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Digital Equalization of Chromatic Dispersion and
Polarization Mode Dispersion
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Abstract—In this paper, we consider a fractionally spaced
equalizer (FSE) for electronic compensation of chromatic disper-
sion (CD) and polarization-mode dispersion (PMD) in a dually
polarized (polarization-multiplexed) coherent optical communica-
tions system. Our results show that the FSE can compensate any
arbitrary amount of CD and first-order PMD distortion, provided
that the oversampling rate is at least 3/2 and that a sufficient
number of equalizer taps are used. In contrast, the amount of
CD and PMD that can be corrected by a symbol-rate equalizer
only approaches an asymptotic limit, and increasing the number
of taps has no effect on performance due to aliasing that causes
signal cancellation and noise enhancement.

Index Terms—Chromatic dispersion (CD), coherent detection,
digital signal processing, equalizers, optical fiber communication,
polarization mode dispersion (PMD).

I. INTRODUCTION

CHROMATIC dispersion (CD) and polarization-mode dis-
persion (PMD) are two important linear distortions that

affect the performance of optical systems. In traditional re-
ceivers that employ direct detection, the phase of the optical
E-field is lost, making exact equalization of the channel by a
linear filter impossible [1], [2]. Coherent detection circumvents
this problem by combining the received signal with a local
oscillator (LO) laser and by using balanced detection to down-
convert it into a baseband electrical output that is proportional
to the optical E-field. The resulting signal can then be sampled
and processed by digital signal processing (DSP) algorithms,
providing a flexible platform based on a software that is an
attractive alternative to optical CD and PMD compensation
[3]–[5].

In principle, any linear channel distortion can be compen-
sated in DSP by a digital receiver operating at one sample per
symbol [6]. This requires that, prior to sampling, the receiver
employs an analog matched filter (matched to the convolution
between the transmitted pulse shape and the channel). Also,
the performance of a symbol-rate equalizer is sensitive to
sampling time error. A fractionally spaced equalizer (FSE)
can implement the matched filter and equalizer as a single
unit and can compensate for sampling time errors, provided
that the baseband signal is sampled above the Nyquist rate
[6]–[9]. Thus, the FSE is widely employed in other areas of
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Fig. 1. Canonical model of a baseband communications channel with a digital
receiver.

digital communications such as mobile radio [10] and digital
subscriber lines [11]. Recent experiments in coherent optical
transmission invariably use an oversampling rate of two for CD
compensation [12]–[14].

In single-mode fiber (SMF) communication, PMD causes a
statistical time-varying differential group delay (DGD) between
the two principal states of polarization (PSP). The impact of
PMD on the performance of a symbol-rate equalizer is similar
to the sampling time error. Thus, it should be possible to use
a polarization diversity coherent receiver in conjunction with
an FSE in suppressing any arbitrary amount of PMD-induced
group delay since PMD is a linear effect.

This paper is organized as follows. In Section II-A, we will
review the canonical digital transmission model for a single
channel and show why symbol-rate sampling is susceptible
to the sampling time error and how this can be overcome by
an FSE. In Section II-B, we will extend our analysis to a
polarization-multiplexed optical channel. We will derive the
optimal settings for a finite-length FSE and compute its mean-
square error (MSE) performance. We will use the example of an
SMF with CD and first-order PMD in demonstrating the ability
of the FSE to compensate these distortions. In Section III, we
will present numerical results and compare the performance
of the symbol-rate equalizer versus the FSE. We will also
compare the performance of different optical pulse shapes in
the presence of CD and PMD. Further discussion is provided in
Section IV.

II. THEORY

A. Canonical Digital Receiver

The canonical model of a baseband communications channel
employing a digital receiver is shown in Fig. 1. The input is
a set of complex-valued symbols xn modulating a transmitted
pulse shape b(t). The transmission medium is assumed to be
linear, having an impulse response h(t), the noise added by the
channel, and the receiver is modeled as n(t). We denote the
received pulse shape as c(t) = h(t) ⊗ b(t), where ⊗ denotes
linear convolution.
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The front end of the canonical digital receiver consists of a
band-limiting filter whose impulse response is p(t). The output
y(t) is then sampled at rate 1/T = M/KTs, where Ts is the
symbol interval, and M and K are integers. For symbol-rate
sampling, M = K = 1. We can write the sampled signal as

yk
∆= y(kT ) =

∑
n

xnq(kT − nTs) + n′(kT ) (1)

where q(t) = p(t) ⊗ h(t) ⊗ b(t) is the received pulse shape
after filtering, and n′ = p(t) ⊗ n(t). If the channel’s impulse
response h(t) is known, the optimum receiver consists of
a matched filter p(t) = c∗(−t),1 followed by a symbol-rate
sampler [6]. However, symbol-rate sampling has significant
drawbacks. First, the exact channel impulse response may not
be known. Second, it may not be possible to synthesize the
analog function c∗(−t) exactly. Third, a symbol-rate equalizer
is sensitive to sampling time error. Consider the discrete-time
Fourier transform (DTFT) of (1), where we ignore the noise
term. We have

Ysig(ejωT ) = X
(
ejωTs

)
· 1
T

∑
m

Q

(
ω − 2πm

T

)
(2)

where Q(ω) is the Fourier transform of q(t), and X(ejωTs)
and Y (ejωT ) are the DTFTs of the sequences xk and yk,
respectively. The zero-forcing (ZF) linear filter that can undo
the channel’s distortion has a DTFT given by the following:

WZF(ejωT ) =

[
1/T

∑
m

Q (ω − 2πm/T )

]−1

. (3)

However, in the presence of a sampling delay τs, the sampled
sequence becomes y

′
k = y(kT − τs). We can characterize the

impact on the system by defining the postfiltered pulse shape as
q′(t) = q(t− τs). The DTFT of the signal term becomes

Y ′
sig(e

jωT )=X(ejωTs) · 1
T

∑
m

Q

(
ω− 2πm

T

)
e−j(ω−2πm

T )τs .

(4)

In comparison with (2), each term in the summation over
m is multiplied by a phase shift. If sampling is performed
below the Nyquist rate, spectral overlap between the Q(ω −
2πm/T ) exp(−j(ω − 2πm/T )τs) terms will occur. It is pos-
sible that, for some values of τs, the phase shift will cause the
overlapping spectra to interfere destructively, leading to signal
cancellation. Even if the equalizer is designed according to
the minimum MSE (MMSE) criteria, noise enhancement will
still happen. A digital receiver that employs sub-Nyquist-rate
sampling is therefore susceptible to sampling time errors. This
problem is particularly acute when symbol-rate sampling is
used because spectral overlap always occurs, unless q(t) is a
sinc function, which is not realizable in practice.

1Throughout this paper, we shall use superscripts ∗, T, and H in denoting
the complex conjugate, the transpose, and the Hermitian transpose of matrix
variables, respectively. A scalar is simply a special case of a 1 × 1 matrix.

Fig. 2. (a) Dual-polarization coherent optical system employing homodyne
detection. (b) Equivalent baseband model.

B. Polarization-Diversity Receiver

The canonical model of a dual-polarization (polarization-
multiplexed) coherent optical system employing a homodyne
receiver is shown in Fig. 2(a). The transmitter consists of
two Mach–Zehnder (MZ) modulators, where each modulator
is capable of generating symbols from any arbitrary signal
constellation [15]. The two optical data streams, which are
polarized in orthogonal directions, are then combined using a
polarization beam splitter. After passing through an SMF, the
received signal is split into two paths that are mixed with the
LO through a network consisting of two 90◦ hybrids and, then,
is coherently detected using four balanced photodetectors. The
electrical outputs are baseband signals corresponding to the I
and Q associated with the polarizations parallel and orthogonal
to the LO. These signals are then passed through low-pass
antialiasing filters having an impulse response p(t) and are
sampled at a rate of 1/T using analog-to-digital converters
(ADCs).

The dual-polarization coherent receiver has a baseband
equivalent model that is shown in Fig. 2(b). The transmitted
signals in the two input polarizations are of the form

xj(t) =
∑

n

xj,nb(t− nTs) (5)

where xj,n is the nth symbol transmitted in the jth polarization
of the fiber, and b(t) is the transmitted pulse shape, which is
assumed to be the same for both channels. We can also write the
transmitted signal in vector notation as x(t) = [x1(t), x2(t)]T.
The received signal is then expressed as

r(t) = h(t) ⊗ x(t) + n(t) (6)

where

h(t) =
[
h11(t) h12(t)
h21(t) h22(t)

]
. (7)
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h(t) is the matrix representation of the fiber impulse response,
where hij(t) denotes the response of the ith output polar-
ization to an impulse in the jth input polarization. n(t) =
[n1(t), n2(t)]T and r(t) = [r1(t), r2(t)]T are the noise and the
received signal vectors, respectively.

We note that (7) is a complete description of any dually
polarized linear channel and can characterize both CD and any
order of PMD. For instance, the frequency response H(ω) =
F{h(t)} of an SMF with CD and first-order PMD has the form

H(ω) =
[

cos θ − sin θ
sin θ cos θ

] [
ejωτ/2 0

0 e−jωτ/2

]

×
[

cos θ sin θ
− sin θ cos θ

]
× e−j 1

2 β2Lfiberω
2

(8)

where β2 is the fiber’s GVD parameter [16], Lfiber is the fiber
length, θ is the angle between the reference polarizations and
the PSP of the fiber, and τ is the DGD between the PSPs.

In this paper, we shall assume that all fiber nonlinear ef-
fects, as well as the phase noises of the transmitter and LO
lasers, are either negligible or compensated so that the fiber
can be modeled as a linear channel. The baseband electrical
signals recovered by the polarization-diversity receiver are
expressed as

ri(t) =
∑

n

2∑
j=1

xj,ncij(t− nTs) + ni(t) (9)

where cij(t) = hij(t) ⊗ b(t), and ni(t) is an additive white
Gaussian noise (AWGN)2 process with two-sided power-
spectral density (psd) of N0.

Upon passing ri(t) through p(t), the sampled outputs are

yi(kT ) ∆= yi,k =
∑

n

2∑
j=1

xj,nqij(kT − nTs) + n
′

i(kT ) (10)

where qij(t) = p(t) ⊗ hij(t) ⊗ b(t), and n
′
i = p(t) ⊗ ni(t).

We now derive the optimal coefficients for a linear transver-
sal filter W whose output is an MMSE estimates of the trans-
mitted symbols. The equalizer computes

x̂k =
[
x̂1,k

x̂2,k

]
=
[
WT

11 WT
21

WT
12 WT

22

] [
y1,k

y2,k

]
= WTyk (11)

where yi,k = 
yi,
kM/K� + L, yi, 
kM/K� + L−1, . . . ,
yi,
kM/K�−L�T, and Wij = [Wij,−L,Wij,−L+1, . . . ,Wij,L]T

are column vectors of length N = 2L+ 1, and 
x� denotes the
largest integer less than or equal to x. It can be shown that the
Wiener filter coefficients are given by the following:

Wopt = A−1α (12)

2Possible noise sources include LO-spontaneous beat noise for an amplified
system, shot noise, and thermal noise.

Fig. 3. For noninteger oversampling, the sample times relative to the symbol
peaks differ between neighboring symbols. In the 3/2-oversampling example
shown, odd symbols have a sample near the optimum sampling instant, whereas
even symbols have two samples straddling the symbol peak.

where A = E
y∗
ky

T
k �, and α = E
y∗

kx
T
k �. We can partition

these matrices as

A =
[
A11 A12

A21 A22

]
(13)

and

α =
[

α11 α12

α21 α22

]
. (14)

The submatrices Aij = E
y∗
i,ky

T
j,k� are N ×N , whereas the

column vectors αij = E
y∗
i,kxj,k� are of length N . Let Aij,lm

be the element at the intersection of the lth row and mth
column of submatrix Aij . Similarly, let αij,l be the element
at the lth row of αij . By assuming that the transmitted sym-
bols are independent identically distributed (i.i.d.), satisfying
E
xi,lx

∗
j,m� = Pxδijlm, we have

Aij,lm =Px

∑
n

2∑
s=1

q∗is

(⌊
kM

K

⌋
T − lT − nTs

)
qjs

×
(⌊

kM

K

⌋
T −mT − nTs

)

+N0

+∞∫
−∞

p∗(t− lT )p(t−mT )dt (15)

and

αij,l = Px

2∑
s=1

q∗is

(⌊
kM

K

⌋
T − lT − kTs

)
. (16)

We observed that (15) and (16) can take on K different
values, depending on mod(kM,K). This effect is shown in
Fig. 3 for the case of 3/2 sampling. It is observed that the
sampling time relative to the symbol peak differs for odd and
even symbols. Hence, the Wiener filter that reconstructs the best
estimate of the kth transmitted symbol needs to have different
coefficients for k even and for k −odd. In general, a rate −
M/K system needs to have K different sets of coefficients for
Wopt. These are obtained by evaluating (15) and (16) for all
possible values of mod(kM,K) and by substituting into (12).

A block diagram implementation of the FSE is shown in
Fig. 4(a). The inputs y1,n and y2,n are the outputs of Fig. 2(b),
which were sampled at intervals of T = KTs/M . The Wij

function blocks takes N = 2L+ 1 consecutive samples of y1,k
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Fig. 4. (a) Block diagram of the FSE. The four signal processing blocks each
implement the dot product between a compartment Wij of the FSE matrix
with a block of N = 2L + 1 samples of y1,k or y2,k . The implementations of
these are shown for FSEs having an oversampling rate of (b) M/K = N and
(c) M/K = 3/2.

or y2,k and evaluates the matrix multiplication in (11). We can
implement the Wij function blocks using Fig. 4(b) and (c) for
the cases where the FSE has an integer oversampling rate of
M and for M/K = 3/2. Since the FSE only needs to produce
an output at the symbol rate 1/Ts, the concatenation of the

finite impulse response (FIR) filter, followed by decimation
(the dashed boxes [Wij ]↓M ), can, in fact, be implemented by
a polyphase filter. Let εk = xk − x̂k be the error between the
transmitted symbols and the output of the FSE in (11). It is
shown that using the Wiener filter coefficients for the FSE
results in the MSE matrix

E
εkεH
k � = PxI − αHA−1α. (17)

We then have

MSEMMSE =
2∑

s=1

E
[
|εs,k|2

]
= trE

[
εkεH

k

]
. (18)

For an oversampling rate of M/K, where K �= 1, (17) needs
to be averaged over all K phases of (15) and (16).

1) Limiting Performance of the FSE: In the limit where the
rate of the FSE 1/T = M/KTs satisfies the Nyquist’s criterion,
the frequency range |ω| < π/T bears all the information in
the analog received signal. We can write (10) in terms of its
DTFT as

Y = QX + N
′
. (19)

For convenience, we have dropped the ejωT in our DTFTs. The
error between the transmitted symbols and the FSE output is

ε = X − WTY = (I − WTQ)X − WTN′. (20)

We can write Q in terms of its singular value decom-
position Q = USVH. If the symbols are i.i.d., satisfying
E
xi,lx

∗
j,m� = Pxδijlm, the MSE matrix is given by the

following:

E[εεH] =
(
WTU − PxVS

(
PxS2 + SN ′N ′I

)−1
)

×
(
PxS2 + SN ′N ′I

)
×
(
WTU − PxVS

(
PxS2 + SN ′N ′I

)−1
)H

+
(
Px − P 2

xVS
(
PxS2 + SN ′N ′I

)−1 SVH
)
(21)

where the psd of the filtered noise is

SN ′N ′(ejωT ) = N0
1
T

∑
m

∣∣∣∣P
(
ω − 2πm

T

)∣∣∣∣
2

. (22)

The goal of W is to minimize trE[εεH], which is equal to
the sum of the eigenvalues of (21). Since (PxS2 + SN ′N ′I) is
positive definite, (21) is minimized by setting its first term to
zero. Thus, we have

WT
opt = PxVS

(
PxS2 + SN ′N ′I

)−1 UH. (23)
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We note that the Wiener solution given in (23) is a function of
frequency. The FSE coefficients may be found by taking the
inverse DTFT

wopt,n =
T

2π

π/T∫
−π/T

Wopt

(
ejωT

)
ejωnT dω. (24)

The psd of the resulting MSE is then equal to the sum of
the eigenvalues of the second term of (21). By using Parseval’s
theorem, we have

MSEMMSE =
2∑

i=1

E
[
|εi,k|2

]

=
T

2π

π/T∫
−π/T

2∑
i=1

PxSN ′N ′(ejωT )
Pxs2i (ejωT ) + SN ′N ′(ejωT )

dω

(25)

where si(ejωT ) is the frequency-dependent singular value of
Q(ejωT ).

2) CD/PMD Example: To see that the Wiener solution in
(23) is indeed optimal, consider the fiber channel given in (8).
Since b(t) and p(t) are identical for the two polarizations, we
have Q(ejωT ) = P (ejωT )B(ejωT )H(ejωT ). As H has unit
singular values, we have s2i (e

jωT ) = |P (ejωT )B(ejωT )|2 =
|Q(ejωT )|2, for i = 1 and 2. Therefore

WT
opt(e

jωT ) =
PxQ(ejωT )

Px |Q(ejωT )|2 + SN ′N ′(ejωT )
H∗(ejωT )

(26)

where we note that

H∗(ejωT ) =
[

cos θ − sin θ
sin θ cos θ

] [
e−jωτ/2 0

0 ejωτ/2

]

×
[

cos θ sin θ
− sin θ cos θ

]
× ej 1

2 β2Lfiberω
2
. (27)

It is the filter that exactly cancels the CD and first-order PMD
of the channel over the frequency range |ω| < π/T . The scaling
factor in (25) is an artifact of minimizing MSE [17]. If the
system is symmetric, we can define the unbiased SNR for the
FSE output as

SNRMMSE−U =
2Px

MSEMMSE
− 1. (28)

Finally, we define the input SNR per symbol to be

SNRin =
PxTs

N0
=

Es

N0
. (29)

The ratio between (29) and (28) is the system power penalty.

Fig. 5. Intensity waveforms of isolated NRZ, 33% RZ, 50% RZ, and 67% RZ
pulses. Normalized pulses are shown with unit energy.

III. NUMERICAL RESULTS

We simulated the performances of the symbol-rate equalizer
and the FSE for four commonly used optical pulse shapes.
These are the nonreturn to zero (NRZ), 33% RZ, 50% RZ,
and 67% RZ pulses. The analytical formulas for the RZ pulses
and their respective spectra were studied in [18]. For NRZ
[19], we assumed that the electrical drive signals for the
MZ modulator were produced by passing an ideal rectangular
pulse train through a fifth-order low-pass Bessel filter with a
3-dB bandwidth of 0.8/Ts. The normalized waveforms of these
pulses are shown in Fig. 5. For the receiver, we assumed that
the antialiasing filter p(t) is a fifth order of any of the following:
1) Bessel filter or 2) Butterworth filter with a 3-dB bandwidth
of 0.4/T , where 1/T = M/KTs is the sampling rate. We shall
compare the relative performances of the choices of p(t).

In Figs. 6 and 7, we show the amount of CD that a symbol-
rate equalizer and an FSE with N taps (corresponding to W
being of size 2N × 2) can tolerate with less than 2-dB power
penalty at an input SNR of 20 dB per symbol, as defined by (28)
and (29). Figs. 6 and 7 consider Bessel and Butterworth filters,
respectively. We observed that, while the correctable amount
of CD grows almost linearly with N for the FSE, the result
for the symbol-rate equalizer only approaches an asymptote.
This is due to the effect of aliasing that was described in
Section II-A, where signal cancellation by the overlapping
spectra leads to noise enhancement. The effect of aliasing is
also apparent for an FSE with 3/2 times oversampling when
33% and 50% RZs are used in conjunction with a Bessel filter.
This is because 33% and 50% RZs have a higher proportion
of its energy outside |ω| < π/T . The Bessel filter, with its
gradual roll-off, is less able to prevent aliasing. In contrast,
the Butterworth filter can better suppress the received signal’s
sidelobes. Even though the Butterworth filter does not have
a linear phase, its phase distortion is corrected by the FSE.
Hence, the Butterworth filter achieves superior performance at
low oversampling. Since the sampling rate of ADCs is often a
limiting factor in current coherent optical systems,3 the reduced
oversampling requirement can be of significance. For FSEs
operating at M/K ≥ 2, the CD performance of all pulse shapes

3The fastest ADC commercially available in April 2007 is around 20 GSa/s.
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Fig. 6. Maximum allowable CD versus the number of equalizer taps for a
2-dB power penalty at an input SNR of 20 dB per symbol, using a Bessel
antialiasing filter. “o” denotes transmission using NRZ pulses, “x” denotes
33% RZ, “∆” denotes 50% RZ, and “+” denotes 67% RZ.

Fig. 7. Maximum allowable CD versus the number of equalizer taps for a
2-dB power penalty at an input SNR of 20 dB per symbol, using a Butterworth
antialiasing filter. “o” denotes transmission using NRZ pulses, “x” denotes
33% RZ, “∆” denotes 50% RZ, and “+” denotes 67% RZ.
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is similar, regardless of whether a Bessel or Butterworth filter
is used.

The linearity between CD and the FSE length is intuitively
satisfying since the delay difference between two packets of
energy that are separated by ∆ω in frequency is given by τDD =
|β2|Lfiber∆ω. As the bandwidth of the transmitted signal is
proportional to Rs, we expect that the pulse spreading will
assume the form τDD ∝ 2π|β2|LfiberRs, which corresponds to
NDD ∝ 2π|β2|LfiberR

2
s(M/K) sampling intervals. In order to

cancel the intersymbol interference (ISI) of a q(t) that has a
significant energy over NDD samples, we expect N ∝ NDD

taps are needed. Fig. 6(c) and (d) and Fig. 7(b)–(d) confirm
the linearity between |β2|LfiberR

2
s and N , where the empirical

relationship is

|β2|LfiberR
2
s (M/K) ≈ 0.15N. (30)

This formula is consistent with the results of the study
in [20], which considered rounded pulses with 35% excess
bandwidth and an FSE with M/K = 2.

In Figs. 8 and 9, the performance of the symbol-rate equal-
izer and the FSE in the presence of a first-order PMD is
shown. Figs. 8 and 9 consider Bessel and Butterworth filters,
respectively. We assume that the fiber has no CD, and the
angle between the input signal polarizations and the PSP is
θ = 45◦ (worst case). Again, the correctable amount of PMD
approaches asymptotic limits for the symbol-rate equalizer,
whereas for the FSE, the tolerable τ grows linearly with N .
This is, again, intuitively satisfying since a PMD channel with
a DGD of τ will have an impulse response consisting of two
peaks separated by N = τM/KTs samples. This matches the
slopes observed in Figs. 8(b)–(d) and 9(b)–(d).

The required filter length will typically be dictated by CD,
not by PMD. Pulse spreading that is caused by PMD is typically
less than one symbol interval, while that caused by CD typically
spans several symbol intervals. For example, consider a symbol
rate Rs = 10 GHz and a fiber of length Lfiber = 2000 km
having a PMD of 0.1 ps/

√
km and a CD of 17 ps/(nm · km).

By considering PMD, the mean DGD is τ̄ = 4.5 ps, and a DGD
of five times the mean corresponds to τ/Ts = 0.22 symbol
intervals. Suppose the CD is compensated to within 5% error,
corresponding to an uncompensated length Lfiber = 100 km.
We have 2π|β2|LfiberR

2
s = 8.5 symbol intervals. Thus, setting

N to the value given by (30) is typically more than enough
to compensate PMD. The combined power penalty from both
effects should be close to 2 dB, which is caused almost
entirely by CD.

To illustrate the tolerance of an FSE to sampling time error,
we plot the MSE per channel versus τs/Ts in Figs. 10 and 11,
assuming no CD or PMD. Figs. 10 and 11 consider Bessel and
Butterworth filters, respectively. The input SNR per symbol is
20 dB. As expected, we observed performance degradation for
the symbol-rate sampler. Although some noise enhancement
is present for the FSE with 3/2 times oversampling, the MSE
becomes insensitive to sampling time error for M/K ≥ 2.

Finally, we recall that our theoretical analysis and simulation
results used MSE as the criterion for evaluating system perfor-
mance. In practice, MSE incorporates the effects of AWGN,

Fig. 8. Maximum allowable PMD DGD versus the number of equalizer taps
for a 2-dB power penalty at an input SNR of 20 dB per symbol using a Bessel
antialiasing filter. “o” denotes transmission using NRZ pulses, “x” denotes
33% RZ, “∆” denotes 50% RZ, and “+” denotes 67% RZ.
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Fig. 9. Maximum allowable PMD DGD versus the number of equalizer taps
for a 2-dB power penalty at an input SNR of 20 dB per symbol using a
Butterworth antialiasing filter. “o” denotes transmission using NRZ pulses, “x”
denotes 33% RZ, “∆” denotes 50% RZ, and “+” denotes 67% RZ.

Fig. 10. MSE at the output of the digital equalizer versus the sampling
time delay for a channel with no CD or PMD at an input SNR of 20 dB
per symbol using a Bessel antialiasing filter. “o” denotes transmission using
NRZ pulses, “x” denotes 33% RZ, “∆” denotes 50% RZ, and “+” denotes
67% RZ.
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Fig. 11. MSE at the output of the digital equalizer versus the sampling time
delay for a channel with no CD or PMD at an input SNR of 20 dB per
symbol using a Butterworth antialiasing filter. “o” denotes transmission using
NRZ pulses, “x” denotes 33% RZ, “∆” denotes 50% RZ, and “+” denotes
67% RZ.

ISI, and crosstalk between the two polarization-multiplexed
channels. The ultimate parameter of interest is the system bit-
error ratio (BER). However, optimization of the FSE with
respect to BER leads to intractable equations; hence, MMSE
is the most widely used criterion. A potential flaw of the MSE

Fig. 12. Probability of symbol error versus input SNR per symbol for a
16-QAM transmission over an optical channel with CD and first-order PMD,
with the receiver employing an FSE with 15 taps at an oversampling rate of
M/K = 2. “o” denotes Monte Carlo simulation results for NRZ transmission,
“x” denotes 33% RZ, “∆” denotes 50% RZ, and “+” denotes 67% RZ. The
solid lines are theoretical SER curves, assuming that the error signal after digital
equalization is Gaussian-distributed.

approach is that ISI and crosstalk may not have Gaussian
statistics, as it is unlikely that the residual impulse duration
after equalization is long enough for these effects to achieve
Gaussianity. Thus, the actual BER of the system may not be
the same as the one expected for a system with the output SNR
defined in (28).

To show that the MSE characterization is valid, we plot the
symbol error rate (SER) against the input SNR per symbol for a
channel with a CD of |β2|LfiberR

2
s = 1 and a PMD group delay

of τ = Ts/5, where the PSP angle is 45◦. We assumed p(t) to
be a fifth-order Bessel filter with a 3-dB bandwidth of 0.4/T .
Our simulation used 16-QAM transmission with N = 15 taps.
From Fig. 6, we expect the system to have power penalties
around 2 dB. Fig. 12 shows the SER obtained by Monte Carlo
simulations as well as the theoretical SER (solid curves) for
Gaussian noise

SERQAM−16 =
3
2
erfc

(√
SNRMMSE−U

10

)
. (31)

The agreement between the Monte Carlo simulations and
the theoretical SER formula shows that the MMSE criterion
is valid.

IV. DISCUSSION

In this paper, we have only considered fixed equalizer taps
for the FSE. In practice, it is possible—and often desirable—to
implement W as an adaptive filter. Such an approach is useful
when the exact frequency response of the channel is not known.
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TABLE I
OSNR REQUIREMENT FOR VARIOUS MODULATION FORMATS

In particular, PMD is statistically time varying, so that an
adaptive algorithm allows W to continually adjust for the best
MSE performance. Since the system is linear and we have
shown that the MSE performance in (21) surface is parabolic,
we expect an adaptive solution to be well behaved.

In terms of implementing the FSE, there are two key con-
siderations: the number of bits required for the ADCs and the
system complexity. Table I shows the optical signal-to-noise
ratio (OSNR) per symbol required for 4-, 8-, and 16-QAM
transmissions. Suppose we allow a 2-dB power penalty for
CD/PMD compensation and a 1.5-dB margin for other im-
pairments. A 16-QAM requires an OSNR of 20 dB. ADC
quantization adds noise with variance ∆2/12 per sample, where
∆ is the quantization step size. Suppose we require quantization
noise variance to be less than 10% of the AWGN variance per
dimension, which isN0/2T = N0M/2KTs. ForM/K = 3/2,
this gives ∆ < 0.095

√
Px, where Px is the transmitted power.

To determine the output range of the required ADC, we note
that the outermost symbols in 16-QAM have a magnitude of
3
√
Px/10 = 0.95

√
Px per dimension, and from Fig. 3, the

peak amplitude of a unit energy 33%-RZ pulse is less than
three. Hence, even for the worst case of 33%-RZ 16-QAM
transmission, the ADC output only needs to swing between
±2.85

√
Px, corresponding to 60 ∆. Even when allowing for

amplitude distortion due to CD/PMD distortion, an 8-b resolu-
tion should be more than sufficient.

To determine the system complexity, consider the example
in Section III, where we transmit at 10 GHz over 2000 km
of SMF whose PMD and CD parameters are 0.1 ps/

√
km

and 17 ps/nm · km, respectively. Suppose CD is compensated
using inline dispersion compensation fiber to within 5% er-
ror. From Section III, we have 2π|β2|LfiberR

2
s = 8.5 symbol

intervals. By using (30), the length of the FSE that is re-
quired for 3/2-time oversampling is 15 taps, which is rounded
to the nearest odd integer. Thus, the equalizer operation in
(11) requires 60 complex multiplication per symbol at 8-b
resolution. Achieving such performance would require a very
large-scale integrated circuit with extensive pipelining and
parallelization.

V. CONCLUSION

We have demonstrated the ability of an FSE to compensate
for any linear channel impairment in a dually polarized optical
system, including CD and any arbitrary amount of first-order
PMD. We derived the optimal tap settings for an FSE based on
the MMSE criterion, and we also evaluated the theoretical MSE
performance. Our simulations showed that MMSE is a valid
performance criterion despite the potential non-Gaussianity of

crosstalk and ISI. For NRZ, 33% RZ, 50% RZ, and 67% RZ
pulses, we showed that the FSE is insensitive to sampling time
errors and can correct an arbitrary amount of CD and first-order
PMD with less than 2-dB power penalty if an oversampling
rate of M/K ≥ 3/2 is used in conjunction with a fifth-order
Butterworth antialiasing filter. We showed that the amount of
CD distortion that can be compensated by an FSE with N taps
is approximately |β2|LfiberR

2
s(M/K) ≈ 0.15 N, whereas the

amount of first-order PMD DGD that can be compensated is
τPMDM/K = NTs, where M/K is the oversampling ratio.
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