Modal Multiplexing and Atmospheric Turbulence Mitigation in Free-Space Optical Communications

Joseph M. Kahn¹ and Aniceto Belmonte²

1. E. L. Ginzton Laboratory, Department of Electrical Engineering Stanford University, USA

2. Department of Signal Theory and Communications Technical University of Catalonia, Spain

ECOC 2022 • Basel, Switzerland • Tutorial Tu4D.1 • 20 September 2022

Modal Multiplexing in Near-Field Free-Space Optical Links

Near-field links

- Beam size in receiver plane is smaller than receiver aperture, preserving orthogonality between modes.
- Can multiplex signals in orthogonal spatial (and polarization) modes to increase link capacity and/or reliability.

Questions we address

- How can we realize the modal mux/demux and the necessary MIMO signal processing?
- In the absence of atmospheric turbulence, what are the best spatial modes to use?
 What capacity and degrees of freedom do they achieve?
- In the presence of atmospheric turbulence, what are the best spatial modes to use?
 What capacity and degrees of freedom do they achieve?

Outline

Modal multiplexing technologies

- Modal multiplexers and demultiplexers
- Multi-input multi-output signal processing

Modal multiplexing in the absence of turbulence¹

- Space-bandwidth constraints
- Physical comparison of mode sets
- Information-theoretic comparison of mode sets

Modal multiplexing in the presence of turbulence²

- Atmospheric turbulence and its impact
- Optimal mode set for turbulence channels
- Information-theoretic comparison of mode sets

- 1. N. Zhao, X. Li, G. Li and J. M. Kahn, "Capacity Limits of Spatially Multiplexed Free-Space Communication", *Nature Photonics* **9** (2015).
- A. Belmonte and J. M. Kahn, "Optimal Modes for Spatially Multiplexed Free-Space Communication in Atmospheric Turbulence", *Optics Express* 29 (2021).

Outline

Modal multiplexing technologies

- Modal multiplexers and demultiplexers
- Multi-input multi-output signal processing

Modal multiplexing in the absence of turbulence

- Space-bandwidth constraints
- Physical comparison of mode sets
- Information-theoretic comparison of mode sets

Modal multiplexing in the presence of turbulence

- Atmospheric turbulence and its impact
- Optimal mode set for turbulence channels
- Information-theoretic comparison of mode sets

Mode Sets for Modal Multiplexing

Gaussian Beams Laguerre Gauss Modes Orbital Angular Momentum Modes

J. M. Kahn and A. Belmonte • ECOC Tutorial Tu4D.1 • 20 September 2022

Modal Multiplexers and Demultiplexers

Device	Loss	Crosstalk
Waveplates + beamsplitters	Mux + demux scales as N^2	Low inter- and intra-group
Multi-plane light converter	Fundamentally lossless	Low inter- and intra-group
Photonic lantern	Fundamentally lossless	High inter- and intra-group
Mode-selective photonic lantern	Fundamentally lossless	Low inter-group, but strong intra-group
Fiber array	Fundamentally lossless	Low for parallel Gaussian beams

- Low crosstalk: one-to-one mapping between inputs/outputs and modes (requires proper alignment and orientation).
- All these devices are *reciprocal*: a demultiplexer is a multiplexer operated in reverse.

Multi-Plane Light Converter (1/2)

- Based on field pattern transformation by successive phase masks.
- Can be designed for L-G, H-G, OAM or any mode set.
 Can yield low crosstalk.
- Can be realized in folded geometry, replacing lenses by curved mirrors.

Multi-Plane Light Converter (2/2)

Diffractive design

Field patterns alternate between real space and Fourier space.

Adiabatic design

Field patterns evolve continuously.

K. Choutagunta, unpublished (2017).

Photonic Lantern

- Based on adiabatic mode conversion.
- Can be designed for L-G or H-G modes.
 Yields inter- and intra-group crosstalk, necessitating MIMO equalization.

S. G. Leon-Saval *et al.*, *Optics Letters* **30** (2005). N. K. Fontaine *et al.*, *Optics Express* **20** (2012).

J. M. Kahn and A. Belmonte • ECOC Tutorial Tu4D.1 • 20 September 2022

Mode-Selective Photonic Lantern

- Based on adiabatic mode conversion guided by propagation constant matching.
- Can be designed for L-G or H-G modes. Yields low inter-group crosstalk.
 Yields intra-group crosstalk, necessitating intra-group MIMO equalization.

S. G. Leon-Saval et al., Optics Express 22 (2014).

- Based on imaging and mode-size conversion.
- Can yield low crosstalk for parallel Gaussian beams.
- Can demultiplex other mode sets, but resulting crosstalk necessitates MIMO equalization.
 A similar demultiplexing strategy is considered in analysis below.

Coherent Detection Links

• Superior spectral efficiency and receiver sensitivity.

J. M. Kahn and A. Belmonte • ECOC Tutorial Tu4D.1 • 20 September 2022

Coherent Detection Links

Superior spectral efficiency and receiver sensitivity.

- Easy to compensate dispersive or non-unitary effects.
- Adapt using standard algorithm, e.g., LMS.

Direct Detection Links

Inferior spectral efficiency and receiver sensitivity.

Direct Detection Links

Inferior spectral efficiency and receiver sensitivity.

K. Choutagunta et al., J. Lightw. Technol. 38 (2020).

Outline

Modal multiplexing technologies

- Modal multiplexers and demultiplexers
- Multi-input multi-output signal processing

Modal multiplexing in the absence of turbulence

- Space-bandwidth constraints
- Physical comparison of mode sets
- Information-theoretic comparison of mode sets

Modal multiplexing in the presence of turbulence

- Atmospheric turbulence and its impact
- Optimal mode set for turbulence channels
- Information-theoretic comparison of mode sets

Space-Bandwidth Constraints

- Any free-space link has constraints on transverse spatial dimensions and spatial frequency bandwidth.
- Wish to multiplex *N* data streams in *N* orthogonal spatial modes (can use 2 polarizations to multiplex 2*N*).
- Maximum number of strongly coupled spatial modes is approximated by product of transmitter and receiver Fresnel numbers:

$$N \le N_F = \frac{A_T A_R}{\lambda^2 L^2}$$

If $N_F \leq 1$, spatial mode multiplexing is not possible.

J. H. Shapiro *et al.*, *J. Optical Networking* **4** (2005). D. A. B. Miller, *J. Lightwave Technology* **35** (2017).

N Lens Dia. D

Symmetric Two-Lens Link

Modal

Mux

Transmitted

Signals

Maximum number of strongly coupled spatial modes:

Link Length L

 $N \le N_F = \frac{\pi^2 D^4}{16\lambda^2 L^2}$

Maximum link length supporting N_F spatial modes:

$$L \le \frac{\pi D^2}{4\lambda \sqrt{N_F}}$$

N

Received

Signals

Modal

Demux

Heuristic Comparison of Mode Sets

The following mode sets have similar space-bandwidth products.
 For the L-G or OAM modes, this corresponds to the number of mode groups *M*.

M = 3 Mode Groups

Heuristic Comparison of Mode Sets

The following mode sets have similar space-bandwidth products.
 For the L-G or OAM modes, this corresponds to the number of mode groups *M*.

Rigorous Comparison of Mode Sets (1/3)

Transmission Matrix

- \mathbf{H}_{ii} is transmission coefficient between mode *j* and output *i*, including diffraction and crosstalk.
- **H** includes modes far beyond nominal cutoff determined by $N_F = A_T A_R / \lambda^2 L^2$.

L-G, OAM and Gaussian Modes

- Consider pixel-based demultiplexer similar to that for Gaussian beams (pessimistic for L-G modes).
- Diffraction loss + crosstalk \rightarrow H is non-diagonal and non-unitary.

OAM Modes Only

- Also consider ideal OAM demultiplexer (optimistic for OAM modes).
- Diffraction loss \rightarrow H is diagonal and non-unitary.

Rigorous Comparison of Mode Sets (2/3)

• Perform a singular value decomposition of the transmission matrix:

 $\mathbf{H} = \mathbf{V} \, \mathbf{D} \, \mathbf{U}^H$

- U and V are unitary matrices. Their columns are transmit and receive bases that diagonalize
 H into uncoupled spatial subchannels.
- **D** is a diagonal matrix of the singular values:

$$\mathbf{D} = \operatorname{diag}\left(\sqrt{\lambda_1}, \dots, \sqrt{\lambda_N}\right)$$

• $\{\lambda_1, \dots, \lambda_N\}$ are eigenvalues of **HH**^{*H*}, representing power gains of spatial subchannels.

Rigorous Comparison of Mode Sets (3/3)

- For $N_F = 9$: all three mode sets yield a similar number of spatial subchannels.
- For $N_F > 9$: L-G modes and Gaussian beams yield $N_{LG} \approx N_{Gaussian} \approx N_F$. OAM modes yield $N_{OAM} \ll N_F$.
- The comparison was intentionally pessimistic for L-G modes.
 A more ideal demux would yield more equal singular values for L-G modes.

Achieving Channel Capacity (1/2)

Assume:

- Coherent detection with equal noise power σ^2 per receiver.
- Constraint on total transmit power $P = \sum_{n=1}^{N} P_n$.
- Total SNR is $SNR = \frac{1}{\sigma^2} \sum_{n=1}^{N} P_n$.
- Receiver knows spatial decoding matrix V.
- Transmitter knows spatial precoding matrix U and $\{\lambda_1, \dots, \lambda_N\}$, can optimize power allocation $\{P_1, \dots, P_N\}$.

Achieving Channel Capacity (2/2)

- Require a mode-selective mux to enable optimal power allocation and spatial precoding.
- Obtain a set of N uncoupled parallel channels with power gains given by the λ_n .
- Capacity per unit bandwidth:

$$SE = \sum_{n=1}^{N} \log_2 \left(1 + \frac{\lambda_n P_n}{\sigma^2} \right)$$

Channel Capacity

- Low SNR: power-limited, capacity depends weakly on *N*.
- High SNR: mode-limited, capacity depends strongly on *N*.

Effective Degrees of Freedom

• Number of spatial subchannels effectively conveying information:

- Low SNR: power-limited, EDOF depends weakly on *N*.
- High SNR: mode-limited, EDOF approaches N.

D.-S. Shiu et al., Trans. on Commun. 48 (2000).

Discussion

- Laguerre-Gauss or parallel Gaussian beams offer higher capacity than the OAM subset of Laguerre-Gauss modes, except at small N_F.
- Hermite-Gauss modes (which have no OAM) offer the same capacity as Laguerre-Gauss modes. The two sets are related by a unitary transformation.
- Polarization multiplexing can double link capacity. In the low-NA/weak-guidance regime, LP modes are sufficient. Vector modes (or complex polarization) offer no benefit.
- In choosing a mode set for modal multiplexing, one should consider:
 - Completeness of the set.
 - Ease of implementation.
 - Performance in atmospheric turbulence.

Whether or not the set includes OAM has no effect on capacity.

Outline

Modal multiplexing technologies

- Modal multiplexers and demultiplexers
- Multi-input multi-output signal processing

Modal multiplexing in the absence of turbulence

- Space-bandwidth constraints
- Physical comparison of mode sets
- Information-theoretic comparison of mode sets

Modal multiplexing in the presence of turbulence

- Atmospheric turbulence and its impact
- Optimal mode set for turbulence channels
- Information-theoretic comparison of mode sets

Atmospheric Turbulence and Its Impact

Major effects

- Beam wander.
- Beam spreading.
- Phase distortion: most important effect in near-field links.
- Amplitude scintillation: caused by interference over long paths.
- Wind- and thermal-induced motion of turbulence cells cause these effects to be time-varying.

Modeling Propagation in Atmospheric Turbulence

• Optical field in one polarization (suppressing *z* dependence):

J. M. Kahn and A. Belmonte • ECOC Tutorial Tu4D.1 • 20 September 2022

Optimal Modes in Atmospheric Turbulence (1/2)

Assumed scenario

- Receiver can track instantaneous state of atmospheric distortion.
- Transmitter cannot obtain accurate, up-to-date information on atmospheric distortion, because of:
 - Imperfect reciprocity.
 - Transmission delay.
- Receiver and transmitter do know the statistics of atmospheric turbulence, characterized by a field coherence length

$$\delta_0 = \frac{r_0}{6.88^{3/5}}$$
Field
$$U(\rho)$$
Field
Length δ_0

where r_0 is the Fried parameter.

Optimal Modes in Atmospheric Turbulence (2/2)

- Among all mode sets, the optimal modes suffer the least degradation by turbulence.
- Among all sets of *N* orthogonal modes, the *optimal modes*

$$\left\{\psi_n(\mathbf{\rho}), n=1,\ldots,N\right\}$$

can approximate a received field $U(\rho)$ with minimum mean-square error.

- Optimal modes are best basis set for transmission, reception and MIMO signal processing when number of modes is constrained.
- Optimal modes are determined by performing a Karhunen-Loève expansion of received field $U(\rho)$.
- Optimal modes are eigenfunctions of the *mutual intensity function* in the receiver plane

$$\Gamma(\boldsymbol{\rho}_1,\boldsymbol{\rho}_2) = E(U(\boldsymbol{\rho}_1)U^*(\boldsymbol{\rho}_2))$$

Derivation of Optimal Modes (1/3)

• Assume Gaussian field profile with *reference beam waist* ω_0 :

$$U_0(\mathbf{\rho}) = \exp\left(-\frac{|\mathbf{\rho}|^2}{2\omega_0^2}\right)$$

 ω_0 describes soft apertures at transmitter and receiver pupil planes.

• Assuming Kolmogorov turbulence, mutual intensity in receiver plane is

$$\Gamma(\boldsymbol{\rho}_1, \boldsymbol{\rho}_2) = \exp\left(-\frac{|\boldsymbol{\rho}_1|^2 + |\boldsymbol{\rho}_2|^2}{2\omega_0^2}\right) \exp\left(-\frac{|\boldsymbol{\rho}_1 - \boldsymbol{\rho}_2|^{5/3}}{2\delta_0^{5/3}}\right)$$

• Recall *field coherence length* $\delta_0 = r_0 / 6.88^{3/5}$, where r_0 is Fried parameter.

J. M. Kahn and A. Belmonte • ECOC Tutorial Tu4D.1 • 20 September 2022

Derivation of Optimal Modes (2/3)

- To facilitate analysis, approximate received field distortion by $(\omega_0/\delta_0)^2$ independent cells, each of radius δ_0 . The distortions are highly correlated within each cell. Similar methods are used to model imaging in random media.*
- The cells are centered at $\mathbf{v} \sim N(\mathbf{0}, \omega_0^2 \mathbf{I}_{2\times 2})$ and are described by elemental functions of form $\exp\left(-\frac{|\mathbf{p} \mathbf{v}|^2}{2\delta_0^2}\right)$.
- This leads to a mutual intensity of the form

$$\Gamma(\boldsymbol{\rho}_1, \boldsymbol{\rho}_2) = \frac{1}{2\pi\omega_0^2} \int \exp\left(-\frac{|\boldsymbol{\rho}_1 - \boldsymbol{v}|^2}{2\delta_0^2}\right) \exp\left(-\frac{|\boldsymbol{\rho}_2 - \boldsymbol{v}|^2}{2\delta_0^2}\right) \times \exp\left(-\frac{|\boldsymbol{v}|^2}{2\omega_0^2}\right) d\boldsymbol{v}$$

Performing the integration yields

$$\Gamma(\boldsymbol{\rho}_1, \boldsymbol{\rho}_2) = \exp\left(-\frac{|\boldsymbol{\rho}_1|^2 + |\boldsymbol{\rho}_2|^2}{2\sigma_g^2}\right) \exp\left(-\frac{|\boldsymbol{\rho}_1 - \boldsymbol{\rho}_2|^2}{2\sigma_s^2}\right)$$

We have defined

*J. W. Goodman, *Statistical Optics*, 2nd Ed., Wiley (2015).

J. M. Kahn and A. Belmonte • ECOC Tutorial Tu4D.1 • 20 September 2022

Derivation of Optimal Modes (3/3)

- We obtain a good approximation of the Kolmogorov mutual intensity.
- Now expand mutual intensity in series of orthogonal functions:

• Find eigenmodes $\psi_n(\mathbf{p})$ and corresponding eigenvalues λ_n by solving Fredholm integral equation:

The derivation yields two key parameters of optimal modes that depend on ω_0 and δ_0 :

- Optimized beam waist ω.
- Turbulence eigenvalue λ_n .

 $\int_{\text{receiver plane}} \Gamma(\mathbf{\rho}_1, \mathbf{\rho}_2) \psi_n(\mathbf{\rho}_2) d\mathbf{\rho}_2 = \lambda_n \psi_n(\mathbf{\rho}_1)$

Optimized Beam Waist

• Optimized waist ω cannot exceed reference waist ω_0 . In strong turbulence, ω should be not much larger than δ_0 .

J. M. Kahn and A. Belmonte • ECOC Tutorial Tu4D.1 • 20 September 2022

Turbulence Eigenvalue

- Modes with large λ_n are, on average, less degraded by turbulence than modes with small λ_n .
- Turbulence eigenvalue λ_n depends on (p, l) via 2p+|l|, like mode group index m = 2p+|l|+1.

J. M. Kahn and A. Belmonte • ECOC Tutorial Tu4D.1 • 20 September 2022

Ensures that higher-order modes are not clipped.

Optimized Link Design (1/2)

• Choose number of mode groups *M*. Determines number of modes:

$$N_{LG} = \frac{1}{2}M(M+1)$$

$$N_{OAM} = 2M-1$$

• Given lens diameter *D*, choose reference beam waist ω_0 using truncation parameter $\tau(M)$:

$$\frac{D}{2\omega_0} = \tau(M) = \sqrt{M}$$

M	N_{LG}	$\tau(M)$
1	1	1.0
4	10	2.0
9	45	3.0

Optimized Link Design (2/2)

• Given field coherence length $\delta_0 = r_0/6.88^{3/5}$ and reference beam waist ω_0 , compute optimized beam waist ω :

$$\frac{1}{\omega^{2}} = \frac{1}{\omega_{0}^{2}} + \frac{1}{2\delta_{0}^{2}} \frac{\sqrt{1 + 2(\omega_{0} / \delta_{0})^{2}}}{1 + (\omega_{0} / \delta_{0})^{2}}$$

• Estimate maximum link length *L* as Rayleigh range corresponding to optimized beam waist ω:

$$L \le \frac{\pi \omega^2}{\lambda}$$

Optimized Beam Waist and Maximum Link Length

• When $r_0 = \infty$ (no turbulence), maximum *L* is close to value limited by space-bandwidth product with $N_F = N_{LG}$ (see Symmetric Two-Lens Link):

$$L \le \frac{\pi D^2}{4\lambda \sqrt{N_{LG}}}$$

Optimized Beam Waist and Maximum Link Length

• When $r_0 = \infty$ (no turbulence), maximum *L* is close to value limited by space-bandwidth product with $N_F = N_{LG}$ (see Symmetric Two-Lens Link):

$$L \le \frac{\pi D^2}{4\lambda \sqrt{N_{LG}}}$$

Optimized Beam Waist and Maximum Link Length

• When $r_0 = \infty$ (no turbulence), maximum *L* is close to value limited by space-bandwidth product with $N_F = N_{LG}$ (see Symmetric Two-Lens Link):

Optimized System Design (1/2)

- Require at least a mode group-selective multiplexer to enable optimized per-group power allocation.
- **H** not diagonal and not unitary: multiplexed signals are not orthogonal.
- Spatial/FEC decoder should mitigate non-orthogonality.
 - Better: successive interference cancellation. SIC can approach optimal ML performance.^{1, 2}
 - Worse: minimum-mean-square-error equalization. MMSE is impaired by noise enhancement.

1. P.W. Wolniansky *et al.*, *ISSSE* 1998.

2. E. S. Chou and J. M. Kahn, JLT 40 (2022).

Optimized System Design (2/2)

Assume:

- Coherent detection with equal noise power σ^2 per receiver.
- Constraint on total transmit power $P = \sum_{n=1}^{N} P_n$.
- Total SNR is $\gamma = \frac{1}{\sigma^2} \sum_{n=1}^{N} P_n$.
- Transmitter knows turbulence statistics via field correlation length δ_0 . Can optimize power allocation $\{P_1, \dots, P_N\}$ based on turbulence eigenvalues $\{\lambda_1, \dots, \lambda_N\}$.

Capacity and Effective Degrees of Freedom

• Let power allocation $\{P_1, \dots, P_N\}$ be represented by a matrix

 $\mathbf{Q} = \operatorname{diag}(P_1 / P, \dots, P_N / P)$

Average capacity per unit bandwidth (an expectation over turbulence realizations):¹

$$SE = E_{\mathbf{H}} \left\{ \log_2 \left(\det \left(\mathbf{I} + \gamma \mathbf{H} \mathbf{Q} \mathbf{H}^H \right) \right) \right\}$$

Number of modes effectively conveying information:²

$$\left| EDOF = \frac{d}{d\delta} SE(2^{\delta}\gamma) \right|_{\delta=0}$$

- Low SNR: power-limited, EDOF depends weakly on N.
- High SNR: mode-limited, EDOF approaches N.

1. E. Telatar, *Eur. Trans. Telecommun.* **10** (1999).

2. D.-S. Shiu et al., Trans. on Commun. 48 (2000).

Comparison of Mode Sets in Turbulence (1/3)

- Design link to support M = 9 mode groups (see Optimized Link Design).
 - L-G modes: $N_{LG} = \frac{1}{2}M(M+1) = 45$
 - OAM subset: $N_{OAM} = 2M 1 = 17$
- Monte Carlo simulations

- Model phase aberration $\Phi(\rho)$ by propagation through successive phase screens.
- Compute overlap integral between transmit mode j and receive mode i to obtain channel matrix element H_{ii}.
- Generate 10⁴ realizations of channel matrix **H** for each scheme.
- Transmission strategies when transmitter has specified knowledge of atmosphere:
 - Perfect (knows H): instantaneous eigenmodes, power allocation based on instantaneous eigenvalues.
 - Statistical (knows δ_0): optimized beam waist ω , power allocation based on statistical eigenvalues λ_n .
 - None: fixed beam waist ω_0 , uniform power allocation.

Comparison of Mode Sets in Turbulence (2/3)

Very weak turbulence

- Instantaneous eigenmodes, optimized L-G modes and fixed L-G modes all offer EDOF = 45.
- Optimized OAM modes and fixed OAM modes offer EDOF = 17.

Moderate to strong turbulence

- Instantaneous eigenmodes offer EDOF = 45.
- Optimized L-G modes outperform fixed L-G modes. Optimized OAM modes outperform fixed OAM modes.

J. M. Kahn and A. Belmonte • ECOC Tutorial Tu4D.1 • 20 September 2022

Comparison of Mode Sets in Turbulence (3/3)

At all SNR γ

• Optimized L-G modes outperform fixed L-G modes. Optimized OAM modes outperform fixed OAM modes.

As SNR $\gamma \to \infty$

- EDOF \rightarrow 45 for instantaneous eigenmodes (rapidly) and for optimized L-G modes (slowly).
- EDOF \rightarrow 17 for optimized OAM modes.
- EDOF are lower for fixed L-G modes and fixed OAM modes than for their optimized counterparts.

J. M. Kahn and A. Belmonte • ECOC Tutorial Tu4D.1 • 20 September 2022

Conclusions

Studied modal multiplexing assuming transmitter knows statistics but not instantaneous state of turbulence.

Optimal modes

- Suffer least degradation by turbulence among all mode sets.
- Are best basis set for transmission, reception and MIMO signal processing when number of modes is constrained.
- Are a set of L-G modes (or H-G modes) with beam waist ω scaled depending on field correlation length δ_0 .
- Are eigenmodes of mutual intensity function in receiver plane.
 Eigenvalues λ_n describe robustness to degradation by turbulence.

Optimal transmission scheme

- Uses variable-magnification optics to optimize beam waist ω.
 Optimizes power allocation to eigenmodes depending on eigenvalues λ_n.
- Significantly outperforms schemes using fixed beam waist ω_0 and uniform power allocation.

Adaptive modal signal processing

Enables compensation of both phase and amplitude fluctuations. Can adapt faster than adaptive optics.

To Learn More

• These tutorial slides.

 A. Belmonte and J. M. Kahn, "Optimal Modes for Spatially Multiplexed Free-Space Communication in Atmospheric Turbulence", *Optics Express* 29 (2021).

 N. Zhao, X. Li, G. Li and J. M. Kahn, "Capacity Limits of Spatially Multiplexed Free-Space Communication", *Nature Photonics* 9 (2015).

