
Direct-detection mode-division multiplexing
in modal basis using phase retrieval
SERCAN Ö. ARIK* AND JOSEPH M. KAHN

Stanford University, E. L. Ginzton Laboratory, Department of Electrical Engineering, Stanford, California 94305, USA
*Corresponding author: soarik@stanford.edu

Received 13 May 2016; revised 9 August 2016; accepted 10 August 2016; posted 10 August 2016 (Doc. ID 265153); published 9 September 2016

Mode-division multiplexing (MDM) can increase the
capacity of direct-detection short-reach systems in propor-
tion to the number of modes employed. MDM requires
compensation of modal crosstalk at a transmitter or receiver
by the multi-input multi-output (MIMO) signal process-
ing. We show that the channel estimation required
for the MIMO processing in a basis of modes can be ex-
pressed as a phase retrieval problem. We propose three
techniques for the estimation: sparse training sequences,
convex optimization (CO) and alternating minimization.
We demonstrate the superior performance of the CO
technique. © 2016 Optical Society of America

OCIS codes: (060.2330) Fiber optics communications; (060.4230)

Multiplexing; (070.1170) Analog optical signal processing.
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Multi-mode fibers (MMFs) traditionally have been used in
short-reach links without exploiting the plurality of modes
[1]. In an MMF supporting D orthogonal propagating
spatial-polarization modes, the information throughput can
be increased up to D-fold by multiplexing in the modal degrees
of freedom [2]. A simple, but suboptimal, approach is mode-
group-division multiplexing (MGDM), which maps/demaps
data streams to/from groups of modes having nearly degenerate
propagation constants. MGDM depends on minimizing cou-
pling between the mode groups by careful link design [3,4].
In MGDM, the number of mode groups available for multi-
plexing is much less than the number of modes, scaling
roughly as

ffiffiffiffi
D

p
for large D. A throughput increase proportional

to D can be obtained using mode-division multiplexing
(MDM), which maps/demaps data streams to/from individual
propagating modes. A major challenge to MDM is posed by
coupling between modes, which causes crosstalk between
multiplexed data streams. Mode coupling within a group
(intra-group coupling) is typically much stronger than that
between different groups (inter-group coupling) [5].

MDM systems typically compensate for crosstalk using adap-
tive channel estimation and multi-input multi-output (MIMO)
signal processing. In long-haul MDM systems using coherent
detection, both the intensities and phases of received modal
fields are available for the estimation [6]. In short-reach systems,

direct detection (DD) is preferred for its low cost. Since only the
intensities of the received modal fields are available in DD sys-
tems, the MIMO channel estimation methods used in coherent
systems are not applicable. Prior work on DD-MDM has as-
sumed that multiplexed data streams are mapped/demapped
to/from spatially non-overlapping regions of the multi-mode
beam, and theMIMO signal processing is performed in the basis
of spatial samples [7,8]. This approach does not enable the
MIMO signal processing to be performed separately for different
mode groups, which may yield good performance while greatly
reducing complexity in the systems having negligible inter-group
coupling. In this Letter, we study DD-MDM link architectures
and MIMO estimation techniques using a modal basis, which
enable separate processing of different mode groups, and may
yield throughput approaching DD capacity limits.

Three canonical link architectures for DD-MDM in a
modal basis are shown in Figs. 1(a)–1(c). In all cases, D data
streams are mapped to/from D propagating spatial-polarization
modes using optical multiplexer/demultiplexer devices, which
can be implemented with low loss and high modal selectivity
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Fig. 1. DD-MDM system with (a) digital MIMO precoding at the
transmitter, (b) optical MIMO precoding at the transmitter, and
(c) optical MIMO equalization at the receiver.
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[9]. The three schemes differ in the placement and method of the
MIMO signal processing used to compensate for modal cross-
talk. Digital MIMO precoding, shown in Fig. 1(a), requires
high-speed digital signal processing and digital-to-analog conver-
sion, and a dual-quadrature modulator for each mode. Optical
MIMO precoding and equalization, shown in Figs. 1(b)
and 1(c), respectively, may be performed without fundamental
loss using arrays of Mach–Zehnder interferometers [10] or
micro-ring resonators [11]. Although intensity modulation is
employed, dual-quadrature modulators are required in Fig. 1(c)
to generate complex-valued training sequences for some estima-
tion methods. In Fig. 1(b), single-quadrature modulators are suf-
ficient, as complex-valued training sequences can be obtained
with the aid of the MIMO precoder, which is not otherwise used
during training. All three options in Figs. 1(a)–1(c) require
high-speed analog-to-digital conversion and computation for
the channel estimation.

We assume the link is sufficiently short so that the frequency
selectivity of the modal dispersion is negligible. (The generali-
zation to frequency-selective channels may employ frequency-
selective digital or optical MIMO processing.) The transmitted
and received baseband modal field envelopes for an nth
sequence are given by

y�n� � M�n�HP�n�x�n�; (1)

where x�n� is a D × 1 transmitted vector, P�n� is a D × D trans-
mitter MIMO precoder matrix, H is a D × D channel transfer
matrix, M�n� is a D × D receiver MIMO equalizer matrix, and
y�n� is a D × 1 received vector. Assuming a thermal noise-
limited DD receiver, a photocurrent proportional to d�n�i �
jy�n�i j2 � n�n�i is obtained for each mode, 1 ≤ i ≤ D. The ad-
ditive noise n�n� is temporally white and has a multivariate
Gaussian distribution with mean 0 and covariance Iσ2, where
I is a D × D identity matrix. The system electrical signal-
to-noise ratio (SNR) is defined as

SNR �
��X

D
i�1

jy�n�i j2
�
∕�D · σ�

�
2

; (2)

where h i denotes averaging over training sequences. Since (2) is
proportional to the square of the optical power per mode, a
1 dB change of the optical power per mode corresponds to
a 2 dB change of 10 log10�SNR�.

We focus first on systems using transmitter MIMO precod-
ing, as shown in Figs. 1(a) and 1(b). Initially, we choose P�n� �
I andM�n� � I, and we estimate P�n� using training sequences.
The estimation of M�n� is not possible here. Since DD causes
loss of a phase common to all modes, the best estimate of the
channel is

H̃ � D ·H; (3)

where D � diag�ς� is a diagonal unitary matrix. To fully com-
pensate for crosstalk, a MIMO equalizer must yield
M�n� ·H � Γ, where Γ is a diagonal matrix. For the best case
(3), M�n� � Γ · eH−1D−1. To determine M�n�, there must be a
unique decomposition of eH in the form Λ · B, where Λ is a
diagonal unitary matrix,Λ · D � I, and B is an arbitrary matrix.
However, there are infinitely many decompositions of H̃ in the
form Λ · B and Λ · D ≠ I for all, except for Λ � DH. Hence,
M�n� cannot be identified. On the other hand, as a MIMO pre-
coder, ideally eH−1 can be used to fully compensate for crosstalk
becauseH · eH−1 � D−1, which is a diagonal unitary matrix. The

estimation of eH involves phase retrieval, as the phase information
is extracted from the measured intensities of the inner products
(rows of eH ) using known vectors (training sequences x�n�).

Second, we focus on systems using receiver MIMO equali-
zation, as shown in Fig. 1(c). While estimating the MIMO
equalizer M�n�, the knowledge of eH is used and, hence, the es-
timation of the MIMO precoder is a prerequisite. In addition,
the application of known MIMO equalizer masks is required.
We showed above that when M�n� � I, the ambiguity of the
factor D � diag�ς� in (3) cannot be avoided. By using MIMO
equalizer masks M�n� ≠ I (which are not necessarily related to
channel estimates), modal interferometry is performed, and
D � diag�ς� can be estimated up to an overall scalar phase fac-
tor. As a MIMO equalizer, ideally eH−1 · D can be used to fully
compensate for crosstalk, since eH−1 · D ·H � I. For the
estimation of ς, we observe that y�n�d in (1) can be expressed,
for each 1 ≤ d ≤ D, as

y�n�d �
X

D
i�1

ψ�n�
d i · ς�i ; (4)

where ψ�n�
d i � M�n�

d i · α�n�
i and α�n� � eHx�n�. Given x�n�, eH,

and M�n�, the estimation of ς involves phase retrieval, as the
phase information is extracted from measured intensities of
the inner products of ς with known vectors ψ�n��

d .
We now present three techniques to estimate eH and/or ς

and to enable transmitter or receiver MIMO processing.
(1) Sparse training sequences (STSs): STSs yield the sequen-

tial estimation of the phases and intensities through their sparse
structures [12]. Each batch of D2 sequences contains the
following three subsets [12]:

S1;ia
1≤i≤D

� δa;i ; (5)

S2;ika
1≤i≤D;i<k<D

� δa;i∕
ffiffiffi
2

p
� δa;k∕

ffiffiffi
2

p
; (6)

S3;ika
1≤i≤D;i<k<D

� δa;i∕
ffiffiffi
2

p
� jδa;k∕

ffiffiffi
2

p
; (7)

where δ is the Kronecker delta.
To estimate eH, batches of STSs are transmitted sequentially.

For the sth batch (where �s − 1�D2 � 1 ≤ n ≤ sD2), sequences
(5)–(7) yield the measurements

m�s�
1;ia � jHaij2 � n1;ia; (8)

m�s�
2;ika � 0.5�jHaij2 � jHakj2�

� jHaijjHakj cos�φ�Hai� − φ�Hak�� � n2;ika; (9)

m�s�
3;ika � 0.5�jHaij2 � jHakj2�

� jHaijjHakj sin�φ�Hai� − φ�Hak�� � n3;ika; (10)

respectively, where φ� � is the argument function. The maxi-
mum likelihood (ML) estimation of eH given (8)–(10) does
not have a closed-form solution and is numerically complex.
To reduce complexity, the intensity and phase estimations
are separated, which is the principal advantage of the STSs
(5)–(7), in contrast to other possible training sequences. For
the intensities, the ML estimates only using m�s�

1;ia are used:

jeH�s�
ik j ←

ffiffiffiffiffiffiffiffiffiffi
m1;ik

p
: (11)
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For the phases, γ�s�ika � m�s�
2;ika � jm�s�

3;ika − �0.5� 0.5j��m�s�
1;ia �

m�s�
1;ka� are used. Ideally, φ�eH�s�

ai � − φ�eH�s�
ak � � φ�γ�s�ika�. The es-

timation is based on imposing this constraint sequentially,
which corresponds to sequentially finding ML estimates for
the phases only using m�s�

2;ika and m�s�
3;ika. Since the phase

common to all modes is lost, we set φ�eH�s�
ii � ← 0 and estimate

the phases of non-diagonal elements with respect to diagonal
elements as

φ�eH�s�
ik � ← −φ�γ�s�iki�; (12)

φ�eH�s�
ki � ← φ�γ�s�ikk�: (13)

To incorporate the differential phase information between the
non-diagonal terms, we further impose the following sequentially:

φ�eH�s�
ai � ← φ�eH�s�

ai � − 0.5�φ�eH�s�
ai � − φ�eH�s�

ak � − φ�γ�s�ika��; (14)

φ�eH�s�
ak � ← φ�eH�s�

ak � � 0.5�φ�eH�s�
ai � − φ�eH�s�

ak � − φ�γ�s�ika��: (15)

Eventually, the estimates obtained using (11)–(15) for the sth
batch are incorporated into the overall estimates as

jeHikj ←
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1∕s�jeH�s�

ik j2 � ��s − 1�∕s�jeHikj2
q

; (16)

φ�eHik� ← φ��1∕s� exp�jeH�s�
ik � � ��s − 1�∕s� exp�jeHik��: (17)

To estimate ς, STSs are used as the rows of the MIMO
equalizer mask M�n�. They yield the measurements

d�n�1;i � jα�n�
i j2 � n1;i ; (18)

d�n�2;ik � 0.5�jα�n�
i j2 � jα�n�

k j2� � jα�n�
i jjα�n�

k j cos�φ�ςi�
− φ�ςk� � φ�α�n�

i � − φ�α�n�
k �� � n2;i ; (19)

d�n�3;ik � 0.5�jα�n�
i j2 � jα�n�

k j2� � jα�n�
i jjα�n�

k j sin�φ�ςi�
− φ�ςk� � φ�α�n�

i � − φ�α�n�
k �� � n3;i : (20)

Unlike the estimation of eH, the intensity estimation is not re-
quired since jςij � 1. To estimate the differential phase terms
φ�ςi� − φ�ςk�, η�n�

ik � d�n�2;ik � jd�n�3;ik − �0.5� j0.5��d�n�1;i � d�n�1;k�
are used. To construct each η�n�

ik , four measurements are
needed. Each training sequence can yield ⌊D∕4⌋ terms, where
⌊ ⌋ is the floor function. (When D < 4, splitting of the output
is required to provide measurement diversity.) In total, there are
�D2 − D�∕2 possible η�n�

ik terms. A batch estimation is applied
after obtaining all η�n�

ik terms. The batch size is LB �
⌈�D2 − D�∕�2�⌊D∕4⌋��⌉ and, for the sth batch,
�s − 1�LB � 1 ≤ n ≤ sLB . Since the phase common to all
modes is lost, we set φ�ς�s�1 � � 0 and, similar to (12),(13),
obtain the phase estimates

φ�ς̂�s�k � ← φ�α�n�
1 � − φ�α�n�

k � − φ�η�n�
1k �: (21)

Similar to (14) and (15), the information for relative phase
differences is imposed sequentially:

φ�ς̂�s�i � ← φ�ς̂�s�i � − 0.5�φ�α�n�
i � − φ�α�n�

k � � φ�ς̂�s�i �
− φ�ς̂�s�k � − φ�η�n�ik ��; (22)

φ�ς̂�s�k � ← φ�ς̂�s�k � � 0.5�φ�α�n�
i � − φ�α�n�

k � � φ�ς̂�s�i �
− φ�ς̂�s�k � − φ�η�n�ik ��: (23)

Lastly, similar to (17), the estimate after the sth batch is
incorporated into the overall estimate as

φ�ς̂� ← �1∕s�φ�ς̂�s�� � ��s − 1�∕s�φ�ς̂�: (24)
A fundamental limitation of STSs is that only a small frac-

tion of the training sequences and equalizer masks are used for
the estimation of a small fraction of the unknowns. The follow-
ing two techniques are considered to overcome this limitation.

(2) Convex optimization (CO): an efficient strategy for
phase retrieval is to represent the unknowns in a higher
dimensional space, where efficient optimization techniques
can be applied [13].

To estimate eH, a key observation is that the noiseless chan-
nel is equivalent to the following problem, for each 1 ≤ i ≤ D:

min rank�Ci� s:t:Ci≥0 and x�n�HCix�n��d�n�i : (25)

The solution of (25) is 1 for the optimal matrix parameter
Ĉi � hHi hi, where hi is the ith row of H. Rank-minimization
problems are computationally non-deterministic polynomial-
time hard. A common convex relaxation technique is to replace
the rank function by the trace function, which provides an
approximate solution as a semi-definite program [13]. In the
presence of noise, the constraint x�n�HCix�n� � d�n�i can be nu-
merically infeasible, especially for low SNR. Instead, we consider
an l2 norm penalty term, which also corresponds to the ML
estimation for spatially white and zero-mean additive Gaussian
noise. Overall, (25) becomes the following convex program:

min tr�Ci� � λ
X

N
n�1

jx�n�HCix�n� − d
�n�
i j2 s:t: Ci ≥ 0;

(26)
where λ is a trade-off constant. For the optimal matrix parameter
Ĉi, the rank-1 component yields an estimate of the ith row of the
channel matrix. Given the principal component analyses
Ĉi �

PD
k�1 χ̂ i;kûi;kû

H
i;k , we obtain

eH ←

� ffiffiffiffiffiffiffi
χ̂1;1

p
ûT1;1 � � � ffiffiffiffiffiffiffiffi

χ̂D;1
p

ûTD;1

�
T
: (27)

Note that, unlike the STS, there are no restrictions on the train-
ing sequences; they can be generated randomly.

For the estimation of ς, we adapt (26) and obtain

mintr�K��λ
X

n

X
D
d�1

jψ�n�H
d Kψ�n�

d −d�n�d j2 s:t:K≥0:

(28)
For the optimal matrix parameter K̂ � PD

k�1 χ̂kûkû
H
k ,

similar to (27), the estimate is given by

ς̂ ←
ffiffiffiffiffi
χ̂1

p
�û1��: (29)

Since ς has elements with unit magnitude, the estimation can
be further improved by debiasing as ς̂i ← exp�jφ�ς̂i��. Note
that, unlike STS, there is no restriction on the known
MIMO equalizer masks; they can be random.

(3) Alternating minimization (AM): an efficient optimization
procedure is alternating the estimation of the missing phase
information and the candidate solutions [14].

To estimate eH, the alternating update equations for two un-
known variables, the measured phases and the channel transfer
matrix rows are
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p�n�i ← exp�jφ�x�n�Hvi��; (30)

vi ← arg min
v

�X
N
n�1

jx�n�Hv − p�n�i

ffiffiffiffiffiffiffiffi
d�n�i

q
j
2
�
: (31)

Step (31) is simply a least-squares problem that admits an ana-
lytical solution. After a sufficient number of iterations, vi con-
verges to an estimate of the ith row of eH. To ensure reliable and
fast convergence, choosing a good initial point of vi is
crucial. We use the first principal component of
1∕N

PN
n�1 d

�n�
i x�n�x�n�H as the initial point, which guarantees

convergence under certain assumptions [14]. As in the CO
technique, there are no restrictions on the training sequences.

To estimate ς, the update equations are

q�n�d ← exp�jφ�ψ�n�H
d w��; (32)

w ← arg min
v

�X
n

X
D
d�1

jψ�n�H
d w − q�n�d

ffiffiffiffiffiffiffiffi
d�n�d

q
j
2
�
: (33)

After a sufficient number of iterations, w� converges to an es-
timate of ς. Similar to CO, debiasing is applied to improve ac-
curacy. The initial point used is the first principal component of
1∕DhPD

d�1 d
�n�
d ψ�n�

d ψ�n�H
d i. As in the CO technique, there are

no restrictions on the known MIMO equalizer masks.
We demonstrate the performance of the estimation tech-

niques for a DD-MDM system employing on-off keying.
We generate fully random D × D unitary channel matrices
(describing worst-case full intra- and inter-group coupling)
and use the estimation techniques to enable MIMO processing
at the transmitter or receiver. We assume that the same tech-
nique is used to estimate eH and ς for simplicity, although, in
principle, a combination of different techniques is possible. As a
reference, a back-to-back (B2B) system (M�n�HP�n� � I) is
considered. Figures 2(a) and 2(b) show the average bit-error
ratio (BER) versus SNR for the estimation after 300 sequences.
We observe that CO yields excellent performance in both cases,
incurring SNR penalties less than 0.5 and 1 dB for the trans-
mitter and receiver MIMO, respectively, assuming realistic tar-
get BERs. AM yields very good performance for the transmitter
MIMO, but yields a substantial penalty for the receiver
MIMO. STS yields inferior performance for both cases, result-
ing in substantial SNR penalties. The receiver MIMO yields

higher BERs for all techniques because the error in the
estimation of eH propagates in the estimation of ς.

Given typical short-reach link environments (e.g., data centers)
and lengths (e.g., 0.1–1 km), the time scale for channel variations
is expected to be of the order 0.1–10ms. ForD ∼ 2–20 (requiring
N ∼ 100–1000) and practical symbol rates (∼30–100 Gbaud),
the timescale for transmission of the training sequences is of
the order 1–30 ns. Hence, if the estimation techniques can be
implemented in embedded hardware with a negligible computa-
tional delay, the overhead (loss of throughput) will be negligible.
Even if power consumption is high during the estimation, the
average power consumption per information symbol is expected
to be low. Our initial studies suggest that sufficiently fast and low-
complexity implementation of the techniques is possible, and
these topics will be addressed in a future paper.

While MDM system capacity ideally scales in proportion to
D, the estimation time and power consumption may scale
faster, particularly in systems with full intra- and inter-group
coupling. Scaling to large D can be facilitated by a judicious
link design in to make inter-group coupling negligible
[3–5], so that the channel matrix H becomes sparse, i.e., block
diagonal. In this scenario, the MIMO methods described here
can be applied to each mode group separately, dramatically
reducing the estimation time and power consumption.

In conclusion, we described DD-MDM systems using
digital or optical MIMO precoding or optical MIMO equali-
zation, and three phase retrieval-based MIMO channel estima-
tion methods. Among the three methods, CO yields the best
performance, which is nearly ideal. Hardware-specific imple-
mentation of these methods, and the performance impact of
mode-dependent loss, channel dynamics, and other effects
are important topics for future study.

Funding. Huawei Technologies Co., Ltd.
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Fig. 2. Average BER versus SNR for (a) transmitter MIMO process-
ing and (b) receiver MIMO processing. Assuming D � 6, N � 300,
and λ � 10, Monte Carlo simulations are averaged over 20 channel
realizations and 6,400,000 transmitted sequences. CO problems are
solved using [15].
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