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‘We investigate experimentally and theoretically how excitonic effects influence the optical prop-
erties of semiconductor superlattices in the Stark-ladder regime. Excitonic effects are particularly
important when the superlattice miniband width is comparable to the exciton binding energy. In
order to observe a Stark ladder it is necessary that either the electron or hole wave function (or
both) be at least partially delocalized. In an optical experiment the delocalization of the wave
functions is affected by the electron-hole Coulomb interaction. Excitonic effects can therefore pre-
vent the observation of the Stark ladder if the Coulomb interaction is strong enough to localize the
wave functions completely. We have studied three GaAs/ Al 3Gao.7As superlattices, with calculated
conduction-band miniband widths AE of 6, 11, and 23 meV. Experimentally, we observe a heavy-
hole Stark-ladder fan diagram in the sample with the 23-meV miniband width, which indicates an
electron wave-function delocalization over several superlattice periods. However, in the other two
samples in which AE is comparable to the exciton binding energy, we do not observe a fan disgram,
which indicates much stronger wave-function localization. Instead, we observe an anticrossing at
a field strength of ~ 5 kVem™!. In these conditions, the multiwell structure behaves more like
many repeated pairs of coupled double wells rather than a superlattice. We interpret the observed
anticrossings at ~ 5 kVem™! in the samples with the smaller miniband widths as an excitonic de-
generacy similar to that observed previously at higher fields [A.M. Fox et al., Phys. Rev. B 44, 6231
(1991)]. We have been able to explain this behavior using both a variational exciton model based
on three coupled quantum wells and a full Green’s-function solution for the excitons assuming a
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double-quantum-well structure.

I. INTRODUCTION

Quantum theory predicts that when an electric field
is applied to a periodic structure, there should exist a
ladder of equally spaced energy levels whose separation
depends linearly on both the electric-field strength and
the periodicity.! This ladder of levels is referred to as
the Stark ladder. The Stark ladder is the frequency
space equivalent of Bloch oscillations, the phenomenon
by which the particle is predicted to oscillate in space at
a frequency equal to the Stark-ladder splitting divided by
Planck’s constant. Although the Stark ladder and Bloch
oscillations are completely general properties of any pe-
riodic structure in an electric field, they are in fact very
hard to detect experimentally. The reason for this is
that the oscillation period is usually much longer than
the scattering times of the material.

The proposal of Esaki and Tsu in 1970 to explore the
properties of artificially periodic superlattice structures
made by the epitaxial growth of semiconductors opened
new degrees of freedom to the problem.? Even in their
initial paper the possibility of the observation of Bloch
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oscillations was considered: the prospect of making the
superlattices with periods long enough that the Bloch
oscillation time would be less than the scattering time
made it realistic to expect to observe the Stark-ladder
states. However, the first experimental results on peri-
odic multiple-quantum-well structures in an electric field
showed no evidence either for the Stark ladder or Bloch
oscillations,®® and the results could be explained just
by considering the properties of single isolated quantum
wells.67

Insight into the question came in 1988, when Bleuse,
Bastard, and Voisin considered theoretically the localiz-
ing effect of the electric field on the electron and hole
superlattice wave functions.® This was followed by the
experimental observation of the Stark ladder later in the
same year by Mendez, Agullo-Rueda, and Hong.® The
experimental verification came from the optical spectra
of 2 GaAs/Al,Ga;_,As superlattice. At an intermediate
range of electric field strengths, they observed a series of
satellite peaks associated with the first heavy- and light-
hole optical transitions. The transition energies of these
satellite peaks (hiw) were found to have a very simple
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linear dependence on the field strength (F},) and the su-
perlattice periodicity d:

hw(Fy,) = hwo(F,) + veF,d , 1)
where hwo(F;) is the Stark-shifted energy of the funda-
mental transition, v = 0,%1,+2,..., etc., and e is the

electronic charge. The satellite peaks originated from
transitions involving a single heavy-hole level and sev-
eral levels from the electron Stark ladder, as sketched in
Fig. 1, where the transitions corresponding to v = —1,
0, and —1 are indicated. In principle these transitions
were always present in the early experimental work cited
above, but in practice only the transition with v = 0
was being observed. The difference between the work
of Ref. 9 and the previous studies was in the extent of
wave-function delocalization in the conduction band with
the field applied. At the intermediate fields, the electron
wave functions associated with each Stark-ladder level
were partially delocalized, with each wave function being
peaked in a particular quantum well but with substan-
tial side lobes extending into a few quantum wells on
either side of the main peak (see Fig. 1). The hole wave
functions, on the other hand, were localized in just one
particular quantum well. This meant that there was a
significant overlap integral between a hole state localized
in one quantum well and an electron state peaked in a
different quantum well, resulting in a detectable optical
transition. The energy shift from the fundamental tran-
sition was simply due to the energy difference of (eF,d)
between the electron Stark-ladder levels. Thus we see
that the successful experimental observation of the Stark
ladder requires at least partial delocalization of either
the electron wave function or the hole wave function (or
both) at finite fields.

In this work we consider both experimentally and

FIG. 1. Schematic band diagram of a superlattice with
period d in an electric field of strength F,. The Stark-ladder
transitions with v = +1, 0, and —1 from a particular heavy-
hole state are indicated. The oscillator strength of the transi-
tion depends on the electron-hole overlap. The wave functions
shown are the probability densities for the single particle wave
functions, not the excitonic wave functions.
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theoretically how excitonic effects can modify the opti-
cal spectra of semiconductor superlattices in the Stark-
ladder regime. Previous studies of excitonic effects in
Stark ladders have been entirely theoretical.!0716 In prin-
ciple, excitonic effects are always important in optical
measurements on semiconductors, because electrons and
holes are always created simultaneously. Indeed, the ex-
perimental work of Mendez, Agullo-Rueda, and Hong
demonstrating the existence of the Stark ladder was in
fact made by measuring the field dependence of the ex-
citon states rather than single-particle states.® In prac-
tice, however, excitonic effects are usually considered as
secondary in Stark-ladder studies on superlattices. One
way of rationalizing this is that the samples studied tend
to have superlattice miniband widths significantly larger
than the exciton binding energy. Hence we might expect
that the excitonic effects are then not strong enough to
suppress the superlattice effects. Here we consider the
case of superlattices in which the miniband width and
the exciton binding energy are comparable. Our principal
conclusion is that excitonic effects can lead to a situation
where no Stark-ladder fan diagram is observed in optical
experiments in superlattices where one would otherwise
have expected to be able to observe Stark-ladder effects.
This is a consequence of the fact that delocalized wave
functions are required at finite fields in order to observe
the Stark ladder in an optical experiment, and the exci-
tonic effects can substantially reduce the delocalization
of the electronic wave functions. This leads to a physical
situation similar to that reported in the early (and much
subsequent) work on multiple-quantum-well samples in
an electric field,®> 7 where no Stark-ladder effects were
observed due to the strong degree of localization of both
the electron and hole wave functions. We presume that
in these samples the Stark-ladder states exist when the
field is applied, but that we have no way of verifying this
in an optical experimental because of the negligible over-
lap between electron and hole states in different quantum
wells.

The principal experimental result that leads us to our
conclusions is that we find that, in samples where the ex-
citon binding energies are comparable to or larger than
the miniband widths, we are unable to observe the char-
acteristic Stark ladder, even when we can clearly see
that the electron and hole wave functions in adjacent
wells have strong overlap. Instead we observe a very
clear excitonic anticrossing at a field strength of about 5
kVecm~!. We have been able to explain this anticrossing
behavior by assuming that the adjacent wells from within
the superlattice are behaving like many repeated pairs of
coupled double wells independent of the remaining wells
of the superlattice. It is then a relatively straightfor-
ward exercise to calculate the properties of the superlat-
tice excitons using a coupled-well exciton model such as
the one we developed previously.}?'18 ‘This amounts to a
considerable simplification compared to the full superlat-
tice exciton Stark-ladder theories considered so far in the
literature. 10716

The paper is organized as follows. In Sec. II we explain
the basic ideas underlying our argument. In Sec. III we
present and discuss our experimental results. In Sec. IV
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we describe the coupled-well exciton calculations we have
performed to model the experimental results. Finally, in
Sec. V we draw our conclusions.

II. PRELIMINARY CONSIDERATIONS

A superlattice may be considered as a pericdic se-
quence of quantum wells connected together through
“thin” separating barriers. When the barriers separat-
ing the quantum wells are “thick,” the properties of the
superlattice are essentially the same as those of the iso-
lated quantum wells, and therefore this class of superlat-
tice is usually called a “multiple quantum well” rather
than & “superlattice.” This is tantamount to saying that
the miniband width AFE of these “thick” barrier super-
lattices is negligibly small. An obvious question arises
as to what is the criterion that determines whether the
barriers of a particular sample are “thick” or “thin.” The
answer to this question depends on the type of measure-
ment that is being made. The crux of our argument is
that the criterion is different depending on whether the
type of measurement is optical or electrical. This is be-
cause in an optical experiment electrons and holes are
created simultaneously, and it is necessary to consider
the Coulomb interaction between them. We argue below
that the criterion which determines whether a particular
sample behaves like a “superlattice” or a “multiple quan-
tum well” for the purposes of an optical experiment de-
pends on the relative magnitude of the miniband widths
and the exciton binding energy, and that the Stark-ladder
spectra are a sensitive experimental technique which can
show the difference between the two classes of behavior.

The effects of the electron-hole Coulomb interaction
on the Stark-ladder spectra are simpler to understand if
we restrict our discussion to the case of heavy-hole ex-
citons only. This is because the heavy-hole superlattice
miniband width is almost negligible, and so the heavy
holes are always effectively localized in just one quantum
well in the conditions that apply to our samples; for all
practical purposes, we may use the heavy-hole wave func-
tions of a single, isolated quantum well. This means that
we need only consider the effect of the Coulomb interac-
tion on the delocalization of the electron wave functions.
The case of light-hole excitons is complicated by the fact
that the light-hole miniband width is typically compara-~
ble to the electron miniband width, and thus one needs
to consider the effects in both the conduction and valence
band. In the argument that follows, we will consider only
heavy-hole excitons; later in the paper we will discuss the
validity of our argument in the case of light-hole excitons.

‘When electrons and holes are both present in a su-
perlattice (as is the case for optical measurements),
the superlattice states are modified by the electron-hole
Coulomb interaction. The exciton may be described by
a wave function of the form

U(re,rn) = Yom. (X, Y) Yrei(x, y) Ye(2e) Yrl2n) , (2)
where the growth direction is taken to be the z axis,
and r. and rp are the electron and hole coordinates.
For the z-y plane motion, we have made the usual dis-
tinction between the center-of-mass motion with wave
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function ., (X,Y) and the relative motion with wave
function Yyel(x,y). For the z-direction motion we con-
sider separately the electron and hole parts of the wave
function, ¥.(z.) and ¥p(21), respectively. In the case
of a heavy-hole exciton, ¥p(2z,) will usually be localized
in one quantum well at all fields, whereas 1e(2.) will
spread over a number of wells at low fields and grad-
ually become more localized as the field is increased.
Figure 1 illustrates the probability densities for typical
wave functions . (ze) and 1 (2) at an intermediate field
strength where the electron wave functions spread out
over several wells. It is the spread of 1.(ze) at finite fields
which determines how many Stark-ladder transitions are
observed.>1? This spread of (z.) can be characterized
by an effective width, which is equivalent to an effective
z-direction exciton radius a,. This approach is similar
to that of Pereira et al., who considered the problem of
superlattice excitons by treating the superlattice as an
anisotropic medium with different effective masses along
the z-y and z directions.?’ The key point of our argu-
ment is to realize that a, is not the same as the effective
width of the single-particle electron state calculated with-
out taking excitonic effects into account: the presence of
the localized hole reduces the spread of the electron wave
function. This will have consequences for the number of
Stark-ladder transitions observed, and can lead to a sit-
uation where only the v = 0 transition is observed. In
these conditions we would say that the observation of the
Stark ladder has been suppressed by the excitonic effects.

The degree to which the excitonic effects alter the
spread of the electron wave function in a heavy-hole
exciton is determined by the relative magnitude of the
electron-hole Coulomb interaction and the delocalization
energy of the superlattice. The Coulomb interaction tries
to reduce the effective width of 1.(2.) in order to mini-
mize the potential energy, but there is a price in kinetic
energy to be paid to localize the electron. In general the
kinetic energy of the single-particle ground state of a su-
perlattice is lower than that of the corresponding isolated
quantum well by approximately AE/2, where AFE is the
miniband width.2* This reduction in kinetic energy is a
consequence of the delocalization of the wave functions
which occurs in the superlattice. Thus it becomes clear
that AE/2 has to be compared to the quantum-well exci-
ton binding energy E. to determine the spread of 1), (z)
in the superlattice exciton. In the case of wide miniband
superlattices (i.e., superlattices with “thin” barriers), a,
will approach the exciton radius of the bulk alloy with
the same average composition as the superlattice. On
the other hand, in a narrow miniband superlattice (i.e.,
“thick” barrier superlattices) a, will just be equal to the
width of one quantum well. We can thus give a rough
general criterion which determines what is meant by a
“thin” or “thick” barrier superlattice for the case of an
optical experiment. A “thin” barrier superlattice is one
which has AE/2 > E,, whereas a “thick” barrier super-
lattice (i.e., a “multiple quantum well”) has AE/2 < E;.
For the case of GaAs/Al;Ga;_;As quantum wells, F, is
typically ~ 9 meV. In Sec. III we present experimental
results for three GaAs/Al,Ga;_ . As samples with calcu-
lated values of AE/2 of about 11.5, 5.5, and 3 meV,
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respectively, for the electron minibands. These samples
have thus allowed us to explore the interesting regime
where the miniband and excitonic effects are of similar
strength. ’

Figure 2 sketches some of the electron and heavy-hole
wave functions in a superlattice in which the electron
states are localized at a finite field. This is the case that
applies to the single-particle states in “thick” barrier su-
perlattices, and also to the exciton states in superlattices
with intermediate barrier thicknesses where the Coulomb
interaction causes the localization. In these conditions,
we would expect to observe only the v = 0 Stark-ladder
transition, because this is the only transition which has a
substantial electron-hole overlap. However, there is still
a vestige of the Stark ladder which occurs around a par-
ticular resonant field in the superlattices where the elec-
tron wave function has been localized by the Coulomb
interaction. This happens because the barriers are still
relatively thin (35 A at most in the case of our samples),
and the electrons can still tunnel very easily through the
thin barriers. In particular, resonant tunneling can occur
when the field aligns different sublevels of adjacent wells.
The samples then behave like many repeated pairs of cou-
pled double wells rather than a superlattice. We showed
previously that the ezcitonic tunneling resonances of cou-
pled wells occur at slightly different fields from the single-
particle resonances.!”!8 Similar behavior has also been
discussed by other groups.?2724 This is a consequence of
the fact that the binding energies of the intrawell and
interwell excitons differ by about 4 meV.'® When the
field applied is such that the energy drop between wells
is equal to this difference in binding energy, then the
intrawell and interwell ezcitons will be degenerate, even
though the single-particle levels are out of resonance with
each other. This situation is sketched schematically in
Fig. 2. In these conditions the intrawell and interwell ex-
citons mix together and share their oscillator strength, so
that the —1 exciton Stark-ladder transition becomes ob-
servable. In our samples, this excitonic resonance occurs

FIG. 2. Schematic band diagram of three quantum wells
from within a superlattice with localized electron levels at the
resonant field for exciton resonant tunneling (~ 5kVem ™! in
our samples). The dotted lines indicate the exciton energies
relative to the single-particle hole level. The intrawell (0) and
interwell (—1) excitons are degenerate. The exciton transi-
tions observed in the optical spectra of two of our samples at
this resonant field are indicated.
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around 5 kVem~!. This anticrossing is in fact just the
excitonic counterpart of the fundamental level repulsion
which occurs at F, = 0 in a symmetric coupled double-
well structure. Experimentally, we observe anticrossings
in the excitonic transitions of two of our samples at fields
around 5 kV cm™?, which we attribute to this excitonic
degeneracy.

Similar anticrossing effects to those described above
have been discussed by Dignam and Sipe in terms of a
full superlattice exciton Stark-ladder model.12 Our situa-
tion lies between the long-period and intermediate-period
superlattices considered by them. We are describing the
exciton energies approximately by Eq. (3.1) of Ref. 12,
which applies to the case of long-period superlattices.
However, we have enough cross-well coupling to observe
the anticrossing of 0 and —1 exciton Stark-ladder states,
which is illustrated in Fig. 6 of Ref. 12 for the case of
intermediate-period superlattices.

III. EXPERIMENTAL RESULTS AND
: DISCUSSION

The three GaAs/Alp.3Gao.7As p-i-n superlattice struc-
tures studied have been described in detail in a previous
publication.'® In brief, they were grown on n doped GaAs
substrates by molecular-beam epitaxy. The nominal well
width was kept constant at 95 A, but the barrier width
Ly varied from 35 to 15 A. The p and n doping densities
were both 5 x 1017 cm~3 . The samples were designed
with an intrinsic region thickness of ~ 1 ym. X-ray data
and detailed analysis of the optical spectra confirmed the
design parameters to better than 10% . The design of the
samples allowed a systematic variation of the cross-well
coupling (determined by L;), while keeping all other pa-
rameters constant as far as possible.

Figures 3, 4, and 5 show the experimental results taken
for the three samples close to flat-band conditions at low
temperatures. Figures 3(a), 4(a), and 5(a) show the pho-
tocurrent spectra in the vicinity of the fundamental band
edge as a function of applied voltage. Positive voltage
implies forward bias. Figures 3(b), 4(b), and 5(b) show
the energies of various transitions resolved in the spectra
against field, together with the results of our theoretical
calculations described in Sec. IV A. The filled and open
circles refer to heavy- and light-hole transitions, respec-
tively. The transition energies are plotted against field
strength F,, which is deduced from the applied voltage
Vapp! according to

F,= ME@ , , (3)

Here L is the intrinsic region thickness, i.e., ~ 1 gm, and
Vhi is the effective built-in voltage of the diode. The value
of V4,; varies somewhat from sample to sample due to dif-
fering impurity concentrations, which causes a different
degree of depletion in the diode. To fit our data, we vary
Voi between 1.0 and 1.5 V, depending on the sample, as
discussed below.

We show the spectra up to a maximum value of —1.0
V reverse bias. At this voltage the field strength is
~320-25 kVem™!, and the energy drop between adjacent



wells is greater than the electron or light-hole miniband
width for all three samples. Thus at —1.0 V, the elec-
tron and hole wave functions are localized in individual
wells, and the band-edge spectra are dominated by the
heavy- and light-hole exciton transitions as for conven-
tional multiple-quantum-well structures. The linewidth
of these exciton transitions increases with decreasing Ly,
presumably due to lifetime broadening by enhanced tun-
neling in the thinner barrier samples. The transition
energies of the n=1 heavy- and light-hole exciton lines
at larger values of reverse bias (i.e., fields up to ~ 80
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FIG. 3. Experimental results for the GaAs/Alp.3Gao.7As
multiple-quantum-well p-i-n sample with barrier thickness
Ly=15 A at 50 K. (a) Band-edge photocurrent spectra against
bias voltage. (b) Exciton transition energies resolved in the
photocurrent spectra against field up to 25 kV cm™*, The in-
set of (b) shows the Stark-shifting n=1 heavy- and light-hole
exciton energies up to 80 kVem™!. The dotted lines plotted
over the spectrs. in (g) are a guide to the eye.
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kVem~1) are shown as insets in Figs. 3(b), 4(b), and
5(b). The exciton lines are observed to redshift as ap-
propriate for localized excitons in the quantum confined
Stark effect regime.” Anticrossings, which are not shown
for clarity in Figs. 3(b), 4(b), and 5(b), are observed for
all three samples in the field range around 80 kVecm™!.
In a previous publication we have shown that this is a
coupled-well effect in which the el level of each quan-
tum well is made degenerate with the e2 level of the next
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FIG. 4. Experimental and theoretical results for the
GaAs/Aly.sGag.7As multiple-quantum-well p-i-n sample with
barrier thickness L,=25 A at 30 K. (a) Band-edge photocur-
rent spectra against bias voltage. (b) Exciton transition en-
ergies resolved in the photocurrent spectra against field up
to 25 kVem™ . The inset in (b) shows the n=1 heavy- and
light-hole exciton energies at larger field strengths. In (b)
we compare the experimental data with the —1th and Oth
Stark-ladder exciton transition energies calculated from our
three-well variational exciton model. The dotted and dashed

lines over the spectra in (a) are a guide to the eye.
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well.18 This paper is concerned with the behavior of the
optical spectra as the applied field is decreased towards
flat-band conditions.

We consider first the results for the 15-A barrier sam-
ple (electron miniband width AE ~ 23 meV) shown in
Fig. 3. We observe a well-defined heavy-hole Stark ladder
for fields up to ~ 25 kVem~1, similar to the results ob-
tained previously by other groups.? The point about this
sample is that AFE/2 is greater than the quantum-well
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FIG. 5. Experimental and theoretical results for the

GaAs/Alp.3Gap.7 As multiple-quantum-well p-i-n sample with
barrier thickness Ly,=35 A at 20 K. (a) Band-edge photocur-
rent spectra against bias voltage. (b) Exciton transition en-
ergies resolved in the photocurrent spectra against field. The
inset in (b) shows the n=1 heavy- and light-hole exciton en-
ergies at larger field strengths. In (b) we compare the ex-
perimental data with the —1th and Oth Stark-ladder exciton
transition energies calculated from our three-well variational
exciton model. The dotted and dashed lines over the spectra
in (a) are a guide to the eye.
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exciton binding energy (~ 9 meV), and thus we would
not expect the excitonic effects to be particularly impor-
tant. The family of Stark-ladder transitions is clearest
at +0.8 V, where three peaks are resolved in the spec-
tra corresponding to the v =—1, 0, and +1 heavy-hole
Stark-ladder transitions. A shoulder on the low-energy
side of the —1 peak is also observed, which we assign
to the ¥ = —2 transition. The fanlike behavior of the
state energies as a function of field predicted by Eq. (1)
is evident from the dotted lines plotted over the data as
a guide to the eye in Fig. 3(a), and also from inspection

_ of Fig. 3(b).

In Fig. 3(b) we converted between applied voltage and
field using Eq. (3) with a value of 1.2 V for V4;. An accu-
rate conversion between the known applied voltage and
the inferred internal field is essential for a quantitative
analysis of the results, and this depends critically on the
value of V4 chosen. We arrived at the value of 1.2 V
for V4; from analysis of the experimental data. The pho-
tocurrent spectrum at Vapp1 = +1.2 V forward bias shown
in Fig. 3(a) has no easily resolved exciton lines, and the
absorption edge is significantly downshifted compared to
the Oth Stark-ladder transition. We interpret this as an
indication of miniband formation, which suggests that at
+1.2 V we are very close to flat-band conditions. Addi-
tional evidence to support this value for W,; is obtained
from the magnitude of the photocurrent collected. This
depends on the quantum efficiency of the diode, which
was found to drop off very rapidly for Vappt > +1.2 V.
This drop in quantum efficiency is to be expected near
F, = 0.%5 Thus we have two experimental indications to
support the value of ~ 1.2 V chosen for W;.

.. 'We now turn to the results for the 25-A sample (mini-
band width 11 meV) and the 35-A sample (miniband
width 6 meV) shown in Figs. 4 and 5, respectively. It
is immediately obvious that the spectra are qualitatively
different from that obtained for the 15-A barrier sample.
Rather than observing the characteristic Stark-ladder fan
diagram, we observe an anticrossing in both the light-
and heavy-hole exciton transitions.?® This is more ap-
parent from the lines plotted as a guide to the eye in
Figs. 4(a) and 5(a), and from inspection of the field de-
pendence of the exciton transitions shown in Figs. 4(b)
and 5(b). As for the 15-A sample, we converted applied
voltages into fields by assuming values for V;;. The values
used for Vi; were 1.0 V for the 25-A sample and 1.5 V for
the 35-A sample. These values were chosen to give the

-best match between the theoretical model discussed in

Sec. IV A and the data. They are consistent with the ex-
perimentally determined voltages at which the quantum
efficiency begins to drop off and the spectra show weak
evidence of miniband formation. They are also similar
to our previous estimates based on fitting the high field
transition energies.!® In the 25-A sample, we observe two
additional peaks approximately 25 meV below the main
heavy- and light-hole transitions for Vapp1 < +0.5 V. We
believe these additional peaks are an artifact of the sam-
ple, and are not related to the effect discussed here.?”
In both samples, the anticrossing is best resolved for
the light-hole excitons. Table I gives the estimated res-
onant field Fies and minimum line splitting §E for the
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TABLE I. The estimated resonant field Fres and line splitting §E' at the anticrossings.
Sample Heavy holes Light holes
Fres (KkVem™) SE (meV) Fres (kVem™1) SE (meV)
25 A 3.9 3.2 5.2 5.4
35 A 4.1 ~2.9 6.1 3.7

heavy- and light-hole transitions of the two samples. Our
criterion for determining the resonant field is that the
oscillator strength for the two split transitions should be
equal. 6E was determined directly from the spectra for
the light-hole transitions, and by deconvolution for the
heavy-hole transitions. We note that § E decreases as the
barrier thickness increases, as expected for a tunneling
process. Fie; and §E are both slightly higher for the
light holes than for the heavy holes. From Fig. 2 and the
discussion in Sec. II we see that Fies should indeed be
larger for the light holes than for heavy holes because of
the larger light-hole exciton binding energy.

Our results give very clear experimental confirmation
of the excitonic anticrossings predicted theoretically by
Dignam and Sipe.'1'12 We are only able to observe the
anticrossing between the 0 and —1 Stark-ladder states,
in contrast to the family of anticrossings predicted in
Refs. 11 and 12. This may be due to the fact that our
interwell coupling is between the specific cases of long-
period and intermediste-period superlattices considered
in Ref. 12. However, it may also be an indication that
the wave-function coherence is being curtailed due to im-
perfections in the sample. For example, Schneider et al.
were able to observe resonant tunneling between next-
nearest-neighbor Stark-ladder states in their GaAs/AlAs
superlattice.?®. However, it should be noted that the to-
tal coherence length implied in the results of Ref. 28 is
not so much greater than in our case, due to the larger
superlattice period in our samples (up to 130 A). Since
we only observe the one anticrossing, we are justified in
modeling the situation by considering nearest-neighbor
interactions only. As discussed in Sec. II, a simple expla-
nation of the single anticrossing can then be given if we
assume that the electron-hole Coulomb interaction causes
a localization of the wave functions even near F, = 0.
From our understanding of the physics of the 25- and 35-

barrier samples, we would expect to be able to obtain
essentially the same absorption spectra from a symmetric
double-well structure with the same wells and barriers as
the superlattices.

IV. THEORETICAL RESULTS

A, Variational modeling of excitons
in a three-well structure

‘We have modeled the optical properties of the su-
perlattice using a generalized version of our double-well
variational exciton calculation.1”18 In order to allow for
nearest-neighbor interactions in the superlattice, we need
to consider three quantum wells rather than the two con-
sidered previously. We thus approximated the conduc-

tion band by three coupled quantum wells, but have made
the additional approximation of just considering the va-
lence band as a single uncoupled well (see Fig. 6). The
artificial constraint of the holes to be localized in just a
single well was made to simplify the calculation. It is a
reasonable assumption for the heavy holes in most super-
lattices due to the large heavy-hole effective mass. We
will discuss the validity for the light holes later.

After separating off the z-y plane center-of-mass mo-
tion, the Hamiltonian is given by

H=H,,+H.+ Hp + Voou , 4
where
R? _,
Hzy = —%V% J ®
h2 62
© He= g g T Vel meFize ()
hz 82 N
Hy = —mgzz + Vh(zn) + eFszn (M
and
2
1
VCoul = ° (8)

T dmeoe /P + (7o — )

FIG. 6. Calculated electron and hole wave functions for
the simplified structure used in the variational model. The
results are shown for the 35-A barrier sample at F, = 0. The
single-particle wave functions calculated without considering
excitonic effects are shown by the solid lines. The dotted
line shows the modified electron wave function calculated by
our variational exciton model which includes the electron-hole
Coulomb interaction.
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The subscripts e, h refer to electrons or holes, respec-
tively. The field F) is assumed to be along the z direction.
Ve(ze) and Vi (23) are the potentials due to the quantum
wells. m. and my are the effective masses, and pgy is
the reduced z-y plane electron-hole mass. € is the aver-
aged relative dielectric constant, and p is the z-y plane
electron-hole separation, \/z2 + 2.

The exciton wave function is given by Eq. (2). The
z-y plane center-of-mass motion is trivial, and we ne-
glect it from now on. The first step to the solution is
to obtain a set of basis wave functions for 1.(z.) and
tr(25). One approach would be to solve the equations
for isolated quantum wells, and then to use linear combi-
nations of these wave functions localized in the different
quantum wells in a tight-binding type of method. Instead
we choose to use the single-particle wave functions of the
coupled-well system with the field applied as our basis.
The Coulomb interaction is then treated as a perturba-
tion. With Vgoy set to zero, the equations are separable,
and basis wave functions can be found by solving

H.den (zc) = Een¢en(ze) (9)

and

Hiydnm(2n) = Ermdrm(zn) - (10)

This choice of basis wave functions already includes the
quantum confined Stark shift of the levels, and also the
simplified miniband effects of the three-well system near
F, = 0. As before,’”!® we use the tunneling resonance
technique to find ¢pm(2n) and ¢en(z.). The solid bold
lines in Fig. 6 show the first electron and heavy-hole wave
functions calculated at F, = 0 in this way for the struc-
tures indicated.

We now consider the first three exciton states of the
system. The wave function of the ith exciton is obtained
by solving

HY(p, 2, 2n) = E;Wi(p, Ze, 2n) (11)

where H is now the full Hamiltonian of Eq. (4), and ¢
runs from 1 to 3. We use a variational approach, with
the following trial wave function:

) (0, 20, 21) = i, (0) i (2e) @ (2h) (12)

where %, (), ©L(2e), and ¢} (21) are the variational wave
functions which have to be determined for the relative
z-y plane motion and the z-direction motion, respec-
tively. For goiu (p) we use a 1s wave function with variable

radius A;/2:
(--/%) : (13)

Doy (0) = P15 (Ns)

_(2\tL

- ™ /\,‘ P
To make the problem computationally easier, we make
the approximation that the Coulomb interaction is weak
compared to the separation of the first and second sub-
levels of any isolated quantum well. This means that
we need only consider the three electron wave functions
derived from the first sublevel of each of the three indi-
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vidual quantum wells. In this case, we can expand ¢%(2.)
over the first three single-particle electron wave functions
Gen{2e), writing

3
Qoi(zc) = Z cin¢en(ze) . (14)

n=1

Here, cin are variable mixing parameters to be deter-
mined. Of course, if we were to “turn off” the Coulomb
interaction perturbation, the mixing coefficients would
become diagonal (i.e., ¢in = 6;,n), and we would revert to
the Stark-ladder situation without excitonic effects. This
is the limiting behavior expected at high fields, where
eF,d is much greater than the exciton binding energy.
For ¢t (zp) we simply use the first Stark-shifted hole level
@rn1(zrn) of the central quantum well. This amounts to
assuming that the barriers are thick for the heavy holes,
and that the separation of the hole sublevels within the
quantum well is significantly greater than the exciton
binding energy.

The task of the calculation is to determine the nine
mixing coefficients c;, and the three exciton radii A;/2 as
a function of F,. With the three normalization and three
mutual orthogonality constraints on ¥;, this amounts to
six independent parameters. We determine these param-
eters variationally. The first three of the variational pa-
rameters are obtained by minimizing the energy of the
ground-state exciton. Our approach is to vary the mix-
ing coefficients first and then vary the radii. Thus we first
find the minimum energy corresponding to a particular
value of \. This is the lowest eigenvalue Fnmin(A) of the
[3 x 3] Hamiltonian matrix H()), where the individual
matrix elements Hy,,/{\) are given by

Hnn’ (/\) = <¢en¢h1 ¢13 (A)IHl‘ﬁen’ﬁbhl ¢ls (A»

h2
=On,n/ (Een +Eh1 + W)

+<¢en¢hl¢1a(A)}VCoul]¢en'¢h1¢ls(A)> . (15)

The evaluation of the Coulomb integral is discussed in
Refs. 7 and 18. Having found Epn()), we then vary
A itself to obtain the true minimum energy subject to
our choice of the variational wave function set out in
Eqgs. (12)-(14). Let the value of A which minimizes
Ernin(A) be called Apin. Then by the variational prin-
ciple, Emin(Amin) is the best estimate for the energy of
the ground-state exciton Fy, and Apn is the best esti-
mate for the exciton diameter, A;. The eigenvector of
H(\;) corresponding to FE; gives best estimate for the
mixing coefficients ci1, €12, and ¢13. Because of the nor-
malization constraint, this amounts to determining just
two of the three unknown mixing coefficients.

To find the next two variational parameters, we mini-
mize the energy of the first excited state subject to the
constraint that its wave function must be orthogonal to
the ground state. This latter constraint is conveniently
satisfied if we choose the wave function to be a linear
combination of the two other eigenvector wave functions
of HI()\;), which we call ®;(2,) and ®3(z.). This implies
that we use the following variational wave function for
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the first excited state:
W) (), 6) = (cos 6 By — sin§ Ba)pin d1.(N) , (16)

where X\ and 6 are the variational parameters to be de-
termined. 6 is introduced for convenience since sin26 +
cos?6 = 1; it has no particular physical significance. We
minimize the energy by first varying 6 to get the mini-
mum energy for a particular value of A, and then we vary
) itself. We call the values of # and A which minimize the
energy Omin and AL, . By the variational principle, these
are the best approximations for the first excited state.
Hence we obtain the best estimates for the energy Ea,
diameter Az, and wave function ¥y of the first excited
state.

There remains one last variational parameter to de-
termine: the diameter A3 of the second excited state
exciton. The constraint of orthogonality has fully deter-
mined the 2, part of its wave function to be (sin fpin P2+
€0S Omin ®3). Thus we have to minimize the energy by
varying just the exciton radius, and thereby obtain the
best estimate for E3 and As.

The results of the calculation for the 25- and 35-A
barrier samples are shown superimposed over the exper-
imental data points in Figs. 4(b) and 5(b). The dotted
lines are for the heavy-hole transitions and the dashed
lines for the light holes. The +1 Stark-ladder transi-
tion energy is not shown because the calculated electron-
J
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hole overlap is negligibly small. This reduced oscillator
strength of the +1 transition has been discussed previ-
ously by Whittaker.!4 The parameters used for the fits
were the same as before!™1® to within 2% . We used a
value of 0.0512 for the in-plane light-hole reduced mass.
Our model is seen to give excellent agreement with the
experimental data. The wave function shown by the dot-
ted line in Fig. 6 is the 2z, part of ¥; at F, = 0 for the
35-A barrier sample. The localizing effect of the electron-
hole Coulomb interaction on the electron wave function
is very evident in this case.

B. Full exciton calculafion

In addition to the variational method just discussed,
we present here an exciton Green’s-function?® approach
from which we can calculate not only the energies of the
exciton peaks but also the entire photocurrent spectra.
We start with writing the exciton wave function as

Ti(0,2e: 24) = D Vi (P) Pen(2e) bnm (2n) (7

and solve the unknown function ¢, . (p) directly, in-
stead of variationally. Performing a two-dimensional
(2D) Fourier transform, we can change the original ex-
citon effective-mass equation in coordinate space into an
integral equation in & space,

hz 2 % d k, / / : i
B + Enm + (k) + S / DKt (= K) B (k) = Eii(K) (18)
n'm’
where
Vnmn'm’(Q) 2eneq /dze/dzh¢en(ze)¢en’(ze)¢hm(zh)¢hm’(zh)e_qlzc_zh[
; d2k :
w;zm(p) = (2 )2 nm(k)e kp

Replacing [d?k by f "d¢ [ kdk and mapping the semi-
infinite interval (0, oo) to a finite interval by a change of
variable, the above equation is then solved numerically
using a modified Gaussian quadrature method. Details of
taking care of the singularity of the potential Vi, pnm ()
at g = 0 are described in Ref. 29 and not repeated here.
The advantage of this formulation is that the exciton ex-
cited states and the continuum states are included au-
tomatically and treated on an equal footing with the
ground state.

After solving Eq. (18), we then calculate the absorption
coefficient « using the same method as that in Ref. 29.
Finally, the photocurrent is obtained by I =Iy(1—e~>L).
There are no adjustable parameters in the calculation
except that the linewidths, 4.5 meV for the heavy hole
and 5 meV for the light hole, are chosen to mimic the
experimental data. We also find that a Gaussian line
shape fits the data better than a Lorentzian. For the

25- and 35-A samples, we use a two-well model and in-

clude the two lowest conduction subbands (i.e., the two
n=1 coupled subbands) and the two lowest valence sub-
bands for both the heavy and light holes. The results
are shown in Figs. 7(a) and 7(b). The peak positions of
the photocurrent spectra, the field dependence, and the
energy splittings agree very well with the experimental
data. Although a quantitative match between the abso-
lute magnitude and the data is still lacking, the overall
features of the spectra are clearly shown. Therefore, we
may conclude that the observed anticrossings between
the intrawell and interwell excitons in the 25- and 35-
A samples are well understood with the two-well model.
On the other hand, for the 15-A sample, we find that
even a full three—coupled—well calculation, including three
conduction subbands and three valence subbands, is not
adequate to account for the data. This is in fact ex-
pected because the tendency toward miniband formation
and wave-function delocalization is much stronger in the

15-A sample than that in the 25- and 35-A samples.
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C. Discussion

We have presented two different theoretical approaches
to the exciton states of our superlattices in an electric
field, both of which are essentially coupled well rather
than superlattice models. We have shown that we obtain
excellent agreement with the experimental data. The
physical reason why these coupled-well models work so
well is that the excitonic effects are collapsing the delo-
calized superlattice wave functions into localized states.
For example, Fig. 6 illustrates the case where the pres-
ence of a localized heavy hole causes the electron wave
function also to be localized mostly in the well where the
hole is localized. At finite field, the next electron level is
localized in a different well from the hole, and so we do
not observe a Stark ladder because the oscillator strength
of the interwell transitions is too small.

It is clear that the variational model of Sec. I'V A should

(@) Lp=25A

SN \
N \\\\\\\\\\\\\\%\\\&
, \\\\‘\\\\\\\.\: RN \\\\\\\\
'l “‘““ " B
‘ A\ TR
\ ‘ \\\\\\\\\\\“““\\\ W
mﬁ.ﬁ%}\ i “‘\\\\\\\‘\\\\\\\\\\\\“} )

Q
\\‘ \,\‘.\ ‘.,_\,\!\\X\ll\‘:\\\\xi«\\\\\\\\\ M
S

il

i
RN \\\.\ l
\\‘\\\‘\‘\“\‘\\\\\\\\\\\\\\“ 0:“.

\\\\\\\\\\\
\\\\\‘“\\\\\\\\\\\ ‘\“\“\\ )
T

A\

” e (R
w1 5 W \\\\\x\\“\\\ R \"Hl' \ PN \ \\\\“\\\
[ ““““‘Q\\“‘“‘ R '"‘ \\\\\ﬁf’ \\\\\\‘\Q&\\t\\\\“‘“{\
e 10 \\\ X

~~
= s
2
Rt 1.5
1- Ener ey
?“oto‘\
(b) Lb=35A

- \\\“““ N \\\\\\

R
\\\\\\\ \\\\\\\\“ R
“\ 0 \‘“\&\\\\\\\\\ D

o’o
’M\\

at \

\ \\\\\\\\\\\\\\\““‘. ' ‘
i X
\\‘\\\\\\\\\\\ \\t\\‘\“\

i) ,

T ‘\“'“
\\\\\\\\ N “\\ \
i ““ i ” \\\“

) ,, ’

\‘ A‘ Wi (1 ‘ \‘ ‘\\\\\\\ \
S \‘;:o‘m\‘\\\\ii\‘x“‘“‘
N S i

T \\\\\\\\\

T
\\\\‘\‘\‘\\\\\\\\\\\\\\\ Y \
\‘\ J \\\\\\\\\\\\\

FIG. 7. Theoretical photocurrent spectra against bias
field for a two-coupled-well model. The barrier widths are
(a) 25 A and (b) 35 A.
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not work for the light holes, because the calculated light-
hole miniband width is comparable to or even greater
than that of the electrons. This means that the artificial
constraint of having localized hole levels is totally unre-
alistic in this case. On the other hand, the calculations
fit the experimental data very well. One possible expla-
nation as to why the model works so well can be made
by comparing our approach to that of Chomette et al.,
who made variational calculations of the exciton states
of a superlattice at zero applied field.3° On varying the
localization parameter @ in their calculation, they found
two minima in the energy corresponding to situations in
which the wave function is delocalized over several wells
or is essentially totally localized in just one well. The de-
localized minimum had the lower energy for d $94 A,
whereas for d 294 A the localized minimum had the
lower energy. Our three superlattices have a period d
close to the transition value, although in our case, d is
not a particularly useful parameter due to the large im-
balance between the well and barrier thicknesses. We
speculate that if we were to perform a similar calcula-
tion to that shown in Fig. 3 of Ref. 30 for the case of
a fixed 95-A well width but variable barrier width, we
would find that the transition between delocalized and
localized behavior would occur between L;=15 and 25
A. By choosing a localized hole wave function at the out-
set, our calculation cannot find the minimum in energy
corresponding to delocalized wave functions, but we find
empirically that this does not matter. Physically, what
is happening is that the Coulomb interaction is pulling
the electron and hole wave functions close together. In
the case of the light holes, the criterion we gave, namely
AE/2 S E,, has to be modified to include the sum of
both electron and hole miniband widths in AE. Note
that the full two-well exciton calculation of Sec. IVB al-
lows for mixing of hole bands as well as electron bands,
and the same anticrossing behavior is predicted.

It is interesting to conjecture whether these excitonic
localization effects may be partly responsible for the un-
usually strong oscillator strength observed in shallow
quantum-well superlattices.3! In that situation the su-
perlattice miniband widths are also comparable to typi-
cal exciton binding energies, and so the effects we discuss
here should be important. It is also interesting to relate
our results to the recently reported observation of Bloch
oscillations in a semiconductor superlattice by Feldmann
et al.32 The sample used in Ref. 32 was in fact the same
as the 15-A barrier sample studied here. We see that
the reason why they were successful was that the sam-
ple satisfies the criterion AE/2 > E.;. Had they used
a sample with a smaller miniband width, the excitonic
effects would probably have prevented the observation of

-the Bloch oscillations.

V. CONCLUSIONS

In conclusion, we have studied how excitonic effects
localize the wave functions in superlattices with mini-
band widths of ~10 meV or less. This localization dras-
tically alters the behavior of the optical spectra in the
Stark-ladder regime: we observe a single excitonic an-
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ticrossing as observed previously in coupled double-well
structures rather than the superlattice Stark-ladder fan
diagram. We have been able to explain this anticross-
ing using a coupled double-well model rather than a su-
perlattice model. The implication of this work is that
the conceptual distinction between a “superlattice” and
a “multiple-quantum-well” structure is affected by ex-
citonic effects. In principle, all periodic quantum-well
structures are “superlattices.” In practice, however, the
distinction made between localized quantum-well behav-
ior and delocalized superlattice behavior is a useful one.
The usual criterion which determines the two types of
behavior is the thickness of the barriers separating the
quantum wells. We have shown that there is an addi-
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tional factor which must be considered in an optical ex-
periment, namely the ratio of half the miniband width to
the quantum-well exciton binding energy.
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cause bound excitons are not usually observed in aborption-
related spectra. In both cases the apparent strength of weak
absorption lines relative to strong lines is exaggerated in
photocurrent spectra, where the signal is proportional to
(1 — e ®L) rather than « itself, o being the absorption
coefficient. Hence these additional peaks are in fact much
weaker compared to the main heavy- and light-hole transi-
tions than they appear in the spectra. We do not think they
are related to the effects discussed here because. the anti-
crossings are observed in both the 25- and 35-A samples,
whereas the peaks are only observed in the 25-A sample.
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