a further

complex multiplications. For dually polarized signals, (15)
correspond to four FIR filters, while the number of Fourier
transforms is doubled. Since each block has to be processed
within symbols, the number of complex multiplications
performed per symbol is therefore

(22)
For a given , there exists an optimal block size that minimizes
(22). It can be shown that the complexity per symbol scales as

, whereas the complexity for direct implementation
scales as . A disadvantage of a frequency-domain imple-
mentation is its high latency, which is around com-
plex multiplications and additions, caused by the FFT and IFFT
operations.

Fig. 7(b) shows a block diagram of the FDE for SC. The
equalizer coefficients are stored in the fre-
quency domain. If the LTI model of the channel is valid,
the IFFT operation can be rearranged to the transmitter side
[Fig. 7(c)], and the inputs and outputs of this system are
frequency-domain symbols modulating different subcarriers.
Thus, frequency-domain equalization for SC and OFDM are
analogous. The processing block of length in the FDE for SC
is exactly analogous to an OFDM symbol. Table III summa-
rizes their equivalent parameters. In OFDM, the need to overlap
successive blocks is avoided by using a cyclic prefix whose
duration should exceed the ISI duration. The condition
for this requirement is exactly the same as given by (19)–(21),
provided the equivalent OFDM parameters are substituted for
SC parameters as per Tables II and III. For a given target data
rate, oversampling rate and bandwidth occupancy factor, an
estimate of can be computed, and is substituted into (19)
and (20). The prefix length is then given by (21), with
being OFDM’s equivalent of the SC’s linear equalizer length

.
With no aliasing between the received OFDM symbols, it can

be shown that the input and output signals are related by

(23)

where is the frequency of the th subcarrier,
where , and is the fre-
quency response of the channel given by

(24)

The FDE for OFDM is a bank of 2 2 matrices multiplying the
received symbol at each subcarrier

(25)

It can be shown that the optimum Wiener filter is given by

(26)
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Fig. 7. (a) SC transmission with TDE, (b) SC transmission with FDE, and (c)
OFDM transmission with FDE.

TABLE III
EQUIVALENCE PARAMETERS BETWEEN FDE FOR SC AND OFDM

where is the signal psd ma-
trix, and is the noise psd
matrix. Note that the noise has been scaled by the inverse of

due to the power penalty of the cyclic prefix [11]. If the
noises in orthogonal polarizations are uncorrelated, polariza-
tion-multiplexed transmission is used, the data modulating the
two polarizations have equal power and are uncorrelated, and
the channel’s frequency response is flat over all the subcarriers,
(26) simplifies to

(27)

which is a unitary filter that exactly inverts the phase distortions
of CD, PMD, and other optical or electrical filtering effects.

2) Computational Requirement: The complexity of OFDM
is analogous to that of SC using a FDE, except for the IFFT
which is performed by the transmitter. Since the FFT and IFFT
sizes are , and the number of used subcarriers requiring
equalization is , the transmitter and receiver complexities
are

(28)

and

(29)

Fig. 8. Adaptive TDE.

TABLE IV
COST FUNCTIONS AND DESIRED SIGNALS OF COMMONLY USED

ADAPTIVE ALGORITHMS

C. Adaptive TDE

In practice, the channel is time varying due to mechanical vi-
bration, changes in temperature, and other environmental con-
ditions. In particular, PMD can fluctuate on a time scale of a
millisecond. Hence, the linear equalizer needs to be adaptive.
Adaptive equalizers have been studied in [14] and [17].

The canonical model of an adaptive equalizer is shown in
Fig. 8. The received samples are processed by the linear equal-
izer, whose output is subtracted from the desired signal to
obtain an error signal

(30)

1) Error Signal: The receiver uses this error to adjust the
equalizer taps through a gradient estimation block which com-
putes the coefficient adjustment to minimize a cost function .
Depending on the adaptive algorithm used, the desired signal is
either the training symbols , or the equalizer output passed
through a nonlinear function . Table IV shows cost func-
tions and desired signals for some commonly used adaptive al-
gorithms.

If training symbols are periodically inserted, data-aided (DA)
training can be used, where the error signal
is the difference between the known training symbols and the
equalizer output.

Training symbols reduce throughput, however. There may
also be synchronization issues when the system is first started.
Thus, in many applications, training symbols are omitted.
During normal transmission, for example, the receiver can
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operate in decision-directed (DD) mode where symbol de-
cisions made are assumed to be correct, and the error signal

is the difference between the decision and
the equalizer output. Provided the symbol-error rate is low,
DD operation is exactly analogous to DA. However, a low
symbol-error rate is not always guaranteed, particularly when
the receiver is first started, or after a major interruption such as
the carrier synchronizer becoming unlocked.

In the absence of training symbols, “blind” adaptive al-
gorithms can be used to perform an initial training of the
equalizer. When the symbol error rate becomes sufficiently
low—equivalent to the “eye” becoming open—the system
can switch to DD mode. Blind adaptive algorithms exploit
known properties of the transmitted signal. In phase-modulated
constellations, for example, the signal points lie on a circle,
enabling the use of radius-directed adaptive algorithms. Godard
introduced a family of such algorithms based on minimizing
the cost function , where is a positive
integer and is the target radius [18].
The case of is most commonly used, and is known as
the “constant modulus algorithm” (CMA) [19]. For dual-polar-
ization signals, the CMA can be generalized to minimize the

cost function for each polarization.
Since can be computed for any
arbitrary constellation, the Godard algorithm works also for
nonconstant modulus constellations such as QAM—albeit with
loss of performance for densely packed constellations. Other
algorithms that are suitable for QAM have also been studied,
and they include the multimodulus algorithm (MMA) [20] and
the reduced constellation algorithm (RCA) [21].

2) Coefficient Update: The equalizer coefficients are then
adjusted according to

(31)

where is the step size. The desired signals in Table IV have
been defined such that

(32)

Thus, when the equalizer is at its optimum setting, the error is
orthogonal to the received signal. For noninteger oversampling,
we recall that there are sets of coefficients for each of the pos-
sible sampling phases. The superscript in (31) denotes the th
update of that equalizer. For example, when an oversampling
rate of 3/2 is employed, different coefficients are used for odd
and even symbols, so these are adapted independently. By dis-
sociating the superscript from the symbol number , it is as-
sumed that the equalizer coefficients may not be updated every
symbol. This is particularly important for optical systems where
the latency is much greater than a symbol period, so the TDE co-
efficients may not be adapted every symbol.

When the equalizer coefficients are adapted using the exact
gradient function in (32), the coefficient update method is
known as “steepest descent,” and the rate of convergence is
related to the step size and to the spread of eigenvalues of
the autocorrelation matrix . The use of larger
step size results in faster convergence, but leads to larger
“misadjustment” in the presence of noise [17], and can even

cause the coefficients to diverge. For the DA algorithm, sta-
bility requires , where is the largest
eigenvalue of . By contrast, the time constant for convergence

is limited by the smallest eigenvalue
of corresponding to the slowest mode.

Since is an autocorrelation matrix, its eigenvalues are re-
lated to the channel’s frequency response. As CD and PMD are
unitary transformations, the frequency response is flat except at
the highest frequencies which may be attenuated by optical fil-
ters. Over the frequencies of interest, the spread of eigenvalues
is small, and we have .

3) Least Mean Square: In practice, the exact gradient func-
tion in (32) is difficult to estimate. Many samples may be needed
to gain sufficient knowledge of before an update is pos-
sible. Such a delay may lead to intolerable adaptation speed. In
the least mean square (LMS) algorithm, a single-shot estimate
is used for the gradient

(33)

where the error is defined by (30) and Table IV. As is
available after processing each symbol, the equalizer can adapt
as rapidly as processing latency allows. The time constant is
therefore times the latency of the feedback loop (Fig. 8),
which we define as . The cost of computing the gradient in
(33) is complex multiplications. If the equalizer is adjusted
every symbol, the computational cost of adaptation is 100%.

4) Recursive Least Squares: A class of recursive least
squares (RLS) algorithms achieves faster convergence than
LMS by computing a more accurate estimate of the gradient,
which is recursively updated after each symbol. RLS was
studied in [17], while a modified RLS algorithm suitable for
use with CMA was studied in [22]. RLS suffers from high
complexity due to the need for matrix inversion, and may not be
suitable for implementation at the baud rates of optical systems.

D. Adaptive FDE

To reduce computational cost, an adaptive FDE can be im-
plemented by inserting FFTs and IFFTs into Fig. 8. This is
shown in Fig. 9(a). The coefficients of an FDE are frequency-do-
main values. However, both the received signal and the error are
time-domain values, as the latter is obtained by subtracting the
equalizer output from a time-domain desired signal . To ad-
just the equalizer coefficients, the error must therefore also be
transformed to the frequency domain.

Adaptive FDEs were studied in [23], and were applied to co-
herent optical systems in [24]. It can be shown that the opera-
tions performed by the adaptive FDE are completely analogous
to an adaptive TDE, with the same performance and step size re-
quirement [17]. Thus, for the DA, DD, and blind algorithms, the
error signal can be found using the formulas shown in Table IV.

In real-time implementation, it is not possible to wait for the
entire signal to be received before computing the FFTs/IFFTs.
The received signal is therefore parallelized and processed in
blocks. The most commonly used block size is , where is
the length of the equalizer (which is padded with zero to en-
sure is a power of two). In frequency-domain LMS algo-
rithm (FLMS), the gradient estimation block contains an addi-
tional FFT and IFFT, giving a total complexity of five Fourier
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Fig. 9. Adaptive FDE for (a) SC and (b) OFDM.

transforms. Compared to the nonadaptive FDE, the complexity
per symbol is increased by 150% if the equalizer is adjusted
after every block. A computationally simpler “unconstrained
gradient” algorithm can also used with only 50% complexity
increase over nonadaptive FDE. But this algorithm has worse
performance than standard FLMS [25].

The major disadvantage of an adaptive FDE comes from feed-
back delay, due to the presence of FFTs and IFFTs in the feed-
back loop of Fig. 9(a). As the coefficients cannot be updated
faster than once every feedback delay, the time constant of the
adaptive FDE is much longer than the time con-
stant of an adaptive TDE, which has no FFTs.

E. Adaptive Multidelay Block FDE

It is possible to tradeoff the fast adaptation of a TDE against
the low computational cost of an FDE by using a multidelay-
block frequency-domain (MDF) equalizer [26]. The MDF par-
allelizes the input signal into block sizes of , where is
the number of processing blocks (Fig. 10). Each of the blocks
contains an adaptive FDE. As the FFT/IFFT sizes are ,
the number of butterfly stages in each FFT is reduced by ,
resulting in shorter latency. However, computational cost is in-
creased, as the FFT/IFFT operations have to be performed at
times the rate of a full FDE. Both the FDE and the TDE are
in fact limiting cases of an MDF when the number of blocks
are and , respectively. Table V summarizes
the latency and computational requirement of various adaptive
equalizer structures.

F. Serial TDE/FDE

In most fibers, CD is relatively static, while PMD is time
varying. This enables the use of a hybrid equalizer structure
shown in Fig. 11 to improve the performance of SC systems
[27]. For CD compensation, a nonadaptive FDE is computa-
tionally efficient, while for PMD compensation, an adaptive
TDE has the least latency. This structure is the most widely
used for real-time coherent optical systems. The length of the
TDE is typically between 7 and 13 taps, while the length of the
FDE depends on the residual dispersion in the system. From
(19) and (21), it is observed that each equalizer tap compen-
sates of residual CD. Assuming a baud rate of

Fig. 10. Adaptive multidelay block FDE.

TABLE V
LATENCY AND COMPUTATIONAL COST SCALING WITH EQUALIZER LENGTH

FOR TDE, FDE, AND MDF

Fig. 11. Hybrid FDE-TDE structure for compensating CD and PMD.

25 GHz and an oversampling rate of two, this corresponds to
100 ps/nm per tap at a carrier wavelength of 1550 nm. Equal-
ization of very large residual dispersion arising from disper-
sion unmanaged transmission has been demonstrated. For ex-
ample, Savory et al. [28] successfully detected 42.8-Gb/s QPSK
transmitted over 6400 km of SMF without DCF, while Charlet
et al. [29] detected 112-Gb/s QPSK transmitted over 7040-km
large effective area fiber (LEAF) without DCF, using a 1500 tap
equalizer.

G. OFDM

OFDM can simultaneously exploit the computational advan-
tage of an FDE without the latency of FFTs in the feedback
path by transmitting symbols in the frequency domain. An adap-
tive FDE for OFDM is shown in Fig. 9(b). To compute the
error signal, the formulas in Table IV can be used by replacing
the time-domain signals , , and with their frequency-
domain equivalents , , and in Fig. 9(b). As the de-
sired signal is computed in the same (frequency) domain as the
equalizer coefficients, no transformation is required to obtain
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Fig. 12. Channel model in presence of phase noise and LTI impairments.

the tap adjustment , averting the latency of the FFT/IFFT.
Hence, if system performance is not constrained by nonlinearity,
and transmitter side DSP is available, OFDM can be an attrac-
tive modulation format.

V. LASER PHASE NOISE COMPENSATION

A. Joint Laser Phase Noise Compensation
and Linear Equalization

In the presence of laser phase noise and dispersion, a fiber
channel has the model shown in Fig. 12, where the phase noise
of the transmitter is denoted as , and the phase noise of
the receiver’s LO laser is . The ideal compensator for the
phase noises and dispersion is channel inversion shown by the
dashed box in Fig. 12. For clarity, each block in the channel
inverter is shown as continuous-time functions. In DSP com-
pensation, equivalent operations can be performed provided the
sampling rate exceeds Nyquist’s criterion.

Since rotation by laser phase noise is noncommutable with
dispersion, the order of DSP blocks cannot be changed without
loss of performance. Moreover, as , , and are
time varying, their compensators , , and must
be adaptive. From the previous section, to adapt each block, the
receiver needs to find the error between the desired output of
the block and its actual output. For the Tx phase compensator,
the desired outputs are the transmitted symbols, so is given
by Table IV for various adaptive algorithms. Since the linear
equalizer precedes the Tx phase compensator, the desired output
is , and the error signal is . It can similarly
be shown that for any multiblock nonlinear system, the error
for each block is obtained by backpropagating2 the output error

through all other blocks downstream from it, as shown in
Fig. 13(a).

We observe that the Rx phase noise compensator can be
viewed as a baseband digital LO controlled by a PLL, where
the feedback delay is equal to the sum of the latencies of
all the other DSP blocks, including the linear equalizers in
the impairment compensation and error feedback paths. This
feedback delay is functionally identical to the physical delay
of a hardware PLL. Delay reduces linewidth tolerance. It was
shown in [31, eq. (41)] that for large feedback delays , the
linewidth requirement scales as . Most of the delay
in comes from the group delays of and , as these
have to be causal, so the linewidth requirement will scale as

2The principle of backpropagating the error to adapt a nonlinear system has
been studied in the field of neural networks [30]. The usage of backpropagation
here should not be confused with the nonlinearity compensation technique of
“backward propagation” introduced in Section VI.

Fig. 13. (a) Adaptive compensation of phase noise and LTI impairments, and
(b) iterative compensation using both feedback and feedforward adaptation.

, where is the ISI duration of CD given by
(19). This scaling holds for both SC and OFDM systems, as
the prefix length of OFDM is proportional to . In contrast,
the linewidth requirement for the Tx laser scales as ,
as the feedback path does not enclose the filters and .
Hence, for a receiver whose parameters are adapted using feed-
back only, as shown in Fig. 13(a), the linewidth requirement on
the LO is much more severe than the Tx. Neglecting nonlinear
effects, if Rx phase noise is the limiting factor, 0% residual
dispersion at the receiver is favored.

Laser phase noise tolerance can be increased by eliminating
feedback. Consider Fig. 13(b), where the error feedback path is
relabeled as a “parameter update” circuit. In addition, a copy of
the received signal is delayed by the feedback latency. The re-
ceiver uses the parameters obtained in the initial adaptation (it-
eration #1) and processes the received signal a second time (iter-
ation #2) to produce a better estimate of the transmitted signal.
This additional signal path represents “feedforward” operation.
It is possible to increase the number of iterations of impairment
compensation error estimation parameter update to obtain
better performance.

B. Zero Residual Dispersion

When the channel has zero residual CD, zero differential
group delay, and no PDL, the channel’s impulse response is at
most an instantaneous unitary matrix . The received signal is

(34)
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Fig. 14. (a) Digital PLL, and (b) digital feedforward carrier recovery.

Since has the same statistics as ,
system performance is characterized by

, and the parameter of interest
is the beat linewidth normalized to the symbol interval:

. Thus, Fig. 13(a) reduces to Fig. 14(a), which
is the canonical model of a PLL, with the digital Rx phase com-
pensator being a digital LO, which enables the LO laser to be
free running. Alternatively, a digital LO can be omitted if the
error signal directly controls the hardware optical or electrical
LO instead, which results in a traditional PLL where the feed-
back circuit attempts to make the phase difference

as small as possible [31], [32]. PLLs for coherent op-
tical systems was studied for phase-modulated formats in [31]
and for arbitrary constellation in [33].

Under the same zero-dispersion assumption, the iterative
channel inverter in Fig. 13(b) becomes Fig. 14(b), which is
the feedforward carrier recovery (FFCR) structure studied in
[34]. Since the equalizers and are not needed, the
two phase noise compensators combine into a single phase
estimator that tries to match . FFCR was
studied for phase-modulated formats in [35] and [36] and
arbitrary constellation in [34]. FFCR has better performance
than a PLL because can be optimized using both past and
future received symbols, whereas in the PLL, the LO phase
only depend on past symbols, as it uses only feedback.

Like the adaptive equalizer that mitigates LTI impairments,
the FFCR circuit for mitigating laser phase noise in Fig. 14(b)
also has error computation and parameter update blocks that
serve identical functions to their counterparts in the adaptive
equalizer. Hence, FFCR can use the same techniques of DA,
DD, and blind algorithms to adapt the phase noise compensator.
The first two techniques are identical to Section IV-C, where DA
adaptation uses training symbols to compute the error signal,
while DD adaptation uses output decisions. Blind adaptation
is qualitatively different. Previously, the Godard algorithm was
concerned with the radius of the output signal, and was phase
independent. In FFCR, on the other hand, the output phase is of
critical interest. For phase-modulated constellations, nondata-
aided (NDA) adaptation is commonly used. The Viterbi–Viterbi
algorithm exploits the rotational symmetry of -ary PSK to
estimate phase by raising the signal to the th power and taking

its argument [37]. This avoids the need for detection or training
symbols. NDA adaptation has poorer performance compared to
DD adaptation [34], just as the CMA has poorer performance
compared to DD in adaptive linear equalization.

C. Nonzero Residual Dispersion

In the presence of both dispersion and laser phase noise, the
iterative structure of Fig. 13(b) will yield better performance
compared to Fig. 13(a), but owing to its complexity, it has not
been studied. Various approximations of the iterative structure
have been proposed. Most commonly, the Rx phase noise com-
pensator is omitted due to the complexity of backpropagating
the output error through . In the absence of an Rx phase
noise compensator, the time-varying phase of the LO laser will
“smear” across the linear equalizer coefficients, degrading its
performance. This degradation grows with the increasing dura-
tion of residual ISI. The power penalty of equalization-enhanced
LO phase noise was studied in [38] and [39]. In particular, Shieh
and Ho [39] found that whereas Tx phase noise favors the use
of high symbol rate to reduce , for LO phase noise,
where the ISI duration , the LO linewidth tolerance

scales as , thus favoring a low symbol rate.
With the removal of , the linear equalizer and Tx

phase noise compensator in Fig. 13(a) can be combined into
time-varying linear equalizer . If phase noise
evolves sufficiently slowly, the adaptive algorithms discussed
in Section IV-C will automatically adjust for the evolving
phase, eliminating the need for a separate laser phase noise
compensator. This configuration was considered in [40]. When
residual ISI has long duration, and laser phase noise is signif-
icant, this structure is suboptimal because the time variation
in , which arises from PMD and changes on the order
of kilohertz, is much slower than laser phase noise which
evolves at a rate of tens or hundreds of kilohertz. A simplified
structure to Fig. 13(a), where a slower adapting TDE for PMD
compensation is followed by a faster adapting FFCR for laser
phase noise compensation, was studied in [41].

D. Carrier Recovery for OFDM

For OFDM, the most commonly used technique for laser
phase noise mitigation is by insertion of pilot symbols at
designated subcarriers, as shown in Fig. 15. It is assumed that
the linewidths of the Tx and LO lasers are sufficiently narrow
such that over the duration of an OFDM symbol, the changes
in and are negligible, thus it may be assumed
that is constant. In the absence of noise
and other distortions, can be estimated from the phase of the
received pilot. The receiver can then derotate the entire OFDM
symbol by . In the presence of noise, performance can be
improved by increasing the number of pilots. This technique is
called “common phase estimation” (CPE). The system model
for CPE is shown in Fig. 16. The receiver consists of an FDE
followed by a slow Tx phase noise compensator. LO phase
noise compensation is omitted. It is observed that the operations
performed do not exactly invert the total response of the trans-
mitter, channel, and receiver front end. Hence, even with no LO
phase noise, perfect linear equalization, and negligible prefix
length, the blocks between the Tx laser and the Rx phase noise
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Fig. 15. OFDM carrier recovery using pilot symbols.

Fig. 16. OFDM carrier recovery using pilot symbols.

TABLE VI
LINEWIDTH SCALING FOR DIFFERENT DISPERSION MAPS

AND TRANSMISSION FORMATS

compensator amount to an -point FFT operation, which is a
linear filter with a duration of samples. Therefore, the Tx
linewidth tolerance scales as . It can similarly
be shown that the LO linewidth tolerance has the same scaling
as , since the FDE spreads uncompensated LO
phase noise over the same duration.

From the point of view of individual subcarriers, laser phase
noise degrades performance because it destroys their mutual or-
thogonality, causing intercarrier interference (ICI). The impact
of ICI and CPE has been studied in [42].

The linewidth tolerance scaling for SC and OFDM systems is
summarized in Table VI, assuming the use of FFCR and CPE,
respectively. We note that to avoid unnecessarily large guard
band, , therefore the linewidth requirement
of OFDM is more stringent than those for SC.

VI. NONLINEARITY COMPENSATION

A. Impact on Capacity

In real fiber, signal transmission is distorted by a combina-
tion of dispersion and nonlinearity as described by the NLSE in
(1). For low launch power and short transmission distances, the
channel can be assumed to be LTI, enabling the use of the trans-
mission model shown in Fig. 2, where linear capacity is given
by

b/s/Hz per polarization (35)

For fixed amplifier noise psd, higher launch power is required to
increase . However, whereas SNR is

Fig. 17. Channel capacity: linear regime versus nonlinear regime.

only proportional to power, the nonlinear operator of the NLSE
is , so the power of nonlinear distortion grows
as . Naively, we can consider an “effective SNR” in the
nonlinear regime to be , where

depends on the magnitude of uncompensated nonlinear ef-
fects at symbol detection. So in the nonlinear regime, capacity
is reduced with further increase in launch power [43], [44]. A
characteristic plot of capacity is shown in Fig. 17. Highest ca-
pacity occurs at the boundary between the linear and nonlinear
regimes. The purpose of nonlinear compensation is to partially
mitigate nonlinear effects, reducing , thus delaying the onset of
the nonlinear regime and increasing the optimum launch power
and the achievable capacity.

Traditionally, nonlinear impairments have been categorized
into the following types [45]:

1) self-phase modulation (SPM): nonlinearity arising in a
WDM channel as a result of its own intensity;

2) cross-phase modulation (XPM): nonlinearity arising in a
WDM channel as a result of the intensity of other channels;

3) four-wave mixing (FWM): nonlinearity arising from three
interacting fields at different wavelengths producing a non-
linear field at a fourth wavelength;

4) nonlinear phase noise (NLPN): nonlinear interaction be-
tween signal and noise [46].

The first three types of nonlinear impairments are deterministic
given the full field of a WDM signal, while NLPN is stochastic.
The strengths of the respective nonlinearities depend strongly
on the dispersion map. For example, dispersion causes walkoff
between WDM channels, reducing the efficiency of XPM and
FWM due to field averaging. Conversely, SPM and XPM can
be eliminated using constant amplitude modulation (e.g., PSK
or DPSK) in conjunction with negligible fiber dispersion. How-
ever, using PSK or DPSK restricts spectral efficiency by en-
coding information in only one degree of freedom per polar-
ization. We will also see in Section VI-B that low channel dis-
persion is penalized by NLPN. The capacity of fiber has been
studied for various channels and signal processing assumptions
in [47]–[50]. The results of greatest theoretical interest are those
in [49] and [50], where fiber impairment are compensated using
backward propagation (the best method known), and capacity
is derived from the mutual information between the transmitter
and the receiver assuming the transmitted constellation consists
of concentric PSK rings. For transmission over 20 100-km
spans of SMF, Essiambre et al. [49] predicted a capacity of 5
b/s/Hz per polarization even for a channel with low residual dis-
persion per span [49].
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Fig. 18. Nonlinear phase accumulation depends on local signal amplitude.

B. Channel Inversion Using Backward Propagation

In the absence of noise, it can be shown that the NLSE in (1)
is an invertible equation. Thus, dispersion and nonlinearity can
be simultaneously compensated by solving

(36)

where and are the linear and nonlinear operators defined in
(1). The operation performed by (36) is analogous to passing the
received signal through a fictitious fiber with opposite
signs of loss, dispersion, and nonlinearity, yielding an estimate
of the transmitted signal . Thus, the technique is com-
monly referred to as “backward propagation” or “backpropaga-
tion” (BP).

In the context of (36), CD and PMD compensation—whether
performed optically using DCF or digitally using a linear equal-
izer—can be viewed as simplified BP taking only into account
the linear operator. Similarly, in midspan phase conjugation
[51], the second half of the transmission link performs BP on
the first half.

BP is an attempt by the receiver to reconstruct the signal’s
profile at every point in the fiber in order to undo the correct
nonlinear phase shift that was incurred during forward propa-
gation. In the special case of zero-dispersion fiber, the signal
maintains its shape throughout transmission except for distor-
tion by amplifier noise. Hence, the received or transmitted signal
is a good estimate of the signal profile through the channel, and
it is possible to compensate nonlinearity by derotating the re-
ceived (or transmitted) signal by a phase proportional to its in-
stantaneous amplitude. Nonlinear derotation (NLD) was studied
in [52], where it was found that compensating half the non-
linear mean phase shift reduces NLPN variance
by 6 dB. In practice, submarine channels that use low-disper-
sion fibers and near-perfect dispersion compensation after every
span to keep accumulated dispersion within a symbol are well
modeled as “zero dispersion,” hence NLD can improve perfor-
mance by about 1 dB [53], [54]. For channels where accumu-
lated dispersion exceeds a symbol period, significant interac-
tion between dispersion and nonlinearity occurs. “Intrachannel
four-wave mixing” (IFWM) causes NLD to fail [55] (Fig. 18).

BP was first studied as a transmitter-side electronic precom-
pensation algorithm in [56]–[58] [Fig. 19(a)], since the full com-
plex electric field is always available at the transmitter as the
modulator drive signal (Fig. 1). In a coherent system, the elec-
tric field is also available at the receiver. Hence, receiver-side
electronic BP can also be performed in DSP, and was studied
in [55] and [59] [Fig. 19(b)]. The operations performed by the
transmitter and the receiver in a coherent system with nonlinear
compensation are shown in Fig. 20. Note that NLD is considered

Fig. 19. (a) Transmitter-side backward propagation, and (b) receiver-side back-
ward propagation.

Fig. 20. Nonlinear compensation transmitter and receiver.

as a special case of BP. As BP simultaneously compensates LTI
impairments and Kerr nonlinearity, the only other DSP opera-
tion required is laser phase noise compensation. In practice, if
BP does not take into account all the parameters of the channel,
such as unknown PMD in the fiber, a linear equalizer can be in-
serted following BP to compensate the residual effects.

Since BP (including its NLD approximation) is only con-
cerned with the electric field, it is a universal compensation al-
gorithm independent of the modulation format, which is appli-
cable to both SC and OFDM formats, and can even be used
for WDM signals. Simplified versions of Fig. 20 have been
employed. For example, transmitter-side NLD was studied in
[60], receiver-side NLD was studied in [61], while Lowery [62]
showed that performance can be further improved by splitting
NLD between the transmitter and the receiver.

In BP, the DSP computes a numerical solution to the NLSE,
usually via a split-step Fourier method (SSFM) [63], which di-
vides the fiber channel into sections (Fig. 21). To backpropagate
the signal through a section of fiber which extends from to

, we can use the noniterative, asymmetric SSFM (NA-SSFM)
[Fig. 22(a)]

(37)

or we can use a more accurate iterative, symmetric SSFM (IS-
SSFM) [Fig. 22(b)]

(38)
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Fig. 21. (a) Forward and (b) backward propagation in a fiber channel modeled as the concatenation of � sections.

Fig. 22. Backward propagation for one section of fiber using the (a) nonitera-
tive asymmetric SSFM, and (b) iterative symmetric SSFM.

The latter algorithm is symmetric because the linear operator
is split into two equal parts to be evaluated on either side of the
integral of the nonlinear operator over the length of the fiber sec-
tion. Note in (38) that this integral has been approximated using
the trapezoidal rule [63]. An iterative algorithm is required to
solve (38), as depends on , whose value is initially
unknown. In the NA-SSFM, the need for iteration is removed
by approximating the integral of with a one-sided rectan-
gular rule. The IS-SSFM is more accurate than the NA-SSFM
but is more computationally expensive.

Generally, the linear operator is evaluated in the frequency
domain as an all-pass phase filter

(39)

where was defined in (3). The nonlinear oper-
ator is most easily evaluated by first transforming into cir-
cular polarization coordinates , where

, and then applying a nonlinear phase

shift in the time domain given by

(40)

(41)

(42)

Finally, we transform back to linear polarization coordinates

(43)

Solving the SSFM requires using FFTs and IFFTs to switch
between frequency and time domain to apply the linear and non-
linear operators, which accounts for the algorithm’s high com-
putational cost.

In (36), is the amount of nonlinearity compensated
at each step. Its optimum value depends on system parameters,
and is found by numerical simulation. Generally, when disper-
sion unmanaged pseudolinear transmission is used, and noise
is small, the optimum is closer to one, as there is increased
confidence that the nonlinear compensation performed at each
step undoes the correct phase rotation. Any uncertainty in signal
amplitude arising from channel distortions that cannot be mea-
sured will degrade performance. These include AWGN, uncom-
pensated PMD, and numerical error.

Since PMD is caused by random fiber birefringence, and is
a time-varying effect with a complicated mathematical descrip-
tion, the exact PMD vector through the channel is difficult to
estimate. PMD can be suppressed by using better fibers with
low PMD. Typical SMF have with PMD as low as 0.05 ps/ km.
Even for a transmission distance as large as 10 000 km, the mean
PMD is only 5 ps. Thus, assuming a maximum instanta-
neous PMD three times the mean value, remains
less than one for 100-Gb/s transmission using polarization-divi-
sion multiplexed QPSK (PDM-QPSK), so PMD is not a limiting
effect—at least for backward propagating a single wavelength
channel—and may be mitigated by the post-BP linear equalizer
shown in Fig. 20.

Numerical error arises as a result of the digital SSFM solu-
tion diverging from the true NLSE solution. This can be caused
by using an insufficiently high oversampling, or using a step
size that is too large. The sampling rate should satisfy Nyquist’s
criterion, noting that the signal bandwidth may be higher than
expected since nonlinearity creates new frequencies. In [55], it
was found that the oversampling rate may need to exceed two
to suppress aliasing effects. In the receiver shown in Fig. 20,
different sampling rates can be used for the different processing
blocks. The step size requirement for a target global accuracy of
the SSFM has been studied [64], [65].

Since BP involves applying multiple iterations of the linear
and nonlinear operators, its performance is sensitive to any in-
accuracies in their representations. For example, the linear op-
erator in (37) is ultimately implemented as an equalizer of finite
length (Section IV), where it is critical to minimize the equal-
izer’s amplitude distortion [66].

As an example of the increased nonlinear tolerance obtained
with BP, Fig. 23 compares linear equalization with BP for
107-Gb/s SC transmission using PDM-QPSK, and for OFDM,
where the channel consists of 25 80-km spans of SMF.
The cases of perfect dispersion compensation, [0% residual
dispersion per span (RDPS)], and no dispersion compensation
(100% RDPS) are considered. For 0% RDPS using linear
equalization only, single-carrier outperforms OFDM because
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Fig. 23. Performance of BP versus linear equalization for (a) SC and (b) OFDM transmission at 0% RDPS, and (c) SC and (d) OFDM transmission at 100%
RDPS.

of the high PAPR of the OFDM. The use of BP reduces their
performance difference. More importantly, significantly im-
proved performance is observed with dispersion unmanaged
transmission. This is due to: 1) the DCF incurring attenuation
and nonlinearity, and 2) residual dispersion enhances walkoff
between signal and out-of-band noise, reducing their interac-
tion. The benefit of dispersion-unmanaged transmission has
been observed in system simulations in [55] and [67], and
experimentally in [29].

For WDM systems, BP can also be used to overcome de-
terministic cross-channel nonlinearities; in Fig. 23, OFDM is
merely a special case of WDM where the subcarriers are orthog-
onal and closely spaced, so “SPM” in an OFDM signal incor-
porates all the effects of XPM and FWM between subcarriers.
The key limitation to backward propagating a full WDM elec-
tric field is that the signal bandwidth may be many terahertz. It
is possible to use a bank of phase-synchronized LO lasers for
reconstructing the total field of the WDM signal, and then to
perform a total field BP. Alternatively, since dispersion renders
FWM negligible, BP can be performed individually for each
wavelength by solving their reverse NLSEs, taking into account
nonlinear coupling via the nonlinear operator. This results in a
coupled-field BP approach that facilitates a parallel architecture,
and can compensate XPM but not FWM. Both approaches were
studied in [59].

VII. CONCLUSION

The ultimate impairment compensation method for a given
communications channel is by channel inversion. For optical
fiber where signal propagation is impaired by dispersion and
Kerr nonlinearity, channel inversion is given by backward prop-

agation of the nonlinear Schrödinger equation. The phase noises
of the transmitter and the receiver local oscillator lasers can be
mitigated using phase noise compensators inserted before and
after backward propagation.

Overcoming time-varying impairments such as polarization-
mode dispersion and laser phase noise requires adaptive signal
processing. Adaptive algorithms use the error between the de-
sired and the actual output of a function block to train its pa-
rameters, with the objective of minimizing a predefined cost
function. Depending on whether the desired output is derived
from the transmitted symbols, estimates of those symbols, or a
priori knowledge of the symbols statistics, decision-aided, de-
cision-directed, and blind algorithms can be implemented. For
a general multiblock nonlinear system, the error for each block
can be found by backpropagating the error at the channel inver-
sion output.

Feedback delay compromises the performance of adaptive al-
gorithms. In particular, equalization-enhanced laser phase noise
penalty reduces the linewidth tolerance on the LO laser. Iterative
channel inversion employing feedback and feedforward adapta-
tion can lead to improvement in performance.

System design involves making tradeoffs. One such tradeoff
is between computational cost and latency. In optical fiber, LTI
impairments are most simply described in terms of frequency, so
linear equalization has low complexity when performed in the
frequency domain. Conversely, Kerr nonlinearity has the sim-
plest description in time; thus, nonlinear phase derotation is best
performed in the time domain. Since the symbols of interest in
single-carrier transmission form a temporal signal, FDEs have
high latency compared to TDEs, due to the need for Fourier
transforms.
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Another tradeoff is in dispersion map design. Nonlinearity
suppression favors using dispersion unmanaged transmission,
whereas laser phase noise mitigation favors zero residual dis-
persion at the receiver.
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