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Abstract
 We study probabilistic shaping for direct-detection systems that modulate the intensity or

Stokes vector and are limited by thermal or amplifier noise, obtaining analytical formulas for
the optimal (non-Gaussian) input distributions and corresponding shaping gains.

 To download updated slides and the papers cited:

ee.stanford.edu/~jmk/research/smfcom.html#dcs
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Capacity of Uniform M-QAM Formats [2]

~1 dB gap

Shaping for Coherent AWGN Channels
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 Relevant for coherent detection in electrical or optical systems 
with additive Gaussian noise.

 Includes amplifier noise or local oscillator shot noise.

 Capacity-achieving input distribution is Gaussian [1]
(when modulation order not constrained).

 Uniform signaling does not achieve capacity.
Subject to ~1 dB performance gap. 

 Probabilistically shaped coded modulation

 Provides a method to close the performance gap.

 Enables rate-adaptive transmission without
changing modulation order or codeword block length.

1. C. Shannon, Bell System Technical Journal 27.3 (1948).

2. Z. Qu and I. B. Djordjevic, IEEE Access 7 (2019).



Shaping for Direct-Detection Channels
 Would like to rigorously derive optimal input distribution and capacity for various direct-detection channels

in optical communications. 

 These cannot be computed exactly for several important direct-detection channels:

 Standard intensity modulation / direct detection (SD) channel.

 Stokes vector receiver (SVR) channel.

 A method developed by Forney and Wei [1] for coherent AWGN channels has been adapted to direct-detection 
channels. This allows us to compute the following, at least for high SNR:

 Analytical input distributions that approach capacity.

 Achievable gains compared to uniform input distributions.
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1. G. Forney and L. Wei, IEEE J. Sel. Areas Commun. 7 (1989).

the main subject of this talk



Local Oscillator-Based vs. Direct Detection
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Local Oscillator-Based Detection

 A received signal is mixed with light from a local 
oscillator laser to

 Downconvert it to baseband.

 Effectively amplify the signal.

 Provide a phase reference.

 Local oscillator-based detection is not necessarily 

coherent.

Direct Detection

 No local oscillator laser is employed at the receiver.

 Detection may be aided by 

 Transmitting an unmodulated carrier with the 
modulated signal.

 Mixing the received signal with a (potentially 
delayed or phase-shifted) copy of itself.

 Direct detection is not necessarily noncoherent.
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here Adapted from:

E. Ip, A. P. T. Lau,
D. J. F. Barros
and J. M. Kahn,
Optics Express 16
(2008).



Assumptions and Performance Metrics in this Tutorial 
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Constraints

 Average optical power is constrained.

 Short-reach: eye safety.

 Long-haul: fiber nonlinearity, amplifier pump power.

 Peak optical power not constrained.

 All systems have peak power constraints. 
Fundamental studies start by considering average 
power constraint.

 Encoding and decoding complexity not constrained.

Impairments

 Consider one dominant additive noise, either:

 Thermal noise: added to detected photo current.

 Optical amplifier noise: added to optical electric field.

 Impairments not considered:
 Inter-symbol interference, fiber nonlinearity, etc.

Performance Metrics

 Spectral efficiency measured in b/symbol, not b/s/Hz.

 Standard intensity modulation / direct detection systems

 Intensity signals are non-negative.

 There exist no band-limited, non-negative root-
Nyquist pulses [1].

 Standard direct detection systems cannot be strictly 
bandlimited while using matched filtering.

 Rectangular pulses with 5-pole Bessel filters can 
achieve ~0.8 symbol/s/Hz.

 3-D Stokes, Kramers Kronig, standard coherent systems

 Signals can be bipolar.

 Root-Nyquist  pulses can approach 1 symbol/s/Hz.

1. S. Hranilovic, IEEE Trans. Commun. 55 (2007).
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Standard Coherent: Shannon’s Method (1/2)
 The method finds an optimal input distribution maximizing the mutual information

subject to an average power constraint.

 The standard coherent channel is relevant for coherent electrical or optical systems.
Consider one polarization for simplicity. 

𝑌𝑌 = 𝑋𝑋 + 𝑁𝑁, 𝑋𝑋,𝑁𝑁, 𝑌𝑌 ∈ ℂ, 𝑋𝑋,𝑁𝑁 independent

𝑁𝑁 is Gaussian:  𝑓𝑓𝑁𝑁 𝑛𝑛 = 1
2𝜋𝜋𝜎𝜎2

exp − 1
2𝜎𝜎2

𝑛𝑛 2
2

 Optimization problem

max
𝑓𝑓𝑋𝑋 𝑥𝑥

𝐼𝐼 𝑋𝑋;𝑌𝑌 = max
𝑓𝑓𝑋𝑋 𝑥𝑥

ℎ 𝑌𝑌 − ℎ 𝑌𝑌 𝑋𝑋

= max
𝑓𝑓𝑋𝑋 𝑥𝑥

ℎ 𝑌𝑌 − ℎ 𝑁𝑁

s. t. �
𝑥𝑥∈𝒳𝒳

𝑥𝑥 2 𝑓𝑓𝑋𝑋 𝑥𝑥 𝑑𝑑𝑥𝑥 ≤ �𝑃𝑃
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C. Shannon, Bell System Technical Journal 27.3 (1948).

+

=
signal field

ASE or LO shot noise

signal + noise 

independent of X



Standard Coherent: Shannon’s Method (2/2)
 By variational calculus, the maximum-entropy input distribution subject to an L2

norm constraint is

𝑓𝑓𝑋𝑋 𝑥𝑥 =
1

2𝜋𝜋 �𝑃𝑃
exp −

1
2 �𝑃𝑃

𝑥𝑥 2
2 ⇔ 𝑋𝑋~𝒞𝒞𝒞𝒞 0, �𝑃𝑃

 When 𝑋𝑋~𝒞𝒞𝒞𝒞 0, �𝑃𝑃 , then 𝑌𝑌~𝒞𝒞𝒞𝒞 0, �𝑃𝑃 + 2𝜎𝜎2 .

 𝑓𝑓𝑌𝑌 𝑦𝑦 is the maximum entropy distribution subject to an L2 norm constraint.

 Therefore, 𝑋𝑋~𝒞𝒞𝒞𝒞 0, �𝑃𝑃 is capacity achieving.

 Assuming an input distribution is 𝑋𝑋~𝐶𝐶𝒞𝒞 0, �𝑃𝑃 , the capacity (in bits/symbol) is

𝐶𝐶 = ℎ 𝑌𝑌 − ℎ 𝑁𝑁 = log2
𝜋𝜋𝜋𝜋 �𝑃𝑃 + 2𝜎𝜎2

𝜋𝜋𝜋𝜋2𝜎𝜎2
= log2 1 +

�𝑃𝑃
2𝜎𝜎2

C. Shannon, Bell System Technical Journal 27.3 (1948).
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Standard Coherent: Forney’s Method
 The method assumes capacity-approaching, high-dimensional lattice codes. It finds an optimal bounding region 

minimizing the average power of the enclosed signal points while maintaining constant minimum distance.

 Forney’s original method is applicable to coherent electrical or optical systems.

 Forney’s original work addresses both lattice codes and bounding regions.  We focus on the bounding regions. 

 Constellation figure of merit for a constellation 𝐶𝐶 (assuming all points in 𝐶𝐶 are equally probable):

CFM 𝐶𝐶 ≜
𝑑𝑑min
2 𝐶𝐶
�𝑃𝑃 𝐶𝐶

= squared minimum Euclidean distance
average power

 Variables implicit in the CFM:

 𝑁𝑁: number of dimensions of each signal point 𝑋𝑋 ∈ 𝐶𝐶

 𝐶𝐶 : total number of messages in 𝐶𝐶

𝑁𝑁 and 𝐶𝐶 must be equated when comparing CFMs of different constellations.

J. M. Kahn and E. M. Liang  • OFC • March 25, 2024 15

G. Forney and L. Wei, IEEE J. Sel. Areas Commun. 7 (1989).



Constellation Figure of Merit Example
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CFM 𝐶𝐶𝑀𝑀−PSK =
𝑑𝑑min2 𝐶𝐶𝑀𝑀−PSK
�𝑃𝑃 𝐶𝐶𝑀𝑀−PSK

= 4 sin2
𝜋𝜋
𝑀𝑀

CFM 𝐶𝐶𝑀𝑀−PAM =
𝑑𝑑min2 𝐶𝐶𝑀𝑀−PAM
�𝑃𝑃 𝐶𝐶𝑀𝑀−PAM

=
12

𝑀𝑀2 − 1

lim
𝑀𝑀→∞

CFM 𝐶𝐶𝑀𝑀−PSK
CFM 𝐶𝐶𝑀𝑀−PAM

=
𝜋𝜋2

3 ≈ 5.17 dB

𝐶𝐶𝑀𝑀−PSK: 𝑀𝑀 = 16 𝐶𝐶𝑀𝑀−PAM: 𝑀𝑀 = 8



Lattice
 All lattices are assumed to be symmetric about the origin.

Real Lattice
 𝑁𝑁-D lattice Λ N is 𝑁𝑁-fold Cartesian product of 1-D lattice Λ 1 :

Λ 1 ≜ … ,−
5
2

,−
3
2

,−
1
2

,
1
2

,
3
2

,
5
2

, …

 The lattice 𝑑𝑑 ⋅ Λ N has a minimum Euclidean distance 𝑑𝑑. 

Complex Lattice
 𝑁𝑁-D complex lattice 𝒞𝒞Λ N is 𝑁𝑁-fold Cartesian product of 1-D complex lattice 𝒞𝒞Λ 1 :

𝒞𝒞Λ 1 ≜

⋮

… ,−
3
2
− 𝑗𝑗

1
2

,−
1
2
− 𝑗𝑗

1
2

,
1
2
− 𝑗𝑗

1
2

,
3
2
− 𝑗𝑗

1
2

, …

… ,−
3
2

+ 𝑗𝑗
1
2

,−
1
2

+ 𝑗𝑗
1
2

,
1
2

+ 𝑗𝑗
1
2

,
3
2

+ 𝑗𝑗
1
2

, …
⋮

 The lattice 𝑑𝑑 ⋅ 𝒞𝒞Λ N has a minimum Euclidean distance 𝑑𝑑. 
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Bounding Region
Reference Bounding Region
 The reference bounding region is an 𝑁𝑁-D hypercube:

ℛref 𝑁𝑁,𝐴𝐴 = 𝑋𝑋 ∈ ℂ𝑁𝑁│ max
𝑖𝑖∈ 1,2,…,𝑁𝑁

Re 𝑋𝑋𝑖𝑖 , Im 𝑋𝑋𝑖𝑖 = 𝐴𝐴

 The set of points enclosed by ℛref 𝑁𝑁,𝐴𝐴 is:

ℝref 𝑁𝑁,𝐴𝐴 = 𝑋𝑋 = 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑁𝑁 │ 𝑋𝑋 ∞ ≤ 𝐴𝐴

 The volume of the region enclosed by ℛref 𝑁𝑁,𝐴𝐴 is 𝒱𝒱ref 𝑁𝑁,𝐴𝐴 .

Optimal Bounding Region
 The optimal bounding region minimizes the average physical energy of the enclosed

signal points subject to a constraint on the number of enclosed points.

 The optimal bounding region for maximum physical energy 𝑃𝑃 is:

ℛshaped 𝑁𝑁,𝑃𝑃 = 𝑋𝑋 ∈ ℂ𝑁𝑁│ 𝑋𝑋 2
2 = 𝑃𝑃

 The set of points enclosed by the bounding region ℛshaped 𝑁𝑁,𝑃𝑃 is:

ℝshaped 𝑁𝑁,𝑃𝑃 = 𝑋𝑋 ∈ ℂ𝑁𝑁│ 𝑋𝑋 2
2 ≤ 𝑃𝑃

 The volume of the region enclosed by ℛshaped 𝑁𝑁,𝑃𝑃 is 𝒱𝒱shaped 𝑁𝑁,𝑃𝑃 .
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Lattice Code Construction
 Consider 𝑑𝑑 ⋅ Λ N , which is an 𝑁𝑁-D lattice with minimum 

Euclidean distance 𝑑𝑑.

 𝐶𝐶shaped and 𝐶𝐶ref are obtained as:

𝐶𝐶shaped = ℝshaped 𝑁𝑁,𝑃𝑃 ∩ 𝑑𝑑 ⋅ 𝒞𝒞Λ N

𝐶𝐶ref = ℝref 𝑁𝑁,𝐴𝐴 ∩ 𝑑𝑑 ⋅ 𝒞𝒞Λ N

 The intersection selects signal points from 𝑑𝑑 ⋅ Λ N inside  

ℝshaped 𝑁𝑁,𝑃𝑃 and ℝref 𝑁𝑁,𝐴𝐴 to construct 𝐶𝐶shaped and 𝐶𝐶ref, 

respectively.

 The minimum distances of 𝐶𝐶shaped and 𝐶𝐶ref are equal:

𝑑𝑑min 𝐶𝐶shaped = 𝑑𝑑min 𝐶𝐶ref

J. M. Kahn and E. M. Liang  • OFC • March 25, 2024 19



Continuous Approximation
 The continuous approximation replaces the lattice by a continuum.

This becomes increasing accurate as 𝐶𝐶shaped or 𝐶𝐶ref → ∞.

 𝐶𝐶shaped and 𝐶𝐶ref are replaced by 𝒱𝒱shaped 𝑁𝑁,𝑃𝑃 and 𝒱𝒱ref 𝑁𝑁,𝐴𝐴 .

 The average power expressions  �𝑃𝑃 𝐶𝐶 are expressed as integrals:

�𝑃𝑃 𝐶𝐶shaped =
1

𝐶𝐶shaped
�

𝑋𝑋∈𝐶𝐶shaped

𝑋𝑋 2
2 ≅

1
𝒱𝒱shaped 𝑁𝑁,𝑃𝑃

�
𝑋𝑋∈ℝshaped 𝑁𝑁,𝑃𝑃

𝑋𝑋 2
2𝑑𝑑𝑋𝑋

�𝑃𝑃 𝐶𝐶ref =
1
𝐶𝐶ref

�
𝑋𝑋∈𝐶𝐶ref

𝑋𝑋 2
2 ≅

1
𝒱𝒱ref 𝑁𝑁,𝐴𝐴

�
𝑋𝑋∈ℝref 𝑁𝑁,𝐴𝐴

𝑋𝑋 2
2𝑑𝑑𝑋𝑋

 Enclosed volumes:

𝒱𝒱shaped
SC 𝑁𝑁,𝑃𝑃 =

𝜋𝜋𝑃𝑃 𝑁𝑁

𝑁𝑁!
, 𝒱𝒱ref

SC 𝑁𝑁,𝐴𝐴 = 4𝐴𝐴2 𝑁𝑁

 Average powers:

�𝑃𝑃shaped
(SC) 𝑁𝑁,𝑃𝑃 =

𝑃𝑃
𝑁𝑁 + 1

, �𝑃𝑃ref
SC 𝐴𝐴 =

2
3
𝐴𝐴2
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𝑓𝑓𝑋𝑋 𝑥𝑥

Induced Marginal Distribution (1/3)
 The shaping region ℝshaped 𝑁𝑁,𝑃𝑃 can be partitioned into 

disjoint subsets by conditioning on a value in a basic 

dimension:

𝒫𝒫shaped 𝑁𝑁,𝑃𝑃, 𝑥𝑥 ≜ 𝑿𝑿 ∈ ℝshaped 𝑁𝑁,𝑃𝑃 │𝑋𝑋1 = 𝑥𝑥

 The volume of 𝒫𝒫shaped 𝑁𝑁,𝑃𝑃, 𝑥𝑥 is

𝒱𝒱shaped 𝑁𝑁 − 1,𝑃𝑃 − 𝑥𝑥 2

 The induced probability density is proportional to the 

volume of the partition in 𝑁𝑁 − 1 dimensions:

𝑓𝑓𝑋𝑋 𝑥𝑥 ∝ 𝒱𝒱shaped 𝑁𝑁 − 1,𝑃𝑃 − 𝑥𝑥 2

J. M. Kahn and E. M. Liang  • OFC • March 25, 2024 21



Induced Marginal Distribution (2/3)

J. M. Kahn and E. M. Liang  • OFC • March 25, 2024 22

 Peak-to-average power ratio:

𝑃𝑃 = 𝑁𝑁 + 1 �𝑃𝑃shaped
(SC) 𝑁𝑁,𝑃𝑃

Induced distribution in one real dimension for various N



Induced Marginal Distribution (3/3)
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Optimal Induced Distribution

𝑓𝑓𝑋𝑋 𝑥𝑥 ∝ 𝒱𝒱shaped
SC 𝑁𝑁 − 1,𝑃𝑃 − 𝑥𝑥 2 = 1 −

𝑥𝑥 2

𝑁𝑁 + 1 �𝑃𝑃shaped
(SC) 𝑁𝑁,𝑃𝑃

𝑁𝑁−1

⇒ lim
𝑁𝑁→∞

𝑓𝑓𝑋𝑋 𝑥𝑥 ∝ exp − 𝑥𝑥 2/𝛽𝛽

 The optimal input distribution is Gaussian in complex electric field.

Shape Gain

 Equating volumes 𝒱𝒱shaped
SC 𝑁𝑁,𝑃𝑃 = 𝒱𝒱ref

SC 𝑁𝑁,𝑃𝑃 , the shape gain is

𝛾𝛾𝑠𝑠 = lim
𝑁𝑁→∞

�𝑃𝑃ref
(SC) 𝐴𝐴

�𝑃𝑃shaped
(SC) 𝑁𝑁,𝑃𝑃

=
𝜋𝜋𝜋𝜋
6
≈ 1.53 dB

 The Gaussian distribution improves energy efficiency by  ~1.5 dB.

Reference input distribution

Optimal input distribution
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Standard Coherent: Implementation (1/2)
Discrete Input Distributions

 Discrete constellations must be used in practice.

 Can numerically compute the optimal discrete distribution using 
Blahut-Arimoto algorithm [1], [2].

 Can employ Maxwell-Boltzmann distribution [3] for discrete 𝑥𝑥:

𝑃𝑃𝑋𝑋 𝑥𝑥 ≜ exp − 𝑥𝑥 2/𝛽𝛽 /𝑍𝑍 𝛽𝛽 , 𝑍𝑍 𝛽𝛽 ≜ �
𝑥𝑥∈𝐶𝐶

exp − 𝑥𝑥 2/𝛽𝛽

 Parameterized by a shaping parameter 𝛽𝛽 ≥ 0:

 𝛽𝛽 controls the tradeoff between energy efficiency and bit rate.

 𝛽𝛽 → ∞ as SNR → ∞ (approaches a uniform distribution).

 MB distribution usually close to optimal at high SNR.

 N-D MB distribution is separable:

𝑃𝑃𝑿𝑿 𝒙𝒙 =
1

𝑍𝑍 𝛽𝛽
exp − 𝒙𝒙 2/𝛽𝛽 =

1
𝑍𝑍 𝛽𝛽

�
𝑖𝑖=1

𝑁𝑁

exp −𝑥𝑥𝑖𝑖2/𝛽𝛽

J. M. Kahn and E. M. Liang  • OFC • March 25, 2024 25

21-point MB distribution for three values of 𝜷𝜷

1. S. Arimoto, IEEE Trans. Inf. Theory 18 (1972).
2. R. Blahut, IEEE Trans. Inf. Theory 18 (1972).
3. F. Kschischang and S. Pasupathy, IEEE Trans. Inf. Theory 9 (1993).



Standard Coherent: Implementation (2/2)
Probabilistic Amplitude Shaping

 PAS architecture combines a distribution matcher (DM) with forward error correction (FEC).

 Advantages

 Capacity achieving and can be integrated with existing FEC schemes.

 Enables rate adaptation without changing the FEC block length.

 Drawbacks

 Requires a probability distribution that can be partitioned into pairs of points with equal probabilities.  

Distribution Matcher

 Constant composition distribution matcher [1].

 Maps to fixed-composition sequences.

 Shell shaping [2].

 Maps to sequences with a maximum physical energy.

 Can have superior performance when the bit sequence is short.

 Can have high complexity, especially for long block lengths. 
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1. G. Böcherer, et al., IEEE Trans. Commun. 63 (2015).

2. A. Amari, et al., J. Lightw. Technol. 37 (2019).
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Transition to Direct Detection
Shannon’s Method

 Optimization problems can be stated, but resulting Lagrangians cannot be solved analytically.

Forney’s Method

 Forney’s original method for standard coherent detection used a uniform lattice in electric field coordinates.

 The binary error probability between any two 𝑁𝑁-D signal points depends only on the Euclidean distance between them.

Natural Coordinates

 Enable extension of Forney’s method to direct-detection optical channels [1], [2].

 Define the uniform lattice in natural coordinates, in which the binary error probability is a decreasing function of Euclidean 

distance, at least asymptotically at high SNR. 

 The natural coordinates depend on

 Detection method.

 Noise distribution.

 Decision rule. 
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1. D. Shiu and J. M. Kahn, IEEE Trans. Inf. Theory 45 (1999).

2. W. Mao and J. M. Kahn, IEEE Trans. Commun. 56 (2008).
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Complex circular Gaussian Exponential Half-GaussianOptimal Distribution

Forney et al., 1984-89
Calderbank & Ozarow, 1990

Kschischang & Pasupathy, 1993

Shiu & Kahn, 1999
Hranilovic & Kschischang, 2003 Mao & Kahn, 2008Key Works
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Distribution in 
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J. M. Kahn, (2023).
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independent of I

+

=
signal intensity

thermal noise

signal + noise 

Standard Direct Detection, Thermal Noise (1/3)
Determine natural coordinates

𝑌𝑌 = 𝐼𝐼 + 𝑁𝑁, 𝐼𝐼 ∈ ℝ+ , 𝑌𝑌,𝑁𝑁 ∈ ℝ, 𝑁𝑁~𝒞𝒞 0,𝜎𝜎th2

 For intensities 𝐼𝐼1, 𝐼𝐼2 ∈ ℝ+, binary error probability for an ML detector is

𝑃𝑃𝑒𝑒 = 𝑄𝑄 𝐼𝐼1−𝐼𝐼2 2
2𝜎𝜎th

.

 The natural coordinates are electric field intensities.

Find optimal and reference bounding regions

ℛshaped
SD,th 𝑁𝑁,𝑃𝑃 = 𝐈𝐈 ∈ ℝ+

𝑁𝑁 𝐈𝐈 1 = 𝑃𝑃 , ℛref
SD,th 𝑁𝑁,𝑃𝑃 = 𝐈𝐈 ∈ ℝ+

𝑁𝑁 𝐈𝐈 ∞ = 𝐴𝐴

Compute enclosed volumes

𝒱𝒱shaped
SD,th 𝑁𝑁,𝑃𝑃 =

𝑃𝑃𝑁𝑁

𝑁𝑁!
, 𝒱𝒱ref

SD,th 𝑁𝑁,𝐴𝐴 = 𝐴𝐴𝑁𝑁

Compute average powers

�𝑃𝑃shaped
(SD,th) 𝑁𝑁,𝑃𝑃 =

𝑃𝑃
𝑁𝑁 + 1

, �𝑃𝑃ref
SD,th 𝐴𝐴 =

𝐴𝐴
2
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D. Shiu and J. M. Kahn, IEEE Trans. Inf. Theory 45 (1999).



Standard Direct Detection, Thermal Noise (2/3)
Compute shape gain (for equal volumes)

𝛾𝛾𝑠𝑠 = lim
𝑁𝑁→∞

�𝑃𝑃ref
(SD,th) 𝐴𝐴

�𝑃𝑃shaped
(SD,th) 𝑁𝑁,𝑃𝑃

=
𝜋𝜋
2
≈ 1.33 dB

Compute induced distribution in one basic dimension

𝑓𝑓𝐼𝐼 𝑖𝑖 ∝ 𝒱𝒱shaped
SD,th 𝑁𝑁 − 1,𝑃𝑃 − 𝑖𝑖

⇒ lim
𝑁𝑁→∞

𝑓𝑓𝐼𝐼 𝑖𝑖 ∝ exp −𝑖𝑖/𝛽𝛽 , 𝑖𝑖 ≥ 0

 Optimal input distribution is an exponential in electric field intensity.
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D. Shiu and J. M. Kahn, IEEE Trans. Inf. Theory 45 (1999).



Standard Direct Detection, Thermal Noise (3/3)
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 Optimal distribution computed using Blahut-Arimoto algorithm with many intensity levels. 

 Exponential outperforms half-Gaussian.

 Optical power gains (half the SNR th gains) substantially exceed 𝛾𝛾𝑠𝑠 = 1.33 dB at finite SNR th .

Mutual information vs. SNR for various input distributions

D. Shiu and J. M. Kahn,
IEEE Trans. Inf. Theory 45 (1999).
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Standard Direct Detection, Amplifier Noise (1/3)
Determine natural coordinates

𝑌𝑌 = 𝑋𝑋 + 𝑁𝑁 2, 𝑋𝑋,𝑁𝑁 ∈ ℂ, 𝑌𝑌 ∈ ℝ+, 𝑁𝑁~𝒞𝒞𝒞𝒞 0, 2𝜎𝜎amp2

 Approximate decision threshold for field magnitudes 𝑋𝑋1 , 𝑋𝑋2 :

𝑌𝑌𝐷𝐷 ≈
𝑋𝑋1 2 𝑋𝑋2 + 𝑋𝑋1 𝑋𝑋2 2

𝑋𝑋1 + 𝑋𝑋2
= 𝑋𝑋1 𝑋𝑋2

 Using 𝑌𝑌𝐷𝐷, the approximate binary error probability is 𝑃𝑃𝑒𝑒 ≈ 𝑄𝑄 𝑋𝑋1 − 𝑋𝑋2 2
2𝜎𝜎amp

.

 The natural coordinates are electric field magnitudes.

 Can assume 𝑋𝑋 = 𝑋𝑋 ∈ ℝ+ without loss of generality. 

Find optimal and reference bounding regions

ℛshaped
SD,amp 𝑁𝑁,𝑃𝑃 = 𝐗𝐗 ∈ ℝ+

𝑁𝑁 𝐗𝐗 2
2 = 𝑃𝑃 , ℛref

SD,amp 𝑁𝑁,𝑃𝑃 = 𝐗𝐗 ∈ ℝ+
𝑁𝑁 𝐗𝐗 ∞ = 𝐴𝐴

Compute enclosed volumes

𝒱𝒱shaped
SD,amp 𝑁𝑁,𝑃𝑃 =

1

Γ 𝑁𝑁
2 + 1

𝜋𝜋𝑃𝑃 𝑁𝑁/2

2𝑁𝑁
, 𝒱𝒱ref

SD,amp 𝑁𝑁,𝐴𝐴 = 𝐴𝐴𝑁𝑁
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W. Mao and J. M. Kahn, IEEE Trans. Commun. 56 (2008).

neglecting ASE-ASE beat noises

+

= 
signal field

ASE noise

signal + signal-ASE beat noise 



Standard Direct Detection, Amplifier Noise (2/3)
Compute average powers

�𝑃𝑃shaped
(SD,th) 𝑁𝑁,𝑃𝑃 =

𝑃𝑃
𝑁𝑁 + 2

, �𝑃𝑃ref
𝑆𝑆D,th 𝐴𝐴 =

𝐴𝐴2

3

Compute shape gain (for equal volumes)

𝛾𝛾𝑠𝑠 = lim
𝑁𝑁→∞

�𝑃𝑃ref
(SD,amp) 𝐴𝐴

�𝑃𝑃shaped
(SD,amp) 𝑁𝑁,𝑃𝑃

=
𝜋𝜋𝜋𝜋
6
≈ 1.53 dB

Compute induced distribution in one basic dimension

𝑓𝑓𝑋𝑋 𝑥𝑥 ∝ 𝒱𝒱shaped
SD,amp 𝑁𝑁 − 1,𝑃𝑃 − 𝑥𝑥 2

⇒ lim
𝑁𝑁→∞

𝑓𝑓𝑋𝑋 𝑥𝑥 ∝ exp −𝑥𝑥2/𝛽𝛽 , 𝑥𝑥 ≥ 0

 Optimal input distribution is half-Gaussian in electric field magnitude.
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W. Mao and J. M. Kahn, IEEE Trans. Commun. 56 (2008).



Standard Direct Detection, Amplifier Noise (3/3)

J. M. Kahn and E. M. Liang  • OFC • March 25, 2024 38

1. W. Mao and J. M. Kahn, IEEE Trans. Commun. 56 (2008).
2. K.-P. Ho, IEEE Photon. Technol. Lett. 17 (2005).

 Optimal distribution computed using Blahut-Arimoto algorithm with many intensity levels [2]. 

 Half-Gaussian outperforms exponential at high SNR, where signal-ASE beat noise is dominant.

Mutual information vs. SNR for various input distributions
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Stokes Vector Receiver

J. M. Kahn and E. M. Liang  • OFC • March 25, 2024 40

Stokes vector detection

 Hybrid between noncoherent and differentially coherent detection. 

Canonical configurations shown

 Directly yield three Stokes parameters with identical signal gains and noise distributions.

 Minimize number of electrical outputs and analog-digital converters. 

1. E. Ip, A. P. T. Lau, D. J. F. Barros and J. M. Kahn, Optics Express 16 (2008).
2. W. Shieh, H. Khodakarami and D. Che,  APL Photonics 1 (2016). 
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+

Stokes
vector

thermal noise

fiber equalizer Stokes vector + noise

independent of S

Stokes Vector Receiver: Thermal Noise (1/3)
Determine natural coordinates

𝐒𝐒𝐷𝐷
th = 𝐒𝐒 + 1

𝜍𝜍
𝐇𝐇𝐻𝐻𝐍𝐍 th , 𝐒𝐒, 𝐒𝐒𝐷𝐷

th ,𝐍𝐍 th ∈ ℝ3, 𝐍𝐍 th ~𝒞𝒞 0,𝜎𝜎𝑡𝑡𝑡2 𝐈𝐈3 ,  𝐇𝐇 ∈ O 3

 For Stoke vectors 𝐒𝐒1, 𝐒𝐒2, binary error probability for ML detector: 

𝑃𝑃𝑒𝑒 = 𝑄𝑄
𝐒𝐒1 − 𝐒𝐒2 2

2𝜎𝜎th
.

 The natural coordinates are the Stokes vector space 𝑆𝑆1, 𝑆𝑆2, 𝑆𝑆3 .

Find optimal and reference bounding regions

ℛshaped
SVR,th 𝑁𝑁,𝑃𝑃 = 𝐒𝐒 ∈ ℝ3𝑁𝑁 ∑𝑖𝑖=1𝑁𝑁 𝐒𝐒𝑖𝑖 2 = 𝑃𝑃 , ℛref

SVR,th 𝑁𝑁,𝑃𝑃 = 𝐒𝐒 ∈ ℝ3𝑁𝑁 | 𝐒𝐒 ∞ = 𝐴𝐴

Compute enclosed volumes

𝒱𝒱shaped
SVR,th 𝑁𝑁,𝑃𝑃 =

1
Γ 3𝑁𝑁 + 1

8𝜋𝜋 𝑁𝑁𝑃𝑃3𝑁𝑁, 𝒱𝒱ref
SVR,th 𝑁𝑁,𝐴𝐴 = 2𝐴𝐴 3𝑁𝑁

Compute average powers

�𝑃𝑃shaped
(SVR,th) 𝑁𝑁,𝑃𝑃 =

3
3𝑁𝑁 + 1

𝑃𝑃, �𝑃𝑃ref
SVR,th 𝐴𝐴 ≈ 0.961𝐴𝐴 ≤ 𝐴𝐴
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H. Jia, E. Liang and J. M. Kahn, J. Lightw. Technol. 15 (2023).



Stokes Vector Receiver: Thermal Noise (2/3)
Compute shape gain (for equal volumes)

𝛾𝛾𝑠𝑠 = lim
𝑁𝑁→∞

�𝑃𝑃ref
(SVR,th) 𝐴𝐴

�𝑃𝑃shaped
(SVR,th) 𝑁𝑁,𝑃𝑃

= 0.961
𝜋𝜋
3

3 𝜋𝜋 ≈ 1.056 dB ≤
𝜋𝜋
3

3 𝜋𝜋 ≈ 1.23 dB

Compute induced distribution in one basic dimension

𝑓𝑓𝐒𝐒 𝐬𝐬 ∝ 𝒱𝒱shaped
SVR,th 𝑁𝑁 − 1,𝑃𝑃 − 𝐬𝐬 2

⇒ lim
𝑁𝑁→∞

𝑓𝑓𝐒𝐒 𝐬𝐬 ∝ exp − 𝐬𝐬 2/𝛽𝛽 ∝ exp −𝑠𝑠0/𝛽𝛽

 Optimal 3-D input distribution is an exponential in the L2 norm of the
Stokes vector.
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H. Jia, E. Liang and J. M. Kahn, J. Lightw. Technol. 15 (2023).



Stokes Vector Receiver: Thermal Noise (3/3)

J. M. Kahn and E. M. Liang  • OFC • March 25, 2024 43

Using Stokes vector receiver unless noted otherwise:

 4-D Coherent: standard coherent receiver, input optimized 
using Blahut-Arimoto (BA) algorithm on dense 4-D lattice. 

 3-D Optimal: input optimized using BA algorithm on dense 
3-D lattice.

 3-D Exponential: 3-D exponential exp − 𝐬𝐬 2/𝛽𝛽 with 
numerical optimization of parameter 𝛽𝛽.  

 Gaussian: 3-D Gaussian exp − 𝐬𝐬 2
2/𝛽𝛽 with numerical 

optimization of parameter 𝛽𝛽. 

 Uniform: independent uniform distribution on each Stokes 
parameter.

 3-D exponential outperforms Gaussian and performs close 
to 3-D optimal.

H. Jia, E. Liang and J. M. Kahn, J. Lightw. Technol. 15 (2023).

Mutual information vs. SNR for various input distributions



SVR: Amplifier Noise-Limited Regime (1/3)
Determine natural coordinates

 Ignoring spontaneous-spontaneous beat noise:

𝐒𝐒𝐷𝐷
amp = 𝐒𝐒 +

1
𝜍𝜍
𝐇𝐇𝐻𝐻�𝐍𝐍 amp ,

𝐒𝐒, 𝐒𝐒𝐷𝐷
amp , �𝐍𝐍 amp ∈ ℝ3, ��𝐍𝐍 amp 𝐒𝐒 ~𝒞𝒞 0,4𝜎𝜎amp2 𝜍𝜍𝑆𝑆0𝐈𝐈3 , 𝐇𝐇 ∈ O 3

 Scaled Stokes vector:
𝑋𝑋1,𝑋𝑋2,𝑋𝑋3 𝑇𝑇 = 𝑆𝑆1, 𝑆𝑆2, 𝑆𝑆3 𝑇𝑇/ 𝑆𝑆0

 For Stokes vectors 𝐒𝐒1, 𝐒𝐒2, binary error probability for approximate ML detector:

𝑃𝑃𝑒𝑒 = 𝑄𝑄
𝐒𝐒1 − 𝐒𝐒2 2

2𝜎𝜎amp 𝐒𝐒1,0 + 𝐒𝐒2,0
≈ 𝑄𝑄

𝐗𝐗1 − 𝐗𝐗2 2

4𝜎𝜎amp
.

 The natural coordinates are the scaled Stokes vector space 𝑋𝑋1,𝑋𝑋2,𝑋𝑋3 .

Find optimal and reference bounding regions

ℛshaped
SVR,amp 𝑁𝑁,𝑃𝑃 = 𝐗𝐗 ∈ ℝ3𝑁𝑁 𝐗𝐗 2

2 = 𝑃𝑃 , ℛref
SVR,amp 𝑁𝑁,𝑃𝑃 = 𝐗𝐗 ∈ ℝ3𝑁𝑁│ 𝐗𝐗 ∞ = 𝐴𝐴
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neglecting ASE-ASE beat noises

+

Stokes vector fiber equalizer Stokes vector + signal-ASE beat noise

approximate ASE noise

H. Jia, E. Liang and J. M. Kahn, J. Lightw. Technol. 15 (2023).



SVR: Amplifier Noise-Limited Regime (2/3)
Compute enclosed volumes

𝒱𝒱shaped
SVR,amp 𝑁𝑁,𝑃𝑃 =

𝜋𝜋3𝑁𝑁/2

Γ 3𝑁𝑁/2 + 1
𝑃𝑃 3𝑁𝑁/2, 𝒱𝒱ref

SVR,amp 𝑁𝑁,𝐴𝐴 = 2𝐴𝐴 3𝑁𝑁

Compute average powers
�𝑃𝑃shaped

(SVR,amp) 𝑁𝑁,𝑃𝑃 =
3

3𝑁𝑁 + 2
𝑃𝑃, �𝑃𝑃ref

SVR,amp 𝐴𝐴 = 𝐴𝐴2

Compute shape gain (for equal volumes)

𝛾𝛾𝑠𝑠 = lim
𝑁𝑁→∞

�𝑃𝑃ref
(SVR,amp) 𝐴𝐴

�𝑃𝑃shaped
(SVR,amp) 𝑁𝑁,𝑃𝑃

=
𝜋𝜋𝜋𝜋
6
≈ 1.53 dB

Compute induced distribution in one basic dimension

𝑓𝑓𝑿𝑿 𝒙𝒙 ∝ 𝒱𝒱shaped
SVR,amp 𝑁𝑁 − 1,𝑃𝑃 − 𝒙𝒙 2

2

lim
𝑁𝑁→∞

𝑓𝑓𝐗𝐗 𝐱𝐱 ∝ exp − 𝒙𝒙 2
2/𝛽𝛽 ⇒ lim

𝑁𝑁→∞
𝑓𝑓𝐒𝐒 𝐬𝐬 ∝ 1

𝐬𝐬 2
3/2 exp − 𝐬𝐬 2/𝛽𝛽 ≈ exp − 𝐬𝐬 2/𝛽𝛽 = exp −𝑠𝑠0/𝛽𝛽

 At high SNR, optimal 3-D input distribution is approximately exponential in L2 norm of Stokes vector.
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H. Jia, E. Liang and J. M. Kahn, J. Lightw. Technol. 15 (2023).



Using Stokes vector receiver unless noted otherwise:

 Performance evaluation includes ASE-ASE beat noises.

 4-D Coherent: standard coherent receiver, input optimized 
using Blahut-Arimoto (BA) algorithm on dense 4-D lattice. 

 3-D Optimal: input optimized using BA algorithm on dense 
3-D lattice.

 3-D Exponential: 3-D exponential exp − 𝐬𝐬 2/𝛽𝛽 with 
numerical optimization of parameter 𝛽𝛽.  

 Gaussian: 3-D Gaussian exp − 𝐬𝐬 2
2/𝛽𝛽 with numerical 

optimization of parameter 𝛽𝛽. 

 Uniform: independent uniform distribution on each Stokes 
parameter.

 3-D exponential outperforms Gaussian and performs close 
to 3-D optimal.

SVR: Amplifier Noise-Limited Regime (3/3)

J. M. Kahn and E. M. Liang  • OFC • March 25, 2024 46

H. Jia, E. Liang and J. M. Kahn, J. Lightw. Technol. 15 (2023).

Mutual information vs. SNR for various input distributions



SVR: Exponential vs. Gaussian Fit in Both Noise Regimes

J. M. Kahn and E. M. Liang  • OFC • March 25, 2024 47

Thermal Noise-Limited Amplifier Noise-Limited

 Optimal: 8 × 8 × 8 constellation 
optimized using BA algorithm.

 Exponential and Gaussian: 
fitted to minimize L1 norm of error.

 Exponential fits better than 
Gaussian in both noise regimes. 

 SNR = 20 dB  𝑆𝑆2 = 𝑆𝑆3 = 0.5

H. Jia, E. Liang and J. M. Kahn, J. Lightw. Technol. 15 (2023).



SVR vs. 3-D Coherent in Amplifier Noise-Limited Regime 

J. M. Kahn and E. M. Liang  • OFC • March 25, 2024 48

 3-D Coherent: standard coherent using three of four available 
dimensions, i.e., setting 𝐸𝐸2𝑄𝑄 = 0.

 3-D Optimal: SVR with input distribution designed using 
Blahut-Arimoto algorithm.

 Adjust signal powers and noise variances to correspond to 
equal optical SNRs [1].

Origin of gap: noise enhancement
 In coherent receiver, each component of photocurrent is 

corrupted only by noise in one polarization and one 
quadrature.

 In Stokes receiver, each component of photocurrent is 
corrupted by noises in both polarizations and quadratures. 

 Can analytically upper-bound the performance gap by 6 dB [1].

1. H. Jia, E. Liang and J. M. Kahn, J. Lightw. Technol. 15 (2023).
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pX(x)
Standard
coherent

pX(x)
Kramers-Kronig
Pc /Ps = 5 dB

Kramers-Kronig Detection, Amplifier Noise-Limited Regime

J. M. Kahn and E. M. Liang  • OFC • March 25, 2024 50

E. Chou, H. Srinivas and J. M. Kahn, J. Lightw. Technol. 40 (2022).

 Transmitted signal is 𝑥𝑥 𝑡𝑡 = 𝑠𝑠 𝑡𝑡 𝜋𝜋𝑗𝑗𝜋𝜋𝜋𝜋𝑡𝑡 + 𝐸𝐸0.

 Modulated data 𝑠𝑠 𝑡𝑡 𝜋𝜋𝑗𝑗𝜋𝜋𝜋𝜋𝑡𝑡 and carrier 𝐸𝐸0 do not
overlap, so total power is 𝑃𝑃𝑠𝑠+ 𝑃𝑃𝑐𝑐. Assume 𝑃𝑃𝑐𝑐 is
sufficient to avoid phase retrieval errors. 

 Carrier 𝐸𝐸0 conveys no information and 𝜋𝜋𝑗𝑗𝜋𝜋𝜋𝜋𝑡𝑡 preserves 
information. Optimal distribution for 𝑠𝑠 𝑡𝑡 satisfies

max
𝑝𝑝𝑆𝑆 𝑠𝑠

𝐼𝐼 𝑆𝑆,𝑌𝑌 s.t. 𝑃𝑃𝑠𝑠 ≤ 𝑃𝑃max − 𝑃𝑃𝑐𝑐.

 Optimal 𝑝𝑝𝑆𝑆 𝑠𝑠 is complex circular Gaussian.
Optimal 𝑝𝑝𝑋𝑋 𝑥𝑥 is shifted complex circular Gaussian. 

 At each SNR, can optimize 𝑃𝑃𝑐𝑐/ 𝑃𝑃𝑠𝑠 numerically to
maximize 𝐼𝐼 𝑋𝑋,𝑌𝑌 while achieving low phase error.
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+
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0.66

Standard direct
SNR = 5 dB

 Provides 1 real dimension.

 Can use zero intensity level, which has least noise.

 Outperforms KK for SNR < 5 dB.

KK vs. Standard Coherent or Direct Detection, Amplifier Noise
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E. Chou, H. Srinivas and J. M. Kahn, J. Lightw. Technol. 40 (2022).
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Shaping Results Summary (1/2)
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Complex circular Gaussian Exponential Half-GaussianOptimal Distribution

Forney et al., 1984-89
Calderbank & Ozarow, 1990

Kschischang & Pasupathy, 1993

Shiu & Kahn, 1999
Hranilovic & Kschischang, 2003 Mao & Kahn, 2008Key Works

Detection Method
& Dominant Noise

Coherent Detection,
Amplifier or LO Shot Noise

Noncoherent Detection,
Amplifier or LO Shot Noise

Noncoherent Detection,
Thermal Noise

Natural
Coordinates

2-D electric field 1-D electric field intensity 1-D electric field magnitude
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Detection Method &  
Dominant Noise

Stokes Vector Receiver,
Thermal Noise

Stokes Vector Receiver,
Amplifier Noise

Natural
Coordinates

3-D Stokes vector 3-D scaled Stokes vector

Optimal Shaping 
Region

Non-negative orthant bounded by
-simplex in 

-sphere centered at the origin

Induced Optimal 
Signaling   

Distribution in 
Constituent 

Constellation

Ultimate Shape Gain

Optimal Distribution 3-D exponential 3-D exponential

Key Works
H. Jia, E. Liang and
J. M. Kahn, (2023).

H. Jia, E. Liang and
J. M. Kahn, (2023).



Implementation of Shaping with Direct Detection (1/2)
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Obtaining a finite discrete distribution

 Sample the continuous distribution and adjust the shaping parameter (typically 𝛽𝛽) to maximize MI.

or

 Use Blahut-Arimoto algorithm to optimize the discrete distribution. 
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1. Use PAS with CCDM (or other DM)

 Separate into independent 1-D 
distributions and use a separate DM for 
each 1-D distribution.

2. Use a suboptimal solution

 PAS / CCDM (or other DM):
modify target distribution to achieve 
pairwise symmetry [1]. 

or

 Non-PAS scheme: see [2] for an 
overview.

3. Use PAS  with CCDM (or other DM)

 Directly implement one DM for the
3-D distribution (lossless).

or

 Separate into independent 1-D 
distributions and use a separate
DM for each 1-D distribution (lossy).

1. Z. He, et al., Opt. Express 27 (2019).
2. G. Böcherer, et al., J. Lightw. Technol. 37 (2019).

Losslessly Separable
into 1-D Distributions

Not Losslessly Separable
into 1-D Distributions

Symmetric
Distribution

1 Kramers Kronig (Gaussian) 3 SVR Thermal (3-D exponential)
SVR Amplifier (3-D exponential)

Asymmetric
Distribution

2 SD Thermal (1-D exponential)
SD Amplifier (1-D half-Gaussian)



Thank You!
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