Phase Retrieval-Based Coherent Receivers

Elaine S. Chou, Hrishikesh Srinivas and Joseph M. Kahn

Department of Electrical Engineering E. L. Ginzton Laboratory Stanford University

ee.stanford.edu/~jmk

OFC 2021 • Paper Th5F.1 • June 10, 2021

Research supported by

- Maxim Integrated
- Inphi Corporation (now Marvell Technology, Inc.)

Outline

- Introduction
- Kramers-Kronig vs. standard coherent detection
- Kramers-Kronig vs. standard direct detection
- Effective degrees of freedom
- Discussion and conclusion

Chou, Srinivas and Kahn | OFC 2021 | Paper Th5F.1 | June 10, 2021

Outline

Introduction

- Kramers-Kronig vs. standard coherent detection
- Kramers-Kronig vs. standard direct detection
- Effective degrees of freedom
- Discussion and conclusion

Downconversion and detection

- Downconversion: extracting electrical photocurrents from optical fields.
- **Detection**: extracting data from electrical photocurrents.

Downconversion using a local oscillator	Downconversion without a local oscillator
Photocurrents are amplified by strong LO.	Photocurrents are not amplified by LO.
Photocurrents are linear in signal fields. After downconversion, can electrically:	Photocurrents are quadratic in signal fields. Before downconversion, must optically:
 Select a desired wavelength channel. 	 Select a desired wavelength channel.
 Demultiplex dual-polarization signals. 	 Demultiplex dual-polarization signals.
 Detect dual-quadrature signals. Compensate chromatic dispersion. 	If a carrier is transmitted with signal, can electrically:Detect dual-quadrature signals.
	Compensate chromatic dispersion.

Chou, Srinivas and Kahn | OFC 2021 | Paper Th5F.1 | June 10, 2021

Downconversion and detection methods

Detection Method	Noncoherent	Differentially Coherent	Hybrid Non-/Diff. Coherent	Coherent
Measures	Energies in signal dimension(s)	Phase differences between signal dimensions	Energies and phase differences	Field quadratures in signal dimensions
Modulation Methods	OOK, PAM, OFDM, WD-FSK	DPSK, CPFSK	PolSK, etc.	QAM, PSK, OFDM, etc.
Signal Dimensions in Two Polarizations	Up to 2	Up to 2	Up to 4	Up to 4
LO-Based Downconversion	Envelope detection	Delay-and-multiply detection	PoISK detection	Standard coherent detection
LO-Free Downconversion	Standard direct detection	Delay interferometer + direct detection	Stokes vector detection	Kramers-Kronig detection

This study

This study

Compares three detection methods

• Standard coherent, Kramers-Kronig, standard direct.

Scenario

- Amplifier noise dominant. Single wavelength. Single polarization (for now).
- No constraints on complexity (for now). Numerically approximate ideal continuous-time waveforms and signal processing operations.
- Scenario is generous to KK, which needs amplifiers to compete and has high complexity.

Aspects studied

- Mutual information (b/symbol) and effective degrees of freedom (dimensions/symbol).
- Transmitted signal distribution: probabilistically shaped or mutual information-maximizing.
- Joint optimization of carrier-to-signal power ratio and probabilistic shaping.
- Impact of chromatic dispersion.

Chou, Srinivas and Kahn | OFC 2021 | Paper Th5F.1 | June 10, 2021

Outline

Introduction

- Kramers-Kronig vs. standard coherent detection
- Kramers-Kronig vs. standard direct detection
- Effective degrees of freedom
- Discussion and conclusion

Standard coherent detection (one polarization)

Chou, Srinivas and Kahn | OFC 2021 | Paper Th5F.1 | June 10, 2021

Kramers-Kronig detection (one polarization)

Chou, Srinivas and Kahn | OFC 2021 | Paper Th5F.1 | June 10, 2021

Simulation parameters for SC and KK detection

Parameter	Symbol	Value	Comment
Symbol rate	R_s	64 Gbaud	
Oversampling rate	<i>r</i> _{os}	64	Generous to KK, which requires higher rates than SC or SD.
QAM order	М	16, 64	
Excess bandwidth	β	0.01	Optimization of β yields small improvements.
Carrier-to-signal power ratio	CSPR	optimized	For KK only.
Probabilistic shaping parameter	λ	optimized	Used in Maxwell-Boltzmann distribution.
Chromatic dispersion	D	17.4 ps/nm·km	Standard single-mode fiber at 1550 nm.

Chou, Srinivas and Kahn | OFC 2021 | Paper Th5F.1 | June 10, 2021

Signal-to-noise ratio

 Signal-to-noise ratio in bandwidth equal to symbol rate in one polarization:

$$SNR = \frac{P_s + P_c}{N_0 R_s}$$

$$= \frac{P_s}{N_0 R_s} \begin{pmatrix} 1 + \frac{P_c}{P_s} \end{pmatrix}$$

$$= SNR_{signal} \begin{pmatrix} 1 + CSPR \end{pmatrix}$$

$$= \frac{SNR_{signal} \begin{pmatrix} 1 + CSPR \end{pmatrix}}{1 + CSPR}$$

$$= \frac{P_s}{N_0 R_s} \begin{pmatrix} 1 + CSPR \end{pmatrix}$$

• Carrier-to-signal power ratio:

$$CSPR = \frac{P_c}{P_s}$$
¹⁶
⁰
²⁰⁰
⁴⁰⁰
⁶⁰⁰
⁸⁰⁰
¹⁰⁰⁰
¹⁰⁰⁰
¹⁰¹
¹⁶
¹⁰
¹⁰
¹⁰⁰⁰
¹⁰⁰
¹⁰⁰
¹⁰⁰⁰
¹⁰⁰
¹⁰⁰
¹⁰⁰
¹⁰⁰⁰
¹⁰⁰
¹

Quantifying system performance

• Transmit a dense constellation. From received samples, estimate mutual information per symbol:

$$I(X;Y) = \mathbf{E}_{X,Y} \left[\log_2 \frac{f_{Y|X}(Y|X)}{f_Y(Y)} \right] = \sum_{x \in \mathcal{X}} p_X(x) \int_{\mathcal{C}} f_{Y|X}(y|x) \log_2 \frac{f_{Y|X}(y|x)}{f_Y(y)}$$

dy

Ignore memory, so may underestimate mutual information very slightly.

- Do not assume Gaussian noise a priori, since phase retrieval errors are non-Gaussian.
- Mutual information is a more fundamental metric than generalized mutual information.
 Both MI and GMI track achievable rates for bit-interleaved coded modulation at code rates ≥ 0.7.
- Quantify mutual information per symbol (b/symbol) instead of spectral efficiency (b/s/Hz).
 Generous to KK, which requires guard bands to allow optical demultiplexing of WDM channels (so does standard direct detection).

Chou, Srinivas and Kahn | OFC 2021 | Paper Th5F.1 | June 10, 2021

CSPR optimization for KK (no PAS, no CD)

- CSPR too low: phase retrieval error penalty dominates.
- CSPR too high: carrier power penalty dominates.
- CSPR optimal: the two penalties are balanced. As SNR increases, optimized CSPR increases to improve phase-retrieval accuracy.

14

Impact of chromatic dispersion (no PAS)

• Negligible penalty from CD.

Kramers-Kronig

- Fixed CSPR > 7 dB: CD causes penalty < 0.1 dB.
- Optimized CSPR: CD increases peak-to-average ratio, requiring higher CSPR, causing penalty up to 1.7 dB. Most of the penalty is incurred in the first 10 km.

15

16

Chou, Srinivas and Kahn | OFC 2021 | Paper Th5F.1 | June 10, 2021

Canonical shaping problems in optical communications

	Detection Method & Dominant Noise	Coherent Detection, Amplifier or LO Shot Noise	Noncoherent Detection, Thermal Noise	Noncoherent Detection, Amplifier or LO Shot Noise	
	Constituent Constellation	2-D constellation with electric fields E_i , $i = 1, 2$ as coordinates	1-D constellation with field intensity $I = E ^2$ as coordinate	1-D constellation with field magnitude $ E $ as coordinate	
		N-sphere centered at the origin	Nonnegative orthant bounded	Nonnegative orthant bounded	
	Optimal Shaping Region				
Fir	st shaping. ed here for _	\checkmark		$ E_1 $	Discussed here for SD.
SC and KK.	$p(E) = \frac{1}{\pi P} \exp\left(-\frac{\left E\right ^2}{P}\right),$	$p(I) = \frac{1}{P} \exp\left(-\frac{I}{P}\right),$	$p(E) = \sqrt{\frac{2}{\pi P}} \exp\left(-\frac{ E ^2}{2P}\right),$		
	Induced Optimal Signaling Distribution in Constituent Constellation	$E = (E_1, E_2)$ $p(E_1, E_2)$ E		$ E \ge 0$	
	Ultimate Shape Gain	$\pi e/6 = 1.53 \text{ dB}$	<i>e</i> / 2 = 1.33 dB	$\pi e/6 = 1.53 \text{ dB}$	
	Optimal Distribution	Complex circular Gaussian	Exponential	Half-Gaussian	Adapted from
	Key Works	Forney et al., 1984-89 Calderbank & Ozarow, 1990 Kschischang & Pasupathy, 1993	Shiu & Kahn, 1999 Hranilovic & Kschischang, 2003	Mao & Kahn, 2008	W. Mao and J. M. Kahn, Trans. Comm. 56 (2008).

Canonical shaping problems in optical communications

Detection Method & Dominant Noise	Coherent Detection, Amplifier or LO Shot Noise	Noncoherent Detection, Thermal Noise	Noncoherent Detection, Amplifier or LO Shot Noise		
Constituent Constellation	2-D constellation with electric fields E_i , $i = 1, 2$ as coordinates	1-D constellation with field intensity $I = E ^2$ as coordinate	1-D constellation with field magnitude $ E $ as coordinate		
Optimal Shaping Region	<i>N</i> -sphere centered at the origin $ \begin{array}{c} $	Nonnegative orthant bounded by <i>N</i> -simplex	Nonnegative orthant bounded by <i>N</i> -sphere $ E_2 $ $ E_1 $		
Induced Optimal Signaling Distribution in Constituent Constellation	$p(E) = \frac{1}{\pi P} \exp\left(-\frac{ E ^2}{P}\right),$ $E = (E_1, E_2)$ $p(E_1, E_2)$ E	$p(I) = \frac{1}{p} \exp\left(-\frac{I}{p}\right),$ $I \ge 0$ $p(I)$	$p(E) = \sqrt{\frac{2}{\pi P}} \exp\left(-\frac{ E ^2}{2P}\right),$ $ E \ge 0$ $p(E)$ $ E $	First shaping in optical communications. Relevant for intra- data center, access and free-space links.	
Ultimate Shape Gain	$\pi e/6 = 1.53 \text{ dB}$	<i>e</i> / 2 = 1.33 dB	$\pi e/6 = 1.53 \text{ dB}$		
Optimal Distribution	Complex circular Gaussian	Exponential	Half-Gaussian	Adapted from	
Key Works	Forney <i>et al.</i> , 1984-89 Calderbank & Ozarow, 1990 Kschischang & Pasupathy, 1993	Shiu & Kahn, 1999 Hranilovic & Kschischang, 2003	Mao & Kahn, 2008	Adapted from W. Mao and J. M. Kahn, <i>Trans. Comm.</i> 56 (2008).	

Chou, Srinivas and Kahn | OFC 2021 | Paper Th5F.1 | June 10, 2021

Capacity-achieving distribution and PAS for KK detection

• In Kramers-Kronig detection, the total signal is

$$\kappa(t) = s(t)e^{j\pi Bt} + E_0.$$

The modulated portion $s(t)e^{j\pi Bt}$ and the carrier E_0 do not overlap, so the total power is $P_s + P_c$.

- The carrier E_0 conveys no information and $e^{j\pi Bt}$ preserves information. The optimal distribution for s(t) satisfies $\max_{P_s(s)} I(S;Y)$ s. t. $P_s \leq P_{max} P_c$.
- The optimal $p_{S}(s)$ is a complex circular Gaussian. The optimal $p_{X}(x)$ is a shifted complex circular Gaussian.

Approximate the Gaussian by a Maxwell-Boltzmann*

$$p_{S}(s) = \exp\left(-\lambda |s|^{2}\right) / \sum_{i=1}^{M} \exp\left(-\lambda |s_{i}|^{2}\right)$$

- For KK, numerically optimize λ jointly with CSPR and other parameters. For SC, numerically optimize λ .

*F. R. Kschischang and S. Pasupathy, IEEE Trans. Info. Thy. 39 (1993).

Joint optimization of CSPR and PAS for KK detection

• We jointly optimized PAS parameter λ , *CSPR* and excess bandwidth β . We fix β = 0.01 in this talk.

Key principles

- PAS is helpful when SNR is too low to support full entropy of uniform constellation.
- Both PAS and CD increase peak-to-average ratio of signal, necessitating higher CSPR.

No chromatic dispersion

• Low SNR: KK uses weaker PAS than SC. High SNR: KK uses stronger PAS than SC.

High chromatic dispersion

Low to medium SNR: KK uses stronger PAS than SC.

Chou, Srinivas and Kahn | OFC 2021 | Paper Th5F.1 | June 10, 2021

Mutual information using jointly optimized PAS and CSPR

No chromatic dispersion

- KK benefits significantly from PAS only for SNR \geq 15 dB.
- KK incurs SNR penalty compared to SC of ~6 dB (with or without PAS).

High chromatic dispersion

- KK benefits from PAS down to lower SNR values.
- KK incurs additional SNR penalty compared to SC up to 1.1 dB (with PAS) or 1.7 dB (without PAS).

Outline

- Introduction
- Kramers-Kronig vs. standard coherent detection
- Kramers-Kronig vs. standard direct detection
- Effective degrees of freedom
- Discussion and conclusion

Chou, Srinivas and Kahn | OFC 2021 | Paper Th5F.1 | June 10, 2021

Standard direct detection (one polarization)

Optimization of standard direct detection

Coherent detection with LO shot noise or amplifier noise

- Capacity-achieving distribution (analytical) is Gaussian.¹
- Optimal shaping distribution (analytical, high SNR) is also Gaussian.²

Noncoherent detection with amplifier noise

- Capacity-achieving distribution is obtained numerically using non-central χ^2 with two degrees of freedom.³ Includes discrete component at zero intensity and continuous component at nonzero intensity.
- Optimal shaping distribution (analytical, high SNR) is half-Gaussian.⁴ It approaches capacity only at high SNR ≥ 20 dB.

C. E. Shannon, Bell Syst. Tech. J. 27 (1948).
 G. D. Forney et al., IEEE J. Sel. Areas Comm. 2 (1984).

4. W. Mao and J. M. Kahn, *IEEE Trans. Comm.* **56** (2008).

Chou, Srinivas and Kahn | OFC 2021 | Paper Th5F.1 | June 10, 2021

Quantifying performance of standard direct detection

- Numerically compute capacity-achieving distribution using non-central χ² with 2 degrees of freedom.¹ Transmit a dense PAM constellation probabilistically shaped by the capacity-achieving distribution.
- Estimate mutual information by binning samples into histograms and estimating conditional entropy.
- Non-negative band-limited root-Nyquist pulses do not exist.²
 This complicates representing a continuous-time system by a discrete memoryless channel.
- Simulate a continuous-time system using rectangular pulses filtered by a five-pole Bessel lowpass filter. Optimize the cutoff frequency:

 R_s at SNR = -5 dB 1.6 R_s at SNR = 25 dB

- The continuous-time system has an average mutual information loss of about 5% compared to discrete memoryless channel at same SNR.
 - 1. K.-P. Ho, Photon. Technol. Lett. 17 (2005).
 - 2. S. Hranilovic, IEEE Trans. Comm. 55 (2007).

Comparing Kramers-Kronig to standard direct detection

Chou, Srinivas and Kahn | OFC 2021 | Paper Th5F.1 | June 10, 2021

Outline

- Introduction
- Kramers-Kronig vs. standard coherent detection
- Kramers-Kronig vs. standard direct detection
- Effective degrees of freedom
- Discussion and conclusion

Effective degrees of freedom

• The number of complex dimensions actively conveying information can be estimated by*

$$EDOF(SNR) = \frac{d}{d\delta} MI(2^{\delta} \cdot SNR) \bigg|_{\delta=0}$$

Low SNR: *EDOF* limited by available power.

High SNR: *EDOF* limited by available dimensions.

Standard coherent detection

• $EDOF \le 1$ (2 real dimensions).

Kramers-Kronig detection

• $EDOF \le 0.9$ (1.8 real dimensions) over the SNR range studied.

Standard direct detection

• $EDOF \le 1/2$ (1 real dimension).

* D.-S. Shiu, G. J. Foschini, M. J. Gans and J. M. Kahn, IEEE Trans. Comm. 48 (2000).

Chou, Srinivas and Kahn | OFC 2021 | Paper Th5F.1 | June 10, 2021

Outline

- Introduction
- Kramers-Kronig vs. standard coherent detection
- Kramers-Kronig vs. standard direct detection
- Effective degrees of freedom
- Discussion and conclusion

Key findings

- KK detection is coherent at high SNR: yields nearly 2 real dimensions per symbol.
- KK detection benefits from joint optimization of CSPR and PAS.

Kramers-Kronig vs. standard coherent detection

Zero CD

- KK incurs SNR penalty of ~6 dB compared to SC.
- Optimization of PAS for KK different from that for SC.

High CD

- KK incurs additional SNR penalty of 1 to 1.7 dB compared to SC.
- Optimization of PAS for KK similar to that for SC.

Kramers-Kronig vs. standard direct detection

KK outperforms SD at high SNR.
 SD outperforms KK at SNR < 5 dB.

Chou, Srinivas and Kahn | OFC 2021 | Paper Th5F.1 | June 10, 2021

Dual-polarization systems

- A coherent receiver standard or KK can electrically demultiplex dual-polarization signals.
- Problem for KK: if multiplex two independent minimum-phase signals and transmit through fiber, cannot guarantee received signal is minimum-phase.

Example:

$$\begin{pmatrix} E_{r,x} \\ E_{r,y} \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} E_{t,x} \\ E_{t,y} \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} E_{t,x} - E_{t,y} \\ E_{t,x} + E_{t,y} \end{pmatrix}$$
Carrier cancelled out.
Not minimum-phase.
Unitary Jones matrix

- Solutions:
 - 1. Optically demultiplex dual-polarization signals before downconversion.
 - 2. Add the carrier at the receiver (a "weak LO"), not the transmitter.
- A "weak LO" requires accurate frequency stabilization, much like a conventional LO.

Oversampling rates

Standard coherent detection

- Fundamentally requires $r_{os} \ge 1$.
- Obtain excellent performance using $r_{os} \ge 8/7$ or so.

Kramers-Kronig detection

• Near-ideal performance requires:

Sampling with $r_{os} = 2$ (squaring).

Upsampling to $r_{os} = 6$ (nonlinear operations).

• These requirements may be prohibitive for high-speed links.

To learn more

These slides and JLT paper on this study (when paper accepted)

ee.stanford.edu/~jmk/research/smfcom.html#dcs

Early papers on probabilistic shaping in optical communications

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 45, NO. 7, NOVEMBER 1999

Shaping and Nonequiprobable Signaling for Intensity-Modulated Signals

Da-shan Shiu, Student Member, IEEE, and Joseph M. Kahn, Senior Member, IEEE

ee.stanford.edu/~jmk/pubs/im.shaping.pdf

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 56, NO. 7, JULY 2008

Lattice Codes for Amplified Direct-Detection Optical Systems Wei Mao and Joseph M. Kahn, *Fellow, IEEE*

ee.stanford.edu/~jmk/pubs/shaping.amp.dir.det.pdf

