# Probabilistic Shaping for Direct-Detection Optical Systems

### Joseph M. Kahn and Ethan M. Liang

E. L. Ginzton Laboratory Department of Electrical Engineering Stanford University, USA

**Optical Fiber Communication Conference** • March 25, 2024

### Abstract

- We study probabilistic shaping for direct-detection systems that modulate the intensity or Stokes vector and are limited by thermal or amplifier noise, obtaining analytical formulas for the optimal (non-Gaussian) input distributions and corresponding shaping gains.
- To download updated slides and the papers cited:

ee.stanford.edu/~jmk/research/smfcom.html#dcs



### **Acknowledgments**

### We gratefully acknowledge the support of

- Meta (previously Facebook)
- Analog Devices (previously Maxim Integrated)
- Marvell Technology (previously InPhi Corporation)
- LG Electronics
- Hewlett Packard
- University of California MICRO Program
- National Science Foundation
  - Grant DGE-1656518
  - Grant ECS-0335013
  - Grant ECS-9710065

Any opinions, findings, and conclusions or recommendations expressed here are those of the authors and do not necessarily reflect the views of the National Science Foundation.

### Outline

- Introduction
- Standard Coherent Detection
  - Shannon's Method 1948
    Forney's Method 1989
- Direct Detection Methods
  - Standard Direct Detection, Thermal Noise 1999
  - Standard Direct Detection, Amplifier Noise 2008
  - Stokes Vector Detection, Thermal or Amplifier Noise 2023
  - Kramers Kronig Detection, Amplifier Noise 2021
- Discussion

## Outline

### Introduction

- Probabilistic Shaping
- Assumptions and Performance Metrics
- Standard Coherent Detection
- Direct Detection Methods
- Discussion

## **Shaping for Coherent AWGN Channels**

- Relevant for coherent detection in electrical or optical systems with additive Gaussian noise.
  - Includes amplifier noise or local oscillator shot noise.
- Capacity-achieving input distribution is Gaussian [1] (when modulation order not constrained).
- Uniform signaling does not achieve capacity.
   Subject to ~1 dB performance gap.
- Probabilistically shaped coded modulation
  - Provides a method to close the performance gap.
  - Enables rate-adaptive transmission without changing modulation order or codeword block length.



2. Z. Qu and I. B. Djordjevic, IEEE Access 7 (2019).

### **Shaping for Direct-Detection Channels**

- Would like to rigorously derive optimal input distribution and capacity for various direct-detection channels in optical communications.
- These cannot be computed exactly for several important direct-detection channels:
  - Standard intensity modulation / direct detection (SD) channel.
  - Stokes vector receiver (SVR) channel.
- A method developed by Forney and Wei [1] for coherent AWGN channels has been adapted to direct-detection channels. This allows us to compute the following, at least for high SNR:
  - Analytical input distributions that approach capacity.
  - Achievable gains compared to uniform input distributions.

the main subject of this talk

1. G. Forney and L. Wei, IEEE J. Sel. Areas Commun. 7 (1989).

### **Local Oscillator-Based vs. Direct Detection**

### **Local Oscillator-Based Detection**

- A received signal is mixed with light from a local oscillator laser to
  - Downconvert it to baseband.
  - Effectively amplify the signal.
  - Provide a phase reference.

#### **Direct Detection**

- No local oscillator laser is employed at the receiver.
- Detection may be aided by
  - Transmitting an unmodulated carrier with the modulated signal.
  - Mixing the received signal with a (potentially delayed or phase-shifted) copy of itself.

- Local oscillator-based detection is not necessarily coherent.
- Direct detection is not necessarily noncoherent.

### **Detection Methods in Optical Communications**

| LO-Based Detection<br>Method                                    | Direct Detection<br>Method        | Detects                                               | Classification                                     | Signal Dimensions<br>(in 2 Polarizations) |                                                          |  |
|-----------------------------------------------------------------|-----------------------------------|-------------------------------------------------------|----------------------------------------------------|-------------------------------------------|----------------------------------------------------------|--|
| Envelope detection                                              | Standard direct<br>detection      | Intensity                                             | Noncoherent                                        | 1 or 2                                    |                                                          |  |
| Delay-and-multiply<br>detection                                 | Delay interferometer<br>detection | Differential phase shift                              | Differentially<br>coherent                         | 1 or 2                                    |                                                          |  |
| Polarization shift keying detection                             | 3-D Stokes vector<br>detection    | Stokes<br>parameters                                  | Noncoherent +<br>differentially<br>coherent hybrid | 3                                         |                                                          |  |
| Polarization shift<br>keying & delay-and-<br>multiply detection | 4-D Stokes vector<br>detection    | Stokes<br>parameters<br>& differential<br>phase shift | Noncoherent +<br>differentially<br>coherent hybrid | 4                                         | Adapted from:<br>E. Ip, A. P. T. Lau,<br>D. J. F. Barros |  |
| Standard coherent<br>detection                                  | Kramers Kronig<br>detection       | Field<br>quadratures                                  | Coherent                                           | 4                                         | Optics Express <b>16</b><br>(2008).                      |  |

#### J. M. Kahn and E. M. Liang • OFC • March 25, 2024

methods considered here

## **Assumptions and Performance Metrics in this Tutorial**

### Constraints

- Average optical power is constrained.
  - Short-reach: eye safety.
  - Long-haul: fiber nonlinearity, amplifier pump power.
- Peak optical power not constrained.
  - All systems have peak power constraints.
     Fundamental studies start by considering average power constraint.
- Encoding and decoding complexity not constrained.

#### Impairments

- Consider one dominant additive noise, either:
  - Thermal noise: added to detected photo current.
  - Optical amplifier noise: added to optical electric field.
- Impairments not considered:
  - Inter-symbol interference, fiber nonlinearity, etc.

#### **Performance Metrics**

- Spectral efficiency measured in b/symbol, not b/s/Hz.
- Standard intensity modulation / direct detection systems
  - Intensity signals are non-negative.
  - There exist no band-limited, non-negative root-Nyquist pulses [1].
  - Standard direct detection systems cannot be strictly bandlimited while using matched filtering.
  - Rectangular pulses with 5-pole Bessel filters can achieve ~0.8 symbol/s/Hz.
- 3-D Stokes, Kramers Kronig, standard coherent systems
  - Signals can be bipolar.
  - Root-Nyquist pulses can approach 1 symbol/s/Hz.

1. S. Hranilovic, IEEE Trans. Commun. 55 (2007).

## Outline

### Introduction

- Standard Coherent Detection
  - Shannon's Method
  - Forney's Method
  - Implementation
- Direct Detection Methods
- Discussion

## **Standard Coherent: Shannon's Method (1/2)**

- The method finds an optimal input distribution maximizing the mutual information subject to an average power constraint.
- The standard coherent channel is relevant for coherent electrical or optical systems.
   Consider one polarization for simplicity.

$$Y = X + N$$
,  $X, N, Y \in \mathbb{C}$ ,  $X, N$  independent

*N* is Gaussian: 
$$f_N(n) = \frac{1}{2\pi\sigma^2} \exp\left(-\frac{1}{2\sigma^2} ||n||_2^2\right)$$

Optimization problem

$$\max_{f_X(x)} I(X;Y) = \max_{f_X(x)} h(Y) - h(Y|X)$$
$$= \max_{f_X(x)} h(Y) - h(N)$$

s.t. 
$$\int_{x\in\mathcal{X}} |x|^2 f_X(x) \, dx \le \overline{P}$$



C. Shannon, Bell System Technical Journal 27.3 (1948).

-2 -2

2

 $\operatorname{Im}(n)$ 

2

0

 $\operatorname{Re}(n)$ 

## Standard Coherent: Shannon's Method (2/2)

 By variational calculus, the maximum-entropy input distribution subject to an L<sup>2</sup> norm constraint is

$$f_X(x) = \frac{1}{2\pi\bar{P}} \exp\left(-\frac{1}{2\bar{P}} \|x\|_2^2\right) \iff X \sim \mathcal{CN}(0,\bar{P})$$

- When  $X \sim \mathcal{CN}(0, \overline{P})$ , then  $Y \sim \mathcal{CN}(0, \overline{P} + 2\sigma^2)$ .
  - $f_Y(y)$  is the maximum entropy distribution subject to an L<sup>2</sup> norm constraint.
  - Therefore,  $X \sim \mathcal{CN}(0, \overline{P})$  is capacity achieving.
- Assuming an input distribution is  $X \sim C\mathcal{N}(0, \overline{P})$ , the capacity (in bits/symbol) is

$$C = h(Y) - h(N) = \log_2\left(\frac{\pi e(\bar{P} + 2\sigma^2)}{\pi e 2\sigma^2}\right) = \log_2\left(1 + \frac{\bar{P}}{2\sigma^2}\right)$$



C. Shannon, Bell System Technical Journal 27.3 (1948).

## Outline

### Introduction

- Standard Coherent Detection
  - Shannon's Method
  - Forney's Method
  - Implementation
- Direct Detection Methods
- Discussion

### **Standard Coherent: Forney's Method**

- The method assumes capacity-approaching, high-dimensional lattice codes. It finds an optimal bounding region minimizing the average power of the enclosed signal points while maintaining constant minimum distance.
- Forney's original method is applicable to coherent electrical or optical systems.
- Forney's original work addresses both lattice codes and bounding regions. We focus on the bounding regions.
- Constellation figure of merit for a constellation *C* (assuming all points in *C* are equally probable):

$$CFM(C) \triangleq \frac{d_{\min}^2(C)}{\overline{P}(C)} = \frac{\text{squared minimum Euclidean distance}}{\text{average power}}$$

- Variables implicit in the CFM:
  - *N*: number of dimensions of each signal point  $X \in C$
  - |C|: total number of messages in C

N and |C| must be equated when comparing CFMs of different constellations.

G. Forney and L. Wei, IEEE J. Sel. Areas Commun. 7 (1989).

### **Constellation Figure of Merit Example**



## Lattice

• All lattices are assumed to be symmetric about the origin.

### **Real Lattice**

• *N*-D lattice  $\Lambda^{(N)}$  is *N*-fold Cartesian product of 1-D lattice  $\Lambda^{(1)}$ :

$$\Lambda^{(1)} \triangleq \left\{ \dots, -\frac{5}{2}, -\frac{3}{2}, -\frac{1}{2}, \frac{1}{2}, \frac{3}{2}, \frac{5}{2}, \dots \right\}$$

• The lattice  $d \cdot \Lambda^{(N)}$  has a minimum Euclidean distance d.

### **Complex Lattice**

• *N*-D complex lattice  $C\Lambda^{(N)}$  is *N*-fold Cartesian product of 1-D complex lattice  $C\Lambda^{(1)}$ :

$$C\Lambda^{(1)} \triangleq \begin{cases} \dots, -\frac{3}{2} - j\frac{1}{2}, -\frac{1}{2} - j\frac{1}{2}, \frac{1}{2} - j\frac{1}{2}, \frac{3}{2} - j\frac{1}{2}, \dots \\ \dots, -\frac{3}{2} + j\frac{1}{2}, -\frac{1}{2} + j\frac{1}{2}, \frac{1}{2} + j\frac{1}{2}, \frac{3}{2} + j\frac{1}{2}, \dots \\ \vdots \end{cases}$$

• The lattice  $d \cdot C\Lambda^{(N)}$  has a minimum Euclidean distance d.







## **Bounding Region**

### **Reference Bounding Region**

• The reference bounding region is an *N*-D hypercube:

$$\mathcal{R}_{\rm ref}(N,A) = \left\{ X \in \mathbb{C}^N \mid \max_{i \in \{1,2,\dots,N\}} \{ |\text{Re}\{X_i\}|, |\text{Im}\{X_i\}| \} = A \right\}$$

• The set of points enclosed by  $\mathcal{R}_{ref}(N, A)$  is:

$$\mathbb{R}_{\text{ref}}(N,A) = \{ X = (x_1, x_2, \dots, x_N) \mid ||X||_{\infty} \le A \}$$

• The volume of the region enclosed by  $\mathcal{R}_{ref}(N, A)$  is  $\mathcal{V}_{ref}(N, A)$ .

### **Optimal Bounding Region**

- The optimal bounding region minimizes the average physical energy of the enclosed signal points subject to a constraint on the number of enclosed points.
- The optimal bounding region for maximum physical energy *P* is:

$$\mathcal{R}_{\text{shaped}}(N,P) = \left\{ X \in \mathbb{C}^N \mid \|X\|_2^2 = P \right\}$$

• The set of points enclosed by the bounding region  $\mathcal{R}_{shaped}(N, P)$  is:

 $\mathbb{R}_{\text{shaped}}(N,P) = \left\{ X \in \mathbb{C}^N \mid \|X\|_2^2 \le P \right\}$ 

• The volume of the region enclosed by  $\mathcal{R}_{shaped}(N, P)$  is  $\mathcal{V}_{shaped}(N, P)$ .



### **Lattice Code Construction**

- Consider  $d \cdot \Lambda^{(N)}$ , which is an *N*-D lattice with minimum Euclidean distance *d*.
- *C*<sub>shaped</sub> and *C*<sub>ref</sub> are obtained as:

 $C_{\text{shaped}} = \mathbb{R}_{\text{shaped}}(N, P) \cap d \cdot \mathcal{C}\Lambda^{(N)}$  $C_{\text{ref}} = \mathbb{R}_{\text{ref}}(N, A) \cap d \cdot \mathcal{C}\Lambda^{(N)}$ 

- The intersection selects signal points from  $d \cdot \Lambda^{(N)}$  inside  $\mathbb{R}_{shaped}(N, P)$  and  $\mathbb{R}_{ref}(N, A)$  to construct  $C_{shaped}$  and  $C_{ref}$ , respectively.
- The minimum distances of  $C_{\text{shaped}}$  and  $C_{\text{ref}}$  are equal:  $d_{\min}(C_{\text{shaped}}) = d_{\min}(C_{\text{ref}})$



### **Continuous Approximation**

- The continuous approximation replaces the lattice by a continuum. This becomes increasing accurate as  $|C_{shaped}|$  or  $|C_{ref}| \rightarrow \infty$ .
- $|C_{\text{shaped}}|$  and  $|C_{\text{ref}}|$  are replaced by  $\mathcal{V}_{\text{shaped}}(N, P)$  and  $\mathcal{V}_{\text{ref}}(N, A)$ .
- The average power expressions  $\overline{P}(C)$  are expressed as integrals:

$$\bar{P}(C_{\text{shaped}}) = \frac{1}{|C_{\text{shaped}}|} \sum_{X \in C_{\text{shaped}}} ||X||_2^2 \cong \frac{1}{\mathcal{V}_{\text{shaped}}(N,P)} \int_{X \in \mathbb{R}_{\text{shaped}}(N,P)} ||X||_2^2 dX$$

$$\bar{P}(C_{\text{ref}}) = \frac{1}{|C_{\text{ref}}|} \sum_{X \in C_{\text{ref}}} \|X\|_2^2 \cong \frac{1}{\mathcal{V}_{\text{ref}}(N,A)} \int_{X \in \mathbb{R}_{\text{ref}}(N,A)} \|X\|_2^2 dX$$

Enclosed volumes:

$$\mathcal{V}_{\text{shaped}}^{(\text{SC})}(N,P) = \frac{(\pi P)^N}{N!}, \qquad \mathcal{V}_{\text{ref}}^{(\text{SC})}(N,A) = (4A^2)^N$$

• Average powers:

$$\overline{P}_{\text{shaped}}^{(\text{SC})}(N,P) = \frac{P}{N+1}, \qquad \overline{P}_{\text{ref}}^{(\text{SC})}(A) = \frac{2}{3}A^2$$



### **Induced Marginal Distribution (1/3)**

 The shaping region R<sub>shaped</sub>(N, P) can be partitioned into disjoint subsets by conditioning on a value in a basic dimension:

 $\mathcal{P}_{\text{shaped}}(N, P, x) \triangleq \{ X \in \mathbb{R}_{\text{shaped}}(N, P) \mid X_1 = x \}$ 

• The volume of  $\mathcal{P}_{shaped}(N, P, x)$  is

 $\mathcal{V}_{\text{shaped}}(N-1, P-|x|^2)$ 

• The induced probability density is proportional to the volume of the partition in N - 1 dimensions:

 $f_X(x) \propto \mathcal{V}_{\text{shaped}}(N-1, P-|x|^2)$ 





Peak-to-average power ratio:

$$P = (N+1)\overline{P}_{\text{shaped}}^{(\text{SC})}(N,P)$$



## **Induced Marginal Distribution (3/3)**

### **Optimal Induced Distribution**

$$f_X(x) \propto \mathcal{V}_{\text{shaped}}^{(\text{SC})}(N-1, P-|x|^2) = \left(1 - \frac{|x|^2}{(N+1)\bar{P}_{\text{shaped}}^{(\text{SC})}(N, P)}\right)^{N-1}$$

$$\Rightarrow \lim_{N \to \infty} f_X(x) \propto \exp(-|x|^2/\beta)$$

• The optimal input distribution is Gaussian in complex electric field.

### Shape Gain

• Equating volumes 
$$\mathcal{V}_{\text{shaped}}^{(\text{SC})}(N, P) = \mathcal{V}_{\text{ref}}^{(\text{SC})}(N, P)$$
, the shape gain is

$$\gamma_s = \lim_{N \to \infty} \frac{\bar{P}_{\text{ref}}^{(\text{SC})}(A)}{\bar{P}_{\text{shaped}}^{(\text{SC})}(N,P)} = \frac{\pi e}{6} \approx 1.53 \text{ dB}$$

The Gaussian distribution improves energy efficiency by ~1.5 dB.



## Outline

### Introduction

- Standard Coherent Detection
  - Shannon's Method
  - Forney's Method
  - Implementation
- Direct Detection Methods
- Discussion

## **Standard Coherent: Implementation (1/2)**

### **Discrete Input Distributions**

- Discrete constellations must be used in practice.
- Can numerically compute the optimal discrete distribution using Blahut-Arimoto algorithm [1], [2].
- Can employ Maxwell-Boltzmann distribution [3] for discrete x:

$$P_X(x) \triangleq \exp(-\|x\|^2/\beta)/Z(\beta), \qquad Z(\beta) \triangleq \sum_{x \in C} \exp(-\|x\|^2/\beta) \qquad f_X(x)$$

- Parameterized by a shaping parameter  $\beta \ge 0$ :
  - $\beta$  controls the tradeoff between energy efficiency and bit rate.
  - $\beta \rightarrow \infty$  as SNR  $\rightarrow \infty$  (approaches a uniform distribution).
- MB distribution usually close to optimal at high SNR.
- *N*-D MB distribution is separable:

$$P_{X}(x) = \frac{1}{Z(\beta)} \exp(-\|x\|^{2}/\beta) = \frac{1}{Z(\beta)} \prod_{i=1}^{N} \exp(-x_{i}^{2}/\beta)$$



#### 21-point MB distribution for three values of $\beta$

- S. Arimoto, IEEE Trans. Inf. Theory 18 (1972).
- R. Blahut, IEEE Trans. Inf. Theory 18 (1972). 2.
- F. Kschischang and S. Pasupathy, IEEE Trans. Inf. Theory 9 (1993). 3.

## **Standard Coherent: Implementation (2/2)**

### **Probabilistic Amplitude Shaping**

- PAS architecture combines a distribution matcher (DM) with forward error correction (FEC).
- Advantages
  - Capacity achieving and can be integrated with existing FEC schemes.
  - Enables rate adaptation without changing the FEC block length.
- Drawbacks
  - Requires a probability distribution that can be partitioned into pairs of points with equal probabilities.

### **Distribution Matcher**

- Constant composition distribution matcher [1].
  - Maps to fixed-composition sequences.
- Shell shaping [2].
  - Maps to sequences with a maximum physical energy.
  - Can have superior performance when the bit sequence is short.
  - Can have high complexity, especially for long block lengths.

G. Böcherer, *et al.*, IEEE Trans. Commun. **63** (2015).
 A. Amari, *et al.*, J. Lightw. Technol. **37** (2019).

## Outline

- Introduction
- Standard Coherent Detection
- Direct Detection Methods
  - Standard Direct Detection, Thermal Noise
  - Standard Direct Detection, Amplifier Noise
  - Stokes Vector Detection, Thermal or Amplifier Noise
  - Kramers Kronig Detection, Amplifier Noise
- Discussion

### **Transition to Direct Detection**

### **Shannon's Method**

Optimization problems can be stated, but resulting Lagrangians cannot be solved analytically.

### **Forney's Method**

- Forney's original method for standard coherent detection used a uniform lattice in electric field coordinates.
- The binary error probability between any two *N*-D signal points depends only on the Euclidean distance between them.

#### **Natural Coordinates**

- Enable extension of Forney's method to direct-detection optical channels [1], [2].
- Define the uniform lattice in natural coordinates, in which the binary error probability is a decreasing function of Euclidean distance, at least asymptotically at high SNR.
- The natural coordinates depend on
  - Detection method.
  - Noise distribution.
  - Decision rule.

- 1. D. Shiu and J. M. Kahn, IEEE Trans. Inf. Theory 45 (1999).
- 2. W. Mao and J. M. Kahn, IEEE Trans. Commun. 56 (2008).

## **Shaping Results Summary (1/2)**

| Detection MethodCoherent Detection,& Dominant NoiseAmplifier or LO Shot Noise         |                                                                                                                            | Noncoherent Detection,<br>Thermal Noise                       | Noncoherent Detection,<br>Amplifier or LO Shot Noise                                             |
|---------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| Natural<br>Coordinates2-D electric field<br>$E = \{E_1, E_2\}$                        |                                                                                                                            | 1-D electric field intensity<br>$I =  E ^2$                   | 1-D electric field magnitude<br>  <i>E</i>                                                       |
| Optimal Shaping<br>Region                                                             | imal Shaping<br>Region $N$ -sphere centered at the origin $I_2$<br>$I_1$ Nonnegative orthant bounded by $N$ -simplex $I_1$ |                                                               | Nonnegative orthant bounded<br>by <i>N</i> -sphere<br>$ E_2 $<br>$ E_1 $                         |
| Induced Optimal<br>Signaling<br>Distribution in<br>Constituent<br>Constellation       | $p(E) = \frac{1}{\pi P} \exp\left(-\frac{ E ^2}{P}\right),$ $E = (E_1, E_2)$ $p(E_1, E_2)$ $E$                             | $p(I) = \frac{1}{P} \exp\left(-\frac{I}{P}\right),$ $I \ge 0$ | $p( E ) = \sqrt{\frac{2}{\pi P}} \exp\left(-\frac{ E ^2}{2P}\right),$ $ E  \ge 0$ $p( E )$ $ E $ |
| Ultimate Shape Gain                                                                   | $\pi e/6 = 1.53 \text{ dB}$                                                                                                | <i>e</i> / 2 = 1.33 dB                                        | $\pi e/6 = 1.53 \text{ dB}$                                                                      |
| Optimal Distribution Complex circular Gaussian                                        |                                                                                                                            | Exponential                                                   | Half-Gaussian                                                                                    |
| Forney et al., 1984-89Key WorksCalderbank & Ozarow, 1990Kschischang & Pasupathy, 1993 |                                                                                                                            | Shiu & Kahn, 1999<br>Hranilovic & Kschischang, 2003           | Mao & Kahn, 2008                                                                                 |

## **Shaping Results Summary (2/2)**

| Detection Method &<br>Dominant Noise                                            | Stokes Vector Receiver,<br>Thermal Noise                                    | Stokes Vector Receiver,<br>Amplifier Noise                                                    |  |
|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--|
| Natural<br>Coordinates                                                          | 3-D Stokes vector<br>$\mathbf{S} = \{S_1, S_2, S_3\}$                       | 3-D scaled Stokes vector<br>$\mathbf{X} = \{X_1, X_2, X_3\} = \{S_1, S_2, S_3\} / \sqrt{S_0}$ |  |
| Optimal Shaping<br>Region                                                       | Non-negative orthant bounded by $N$ -simplex in $S_0$ $S_3$                 | <i>N</i> -sphere centered at the origin $X_{3}$ $X_{4}$ $X_{1}$ $X_{2}$                       |  |
| Induced Optimal<br>Signaling<br>Distribution in<br>Constituent<br>Constellation | $p(\mathbf{S}) \propto \exp(-S_0/\beta)$ $f_{\mathbf{S} S_3}(\mathbf{S} 0)$ | $p(\mathbf{S}) \propto \exp(-S_0/\beta)$ $f_{\mathbf{S} S_3}(\mathbf{S} 0)$                   |  |
| Ultimate Shape Gain                                                             | $\sim 0.961 \sqrt[3]{\pi e}/3 \approx 1.056 \mathrm{dB}$                    | $\pi e/6 \approx 1.53 \text{ dB}$                                                             |  |
| Optimal Distribution                                                            | 3-D exponential                                                             | 3-D exponential                                                                               |  |
| Key Works                                                                       | H. Jia, E. Liang and<br>J. M. Kahn, (2023).                                 | H. Jia, E. Liang and<br>J. M. Kahn, (2023).                                                   |  |

## Outline

- Introduction
- Standard Coherent Detection
- Direct Detection Methods
  - Standard Direct Detection, Thermal Noise
  - Standard Direct Detection, Amplifier Noise
  - Stokes Vector Detection, Thermal or Amplifier Noise
  - Kramers Kronig Detection, Amplifier Noise
- Discussion

### **Standard Direct Detection, Thermal Noise (1/3)**

### **Determine natural coordinates**

- $Y = I + N, \qquad I \in \mathbb{R}_+, \qquad Y, N \in \mathbb{R}, \qquad N \sim \mathcal{N}(0, \sigma_{\text{th}}^2)$
- For intensities  $I_1, I_2 \in \mathbb{R}_+$ , binary error probability for an ML detector is

$$P_e = Q\left(\frac{\|I_1 - I_2\|_2}{2\sigma_{\rm th}}\right).$$

• The natural coordinates are electric field intensities.

### Find optimal and reference bounding regions

$$\mathcal{R}_{\text{shaped}}^{(\text{SD,th})}(N,P) = \{\mathbf{I} \in \mathbb{R}_{+}^{N} \mid \|\mathbf{I}\|_{1} = P\}, \qquad \mathcal{R}_{\text{ref}}^{(\text{SD,th})}(N,P) = \{\mathbf{I} \in \mathbb{R}_{+}^{N} \mid \|\mathbf{I}\|_{\infty} = A\}$$

### **Compute enclosed volumes**

$$\mathcal{V}_{\text{shaped}}^{(\text{SD,th})}(N,P) = \frac{P^N}{N!}, \qquad \mathcal{V}_{\text{ref}}^{(\text{SD,th})}(N,A) = A^N$$

### **Compute average powers**

$$\overline{P}_{\text{shaped}}^{(\text{SD,th})}(N,P) = \frac{P}{N+1}, \qquad \overline{P}_{\text{ref}}^{(\text{SD,th})}(A) = \frac{A}{2}$$



D. Shiu and J. M. Kahn, IEEE Trans. Inf. Theory 45 (1999).

## **Standard Direct Detection, Thermal Noise (2/3)**

#### **Compute shape gain (for equal volumes)**

$$\gamma_{s} = \lim_{N \to \infty} \frac{\overline{P}_{\text{ref}}^{(\text{SD,th})}(A)}{\overline{P}_{\text{shaped}}^{(\text{SD,th})}(N,P)} = \frac{e}{2} \approx 1.33 \text{ dB}$$

Compute induced distribution in one basic dimension

$$\begin{split} f_I(i) &\propto \mathcal{V}_{\text{shaped}}^{(\text{SD,th})}(N-1,P-i) \\ \Rightarrow \lim_{N \to \infty} f_I(i) &\propto \exp(-i/\beta), \qquad i \geq 0 \end{split}$$

• Optimal input distribution is an exponential in electric field intensity.



D. Shiu and J. M. Kahn, IEEE Trans. Inf. Theory 45 (1999).

## **Standard Direct Detection, Thermal Noise (3/3)**



Mutual information vs. SNR for various input distributions

- Optimal distribution computed using Blahut-Arimoto algorithm with many intensity levels.
- Exponential outperforms half-Gaussian.
- Optical power gains (half the SNR<sup>(th)</sup> gains) substantially exceed  $\gamma_s = 1.33$  dB at finite SNR<sup>(th)</sup>.

D. Shiu and J. M. Kahn, IEEE Trans. Inf. Theory 45 (1999).

## Outline

- Introduction
- Standard Coherent Detection
- Direct Detection Methods
  - Standard Direct Detection, Thermal Noise
  - Standard Direct Detection, Amplifier Noise
  - Stokes Vector Detection, Thermal or Amplifier Noise
  - Kramers Kronig Detection, Amplifier Noise
- Discussion

### **Standard Direct Detection, Amplifier Noise (1/3)**



### **Standard Direct Detection, Amplifier Noise (2/3)**

#### **Compute average powers**

$$\overline{P}_{\text{shaped}}^{(\text{SD,th})}(N,P) = \frac{P}{N+2}, \qquad \overline{P}_{\text{ref}}^{(\text{SD,th})}(A) = \frac{A^2}{3}$$

#### Compute shape gain (for equal volumes)

$$\gamma_s = \lim_{N \to \infty} \frac{\bar{P}_{\text{ref}}^{(\text{SD},\text{amp})}(A)}{\bar{P}_{\text{shaped}}^{(\text{SD},\text{amp})}(N,P)} = \frac{\pi e}{6} \approx 1.53 \text{ dB}$$

Compute induced distribution in one basic dimension

$$f_X(x) \propto \mathcal{V}_{\text{shaped}}^{(\text{SD,amp})}(N-1, P-|x|^2)$$
  
$$\Rightarrow \lim_{N \to \infty} f_X(x) \propto \exp(-x^2/\beta), \qquad x \ge 0$$

Optimal input distribution is half-Gaussian in electric field magnitude.



W. Mao and J. M. Kahn, IEEE Trans. Commun. 56 (2008).

### **Standard Direct Detection, Amplifier Noise (3/3)**



Mutual information vs. SNR for various input distributions

- Optimal distribution computed using Blahut-Arimoto algorithm with many intensity levels [2].
- Half-Gaussian outperforms exponential at high SNR, where signal-ASE beat noise is dominant.
  - 1. W. Mao and J. M. Kahn, IEEE Trans. Commun. 56 (2008).
  - 2. K.-P. Ho, IEEE Photon. Technol. Lett. 17 (2005).

## Outline

- Introduction
- Standard Coherent Detection
- Direct Detection Methods
  - Standard Direct Detection, Thermal Noise
  - Standard Direct Detection, Amplifier Noise
  - Stokes Vector Detection, Thermal or Amplifier Noise
  - Kramers Kronig Detection, Amplifier Noise
- Discussion

### **Stokes Vector Receiver**



#### **Stokes vector detection**

Hybrid between noncoherent and differentially coherent detection.

#### **Canonical configurations shown**

- Directly yield three Stokes parameters with identical signal gains and noise distributions.
- Minimize number of electrical outputs and analog-digital converters.
  - 1. E. Ip, A. P. T. Lau, D. J. F. Barros and J. M. Kahn, Optics Express 16 (2008).
  - 2. W. Shieh, H. Khodakarami and D. Che, APL Photonics 1 (2016).

### **Stokes Vector Receiver: Thermal Noise (1/3)**



## **Stokes Vector Receiver: Thermal Noise (2/3)**

### Compute shape gain (for equal volumes)

$$\gamma_s = \lim_{N \to \infty} \frac{\bar{P}_{\text{ref}}^{(\text{SVR,th})}(A)}{\bar{P}_{\text{shaped}}^{(\text{SVR,th})}(N,P)} = 0.961 \frac{e}{3} \sqrt[3]{\pi} \approx 1.056 \text{ dB} \le \frac{e}{3} \sqrt[3]{\pi} \approx 1.23 \text{ dB}$$

### Compute induced distribution in one basic dimension

 $f_{\mathbf{S}}(\mathbf{s}) \propto \mathcal{V}_{\text{shaped}}^{(\text{SVR,th})}(N-1, P-\|\mathbf{s}\|_2)$ 

$$\Rightarrow \lim_{N \to \infty} f_{\mathbf{S}}(\mathbf{s}) \propto \exp(-\|\mathbf{s}\|_2/\beta) \propto \exp(-s_0/\beta)$$

 Optimal 3-D input distribution is an exponential in the L<sup>2</sup> norm of the Stokes vector.



H. Jia, E. Liang and J. M. Kahn, J. Lightw. Technol. 15 (2023).

### **Stokes Vector Receiver: Thermal Noise (3/3)**



### Mutual information vs. SNR for various input distributions

#### Using Stokes vector receiver unless noted otherwise:

- 4-D Coherent: standard coherent receiver, input optimized using Blahut-Arimoto (BA) algorithm on dense 4-D lattice.
- **3-D Optimal**: input optimized using BA algorithm on dense
   3-D lattice.
- **3-D Exponential**: 3-D exponential  $\exp(-||\mathbf{s}||_2/\beta)$  with numerical optimization of parameter  $\beta$ .
- **Gaussian**: 3-D Gaussian  $\exp(-\|\mathbf{s}\|_2^2/\beta)$  with numerical optimization of parameter  $\beta$ .
- Uniform: independent uniform distribution on each Stokes parameter.
- 3-D exponential outperforms Gaussian and performs close to 3-D optimal.

H. Jia, E. Liang and J. M. Kahn, J. Lightw. Technol. 15 (2023).

## **SVR: Amplifier Noise-Limited Regime (1/3)**

### **Determine natural coordinates**

Ignoring spontaneous-spontaneous beat noise:

$$\mathbf{S}_{D}^{(\mathrm{amp})} = \mathbf{S} + \frac{1}{\varsigma} \mathbf{H}^{H} \widetilde{\mathbf{N}}^{(\mathrm{amp})},$$

 $\mathbf{S}, \mathbf{S}_{D}^{(\mathrm{amp})}, \widetilde{\mathbf{N}}^{(\mathrm{amp})} \in \mathbb{R}^{3}, \qquad \widetilde{\mathbf{N}}^{(\mathrm{amp})} | \mathbf{S} \sim \mathcal{N}(0, 4\sigma_{\mathrm{amp}}^{2}\sqrt{\varsigma}S_{0}\mathbf{I}_{3}), \qquad \mathbf{H} \in O(3)$ 

Scaled Stokes vector:

$$[X_1, X_2, X_3]^T = [S_1, S_2, S_3]^T / \sqrt{S_0}$$

• For Stokes vectors  $S_1$ ,  $S_2$ , binary error probability for approximate ML detector:

$$P_e = Q\left(\frac{\|\mathbf{S}_1 - \mathbf{S}_2\|_2}{2\sigma_{\rm amp}(\sqrt{\mathbf{S}_{1,0}} + \sqrt{\mathbf{S}_{2,0}})}\right) \approx Q\left(\frac{\|\mathbf{X}_1 - \mathbf{X}_2\|_2}{4\sigma_{\rm amp}}\right).$$

• The natural coordinates are the scaled Stokes vector space  $\{X_1, X_2, X_3\}$ .

#### Find optimal and reference bounding regions

$$\mathcal{R}_{\text{shaped}}^{(\text{SVR,amp})}(N,P) = \{ \mathbf{X} \in \mathbb{R}^{3N} | \|\mathbf{X}\|_2^2 = P \}, \qquad \mathcal{R}_{\text{ref}}^{(\text{SVR,amp})}(N,P) = \{ \mathbf{X} \in \mathbb{R}^{3N} | \|\mathbf{X}\|_{\infty} = A \}$$





H. Jia, E. Liang and J. M. Kahn, J. Lightw. Technol. 15 (2023).

## SVR: Amplifier Noise-Limited Regime (2/3)

**Compute enclosed volumes** 

$$\mathcal{V}_{\text{shaped}}^{(\text{SVR,amp})}(N,P) = \frac{\pi^{3N/2}}{\Gamma(3N/2+1)}(P)^{3N/2}, \qquad \mathcal{V}_{\text{ref}}^{(\text{SVR,amp})}(N,A) = (2A)^{3N/2}$$

**Compute average powers** 

$$\overline{P}_{\text{shaped}}^{(\text{SVR,amp})}(N,P) = \frac{3}{3N+2}P, \qquad \overline{P}_{\text{ref}}^{(\text{SVR,amp})}(A) = A^2$$

Compute shape gain (for equal volumes)

$$\gamma_{s} = \lim_{N \to \infty} \frac{\bar{P}_{\text{ref}}^{(\text{SVR,amp})}(A)}{\bar{P}_{\text{shaped}}^{(\text{SVR,amp})}(N, P)} = \frac{\pi e}{6} \approx 1.53 \text{ dB}$$

Compute induced distribution in one basic dimension

$$f_{\boldsymbol{X}}(\boldsymbol{x}) \propto \mathcal{V}_{\text{shaped}}^{(\text{SVR,amp})}(N-1, P-\|\boldsymbol{x}\|_2^2)$$

$$\lim_{N \to \infty} f_{\mathbf{X}}(\mathbf{x}) \propto \exp(-\|\mathbf{x}\|_2^2/\beta) \Rightarrow \lim_{N \to \infty} f_{\mathbf{S}}(\mathbf{s}) \propto \frac{1}{\|\mathbf{s}\|_2^{3/2}} \exp(-\|\mathbf{s}\|_2/\beta) \approx \exp(-\|\mathbf{s}\|_2/\beta) = \exp(-s_0/\beta)$$

At high SNR, optimal 3-D input distribution is approximately exponential in L<sup>2</sup> norm of Stokes vector.

 $\cap$ -1 -1  $s_2$  $s_1$ H. Jia, E. Liang and J. M. Kahn, J. Lightw. Technol. 15 (2023).



## SVR: Amplifier Noise-Limited Regime (3/3)



### Mutual information vs. SNR for various input distributions

#### Using Stokes vector receiver unless noted otherwise:

- Performance evaluation includes ASE-ASE beat noises.
- 4-D Coherent: standard coherent receiver, input optimized using Blahut-Arimoto (BA) algorithm on dense 4-D lattice.
- **3-D Optimal**: input optimized using BA algorithm on dense
   3-D lattice.
- **3-D Exponential**: 3-D exponential  $\exp(-||\mathbf{s}||_2/\beta)$  with numerical optimization of parameter  $\beta$ .
- **Gaussian**: 3-D Gaussian  $\exp(-\|\mathbf{s}\|_2^2/\beta)$  with numerical optimization of parameter  $\beta$ .
- Uniform: independent uniform distribution on each Stokes parameter.
- 3-D exponential outperforms Gaussian and performs close to 3-D optimal.
  - H. Jia, E. Liang and J. M. Kahn, J. Lightw. Technol. 15 (2023).

### SVR: Exponential vs. Gaussian Fit in Both Noise Regimes



- **Optimal:** 8 × 8 × 8 constellation optimized using BA algorithm.
- Exponential and Gaussian: fitted to minimize L<sup>1</sup> norm of error.

```
    Exponential fits better than
Gaussian in both noise regimes.
```

H. Jia, E. Liang and J. M. Kahn, J. Lightw. Technol. 15 (2023).

### SVR vs. 3-D Coherent in Amplifier Noise-Limited Regime



- **3-D Coherent**: standard coherent using three of four available dimensions, i.e., setting  $E_{2Q} = 0$ .
- 3-D Optimal: SVR with input distribution designed using Blahut-Arimoto algorithm.
- Adjust signal powers and noise variances to correspond to equal optical SNRs [1].

### **Origin of gap: noise enhancement**

- In coherent receiver, each component of photocurrent is corrupted only by noise in one polarization and one quadrature.
- In Stokes receiver, each component of photocurrent is corrupted by noises in both polarizations and quadratures.
- Can analytically upper-bound the performance gap by 6 dB [1].

1. H. Jia, E. Liang and J. M. Kahn, J. Lightw. Technol. 15 (2023).

## Outline

- Introduction
- Standard Coherent Detection
- Direct Detection Methods
  - Standard Direct Detection, Thermal Noise
  - Standard Direct Detection, Amplifier Noise
  - Stokes Vector Detection, Thermal or Amplifier Noise
  - Kramers Kronig Detection, Amplifier Noise
- Discussion

### Kramers-Kronig Detection, Amplifier Noise-Limited Regime

 $P_{s}$ 

- Transmitted signal is  $x(t) = s(t)e^{j\pi Bt} + E_0$ .
- Modulated data  $s(t)e^{j\pi Bt}$  and carrier  $E_0$  do not overlap, so total power is  $P_s + P_c$ . Assume  $P_c$  is sufficient to avoid phase retrieval errors.
- Carrier  $E_0$  conveys no information and  $e^{j\pi Bt}$  preserves information. Optimal distribution for s(t) satisfies

 $\max_{p_S(s)} I(S, Y) \quad \text{s.t.} \quad P_s \le P_{\max} - P_c.$ 

- Optimal  $p_{S}(s)$  is complex circular Gaussian. Optimal  $p_x(x)$  is shifted complex circular Gaussian.
- At each SNR, can optimize  $P_c/P_s$  numerically to maximize I(X, Y) while achieving low phase error.



E. Chou, H. Srinivas and J. M. Kahn, J. Lightw. Technol. 40 (2022).

## KK vs. Standard Coherent or Direct Detection, Amplifier Noise



- Provides 2 real dimensions.
- Outperforms KK by 5 to 6 dB.

 $p_X(x)$ 

0.66



 Provides ~1.8 real dimensions; must increase P<sub>c</sub>/P<sub>s</sub> as increase SNR.



• Outperforms SD for SNR > 5 dB.



E. Chou, H. Srinivas and J. M. Kahn, J. Lightw. Technol. 40 (2022).

Provides 1 real dimension.

**Standard direct** 

SNR = 5 dB

- Can use zero intensity level, which has least noise.
- Outperforms KK for SNR < 5 dB.</li>

## Outline

- Introduction
- Standard Coherent Detection
- Direct Detection Methods
- Discussion
  - Summary of Direct Detection Shaping Results
  - Implementation of Shaping with Direct Detection
  - References

## **Shaping Results Summary (1/2)**

| Detection MethodCoherent Detection,& Dominant NoiseAmplifier or LO Shot Noise                  |                                                                                                | Noncoherent Detection,<br>Thermal Noise                               | Noncoherent Detection,<br>Amplifier or LO Shot Noise                                             |
|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| Natural<br>Coordinates2-D electric field<br>$E = \{E_1, E_2\}$                                 |                                                                                                | 1-D electric field intensity<br>$I =  E ^2$                           | 1-D electric field magnitude<br>  <i>E</i>                                                       |
| Optimal Shaping Region $N$ -sphere centered at the origin                                      |                                                                                                | Nonnegative orthant bounded<br>by <i>N</i> -simplex<br>$I_2$<br>$I_1$ | Nonnegative orthant bounded<br>by <i>N</i> -sphere<br>$ E_2 $<br>$ E_1 $                         |
| Induced Optimal<br>Signaling<br>Distribution in<br>Constituent<br>Constellation                | $p(E) = \frac{1}{\pi P} \exp\left(-\frac{ E ^2}{P}\right),$ $E = (E_1, E_2)$ $p(E_1, E_2)$ $E$ | $p(I) = \frac{1}{P} \exp\left(-\frac{I}{P}\right),$ $I \ge 0$         | $p( E ) = \sqrt{\frac{2}{\pi P}} \exp\left(-\frac{ E ^2}{2P}\right),$ $ E  \ge 0$ $p( E )$ $ E $ |
| Ultimate Shape Gain                                                                            | $\pi e/6 = 1.53 \text{ dB}$                                                                    | <i>e</i> / 2 = 1.33 dB                                                | $\pi e/6 = 1.53 \text{ dB}$                                                                      |
| Optimal Distribution Complex circular Gaussian                                                 |                                                                                                | Exponential                                                           | Half-Gaussian                                                                                    |
| Key WorksForney et al., 1984-89Key WorksCalderbank & Ozarow, 1990Kschischang & Pasupathy, 1993 |                                                                                                | Shiu & Kahn, 1999<br>Hranilovic & Kschischang, 2003                   | Mao & Kahn, 2008                                                                                 |

## **Shaping Results Summary (2/2)**

| Detection Method &<br>Dominant Noise                                            | Stokes Vector Receiver,<br>Thermal Noise                                    | Stokes Vector Receiver,<br>Amplifier Noise                                                    |  |
|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--|
| Natural<br>Coordinates                                                          | 3-D Stokes vector<br>$\mathbf{S} = \{S_1, S_2, S_3\}$                       | 3-D scaled Stokes vector<br>$\mathbf{X} = \{X_1, X_2, X_3\} = \{S_1, S_2, S_3\} / \sqrt{S_0}$ |  |
| Optimal Shaping<br>Region                                                       | Non-negative orthant bounded by $N$ -simplex in $S_0$ $S_3$                 | <i>N</i> -sphere centered at the origin $X_{3}$ $X_{4}$ $X_{1}$ $X_{2}$                       |  |
| Induced Optimal<br>Signaling<br>Distribution in<br>Constituent<br>Constellation | $p(\mathbf{S}) \propto \exp(-S_0/\beta)$ $f_{\mathbf{S} S_3}(\mathbf{S} 0)$ | $p(\mathbf{S}) \propto \exp(-S_0/\beta)$ $f_{\mathbf{S} S_3}(\mathbf{S} 0)$                   |  |
| Ultimate Shape Gain                                                             | $\sim 0.961 \sqrt[3]{\pi e}/3 \approx 1.056 \mathrm{dB}$                    | $\pi e/6 \approx 1.53 \text{ dB}$                                                             |  |
| Optimal Distribution                                                            | 3-D exponential                                                             | 3-D exponential                                                                               |  |
| Key Works                                                                       | H. Jia, E. Liang and<br>J. M. Kahn, (2023).                                 | H. Jia, E. Liang and<br>J. M. Kahn, (2023).                                                   |  |

## Implementation of Shaping with Direct Detection (1/2)

### Obtaining a finite discrete distribution

- Sample the continuous distribution and adjust the shaping parameter (typically β) to maximize MI.
   or
- Use Blahut-Arimoto algorithm to optimize the discrete distribution.

## Implementation of Shaping with Direct Detection (2/2)

|                            |   | Losslessly Separable into 1-D Distributions                      |   | Not Losslessly Separable<br>into 1-D Distributions               |
|----------------------------|---|------------------------------------------------------------------|---|------------------------------------------------------------------|
| Symmetric<br>Distribution  | 1 | Kramers Kronig (Gaussian)                                        | 3 | SVR Thermal (3-D exponential)<br>SVR Amplifier (3-D exponential) |
| Asymmetric<br>Distribution | 2 | SD Thermal (1-D exponential)<br>SD Amplifier (1-D half-Gaussian) |   |                                                                  |

### 1. Use PAS with CCDM (or other DM)

 Separate into independent 1-D distributions and use a separate DM for each 1-D distribution.

### 2. Use a suboptimal solution

PAS / CCDM (or other DM):

modify target distribution to achieve pairwise symmetry [1].

or

Non-PAS scheme: see [2] for an overview.

### 3. Use PAS with CCDM (or other DM)

 Directly implement one DM for the 3-D distribution (lossless).

or

- Separate into independent 1-D distributions and use a separate DM for each 1-D distribution (lossy).
- 1. Z. He, *et al.*, Opt. Express **27** (2019).
- 2. G. Böcherer, et al., J. Lightw. Technol. 37 (2019).

## **Thank You!**

## Key References for This Talk (1/2)

#### **Shaping Fundamentals**

- 1. G. D. Forney and L.-F. Wei, "Multidimensional constellations. I. Introduction, figures of merit, and generalized cross constellations," IEEE Journal on Selected Areas in Communications, vol. 7, no. 6, pp. 877-892, Aug. 1989.
- R. Kschischang and S. Pasupathy, "Optimal nonuniform signaling for Gaussian channels," IEEE Transactions on Information Theory, vol. 39, no. 3, pp. 913-929, May 1993.
- 3. S. Arimoto, "An algorithm for computing the capacity of arbitrary discrete memoryless channels," IEEE Transactions on Information Theory, vol. 18, no. 1, pp. 14–20, Jan. 1972.
- 4. R. Blahut, "Computation of channel capacity and rate-distortion functions," IEEE Transactions on Information Theory, vol. 18, no. 4, pp. 460-473, July 1972.

#### **Shaping for Standard Direct Detection**

- 5. Da-Shan Shiu and J. M. Kahn, "Shaping and nonequiprobable signaling for intensity-modulated signals," IEEE Transactions on Information Theory, vol. 45, no. 7, pp. 2661-2668, Nov. 1999.
- W. Mao and J. M. Kahn, "Lattice codes for amplified direct-detection optical systems," IEEE Transactions on Communications, vol. 56, no. 7, pp. 1137-1145, July 2008.

## Key References for This Talk (2/2)

#### **Shaping for Stokes Vector Detection**

- 7. W. Shieh, H. Khodakarami, and D. Che, "Polarization diversity and modulation for high-speed optical communications: architectures and capacity," APL Photonics 1, 1 (4): 040801, July 2016.
- 8. H. Jia, E. Liang and J. M. Kahn, "Optimal Shaping for the Stokes Vector Receiver," Journal of Lightwave Technology, vol. 41, no. 22, pp. 6884-6897, 15 Nov.15, 2023.

#### **Shaping for Kramers-Kronig Detection**

9. E. S. Chou, H. Srinivas and J. M. Kahn, "Phase Retrieval-Based Coherent Receivers: Signal Design and Degrees of Freedom," Journal of Lightwave Technology, vol. 40, no. 5, pp. 1296-1307, 1 March1, 2022.

### **Other Key References**

#### **Shaping for Standard Coherent Detection**

- 10. G. Böcherer, P. Schulte and F. Steiner, "Probabilistic Shaping and Forward Error Correction for Fiber-Optic Communication Systems," Journal of Lightwave Technology, vol. 37, no. 2, pp. 230-244, 15 Jan.15, 2019.
- 11. J. Cho and P. J. Winzer, "Probabilistic Constellation Shaping for Optical Fiber Communications," Journal of Lightwave Technology, vol. 37, no. 6, pp. 1590-1607, 15 March15, 2019.
- 12. A. Amari et al., "Introducing Enumerative Sphere Shaping for Optical Communication Systems With Short Blocklengths," Journal of Lightwave Technology, vol. 37, no. 23, pp. 5926-5936, 1 Dec.1, 2019.
- J. Cho, "Probabilistic Constellation Shaping: An Implementation Perspective," 2022 Optical Fiber Communications Conference and Exhibition (OFC), San Diego, CA, USA, 2022, pp. 1-39.

#### **Shaping for Standard Direct Detection**

14. D. Che, J. Cho and X. Chen, "Does Probabilistic Constellation Shaping Benefit IM-DD Systems Without Optical Amplifiers?," Journal of Lightwave Technology, vol. 39, no. 15, pp. 4997-5007, Aug.1, 2021.1109/JLT.2021.3083530.