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Attenuation of Cutoff Modes and Leaky Modes of
Dielectric Slab Structures

HERMANN A. HAUS, frFeLLow, 1EEE. AND DAVID A. B. MILLER, MEMBER, IEEE

Abstract—A simple formula is developed for the attenuation constant
of higher order cutoff modes of a dielectric slab guide and of the modes
of leaky guides. The formula is based on a perturbation analysis that
reduces the problem to that of the transmission characteristic of a Fa-
bry-Perot resonator. Under certain approximations, the formula for
leaky guides reduces to that of Hall and Yeh, but the formula has a
wider range of applicability.

INTRODUCTION

HEN a mode of a dielectric slab guide of index higher

than that of the surrounding medium reaches **cut-
off,” it changes from a true guided mode to a radiating
mode (we can also refer to these radiating modes as
“leaky” or unbound). The mode’s propagation constant
becomes complex, indicating decay along the direction
of propagation. Modes of a ‘‘capillary’ guide (or leaky
guide) bounded by material of index higher than that of
the space occupied by the field always radiate and hence
are always “‘leaky.” Our interest in the problem of leaky
modes was stimulated by the practical requirement of un-
derstanding waveguide propagation in waveguides formed
from a variety of GaAs and GaAlAs layers on a GaAs
substrate. In this case, the refractive index of the sub-
strate is always at least as large as that of the layers above
it. Thus, regardless of the detailed structure of those lay-
ers, there are always leaky modes of the whole structure
formed by the reflection of waves in the layers off the sub-
strate interface. This is not, of course, total internal re-
flection as in a true bound or guided mode, but because
of the shallow angles of incidence encountered in practice,
these radiating, “‘leaky’’ modes can propagate substantial
distances, and will always be a potential problem in
GaAlAs waveguides on GaAs substrates.

This problem became particularly acute in recent mea-
surements of polarization dependence of absorption in
quantum wells for light propagating in the plane of the thin
GaAs quantum well layers [1]. The obvious way to make
such a measurement is to form a waveguide containing a
quantum well layer. Samples in which a conventional
waveguide with low index GaAlAs “‘cladding” layers were
formed around a ‘‘core” of higher index GaAs/GaAlAs
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material containing a single quantum well never showed
complete absorption of the light coupled into the system,
although the attenuation in the quantum well should have
been sufficient. The reason was that light could propagate
in the larger “‘leaky’” mode formed due to the partial re-
flections from the GaAs substrate; this mode was much
less strongly absorbed by the quantum well. The coupling
of the incident light into the structure was never suffi-
ciently good such that this propagation was negligible. The
final solution to this measurement problem was to form
only a leaky guide from the outset; the quantum well was
positioned so that there was strong absorption of the first
“leaky” mode, and the guide thickness was chosen so that
the higher order leaky modes would be rapidly attenuated
by radiation if not by absorption. This approach, with the
design based partly on the model presented here, was suc-
cessful both for the basic absorption [1] and also the elec-
troabsorption [2] of the quantum well.

The key parameter in characterizing a “leaky’ mode is
the imaginary part of the propagation constant (i.e., the
decay constant or the inverse of the 1/e propagation dis- -
tance). One way is to solve the determinantal equation for
a complex propagation constant. This has been done by
Hall and Yeh [3] for the leaky slab guide. Yariv [4] derived
the approximate expression of Hall and Yeh by ray-optics
arguments. In this paper, we use yet another approach to
arrive at the decay constant of leaky guide modes and cut-
off modes. The formulas are better approximations than
those previously derived, and also include the case of a
dispersive medium filling the guide.

Our approach has been motivated partly by the solution
methods employed in the analogous quantum mechanical
problem of a particle and a rectangular potential well or
barrier. The potential well has bound states analogous to
guided modes of a slab guide, and also has resonant states
for certain particle energies above the well which are not
bound and correspond to the radiating modes of a conven-
tional slab guide above ““cutoff.”” The case of the potential
barrier has no bound states and is analogous to the ““cap-
illary” slab guide; it also possesses resonant states above
the potential barrier which are analogous to the modes of
the leaky guide. Analogously, the resonant states in the
quantum mechanical problem have a Fabry-Perot like
character [5] since the particle (or wave) sees a reflectivity
at each side of the barrier or well, and the resonant states
occur when the separation between the edges of the well
or barrier is an integral number of half wavelengths. The
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Fig. 1. The propagation directions for the waveguide *Fabry-Perot™ (a)
for the initial value problem or the boundary value problem (decay of
internal excitation), (b) in the steady-state Fabry-Perot problem (trans-
mission resonances under external excitation).

widths of the resonant states also give a measure of the
length of time a particle spends in the resonant states be-
fore decaying out. This, therefore, suggests the use of a
similar analogy in the case of the unbound modes in the
waveguide problem. Now the widths of the resonances will
give the decay constant of the unbound modes. A partic-
ular advantage of using the Fabry-Perot approach is that
we can use the known properties of resonators to relate
the decay rate of the initial excitation in the resonator to
the widths of the transmission resonances. This becomes
particularly simple in the case of a high-finesse resonator
(the decay rate is proportional to the width), and we work
within this approximation. Fig. 1 illustrates the method.
In Fig. 1(a), the actual decay problem is illustrated; the
light is launched in the guide and leaks out progressively
into the substrate and cladding layers. In Fig. 1(b}, the
transmission problem is illustrated; an infinite plane wave
is incident through the cladding (or the substrate) and is
(partly) transmitted through the structure. The structure
forms a Fabry-Perot resonator because of the reflectivities
of the dielectric interfaces between the layers. The reflec-
tivities at the interfaces are high because the wavefronts
are near grazing incidence, hence satisfying the high-fi-
nesse approximation. The resonances of this structure
correspond to the modes of the waveguide; for example,
the lowest order mode of the waveguide will have a sinu-
soidal (or cosinusoidal) pattern corresponding to the in-
ternal field pattern in the lowest Fabry-Perot resonance.
In Section I, we relate the spatial decay rate of a slab
mode excited in the steady state at one cross section to
the temporal decay rate of the slab mode with the slabs
acting as a Fabry-Perot resonator excited initially over the
entire length of the slab. In this latter case, the escaping
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radiation accounts for the temporal decay. The temporal
decay rate is in one-to-one correspondence with the width
of the Fabry-Perot transmission characteristic as a func-
tion of frequency excited in the steady state. This case is
most easily treated mathematically and all other men-
tioned phenomena can be derived through this case in the
limit of high finesse. In Section II, we derive the Fabry-
Perot transmission characteristic, and in Section III, we
obtain the spatial decay rate. Section IV looks at some
approximations that reduce our results to previously de-
rived ones. Section V discusses the details of some field
patterns of the Fabry-Perot excitation under both types of
excitations—CW and initial excitation followed by decay.
Finally, in the Appendix, we look at some further prop-
erties of the leaky modes.

I. RELATION BETWEEN INITIAL VALUE PROBLEM AND
BouNDARY VALUE PROBLEM

In the limit of high reflectivity at the boundary of the
dielectric slab, the spatial decay of a mode of the leaky
slab waveguide or the slab waveguide beyond cutoff can
be related to the temporal decay rate of the mode in an
initially excited Fabry-Perot resonator formed of the slab.
Imagine a section of the slab excited by the mode of in-
terest. If the wave vectors of the waves constituting the
mode have a component 3. along the z axis (and 3, along
the y axis), the field pattern will propagate along the z axis
with the group velocity v, = 1/(d3./dw). A temporal rate
of decay given by Im(Aw) is transformed into a spatial rate
of the decay «. of the wave packet as it proceeds down the
slab in the z direction with the group velocity v,.

o =~ I (8w). (1.1
UK’
This argument can be put more formally in terms of a
perturbation of the dispersion relation. In the absence of
radiation loss, the dispersion relation is of the form

D(w, v.) =0 (1.2)

where v._ is the propagation constant in the z direction. For
example, with perfectly reflecting walls spaced a distance
[ apart D(w, v.) = w'pe + v° — (sw/l)> = 0 would be
the particular form of the dispersion relation for the mode
of order s. Propagating modes have a pure imaginary .,
v- = jB.. When a perturbation p is introduced, (1.2) is
modified to

D(w, y., p)y = 0. (1.3)

An example of such a perturbation is the removal of the
perfect reflection causing radiation loss. Differentiation of
(1.2) gives

D e+ 2 ay = 0 (1.4)
do ay. L '
and analogously, differentiation of (1.3) gives
aD oD aD
— Aw + — Ay. + — Ap = 0. (1.5)
dw 07- ap
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The situation in which a given mode with v, = j@. is ex-

cited in the slab and the temporal rate of decay due to
radiation is evaluated is a special case of (1.5) with Ay, =

0:
QQ
op
Aw = — — Ap.
w ?_D_ p
Jw

This is an initial value problem.

The other form of excitation in which the slab is excited
in the steady state and the spatial rate of decay is deter-
mined is another special case with Aw = 0, giving, ac-

cording to (1.5),
)
ap
Ay. =

- ——— Ap.
: <@ p
av-

This is a boundary value problem.
Knowledge of Aw from (1.6) enables one to find Avy.

from (1.7):
< w>
ad

= —— Aw.

s

(1.6)

(1.7)

Ay (1.8)

For small Ap, the derivatives in (1.8) are evaluated at p =
0. and thus (1.4) can be used to eliminate (8D/dw)/(dD/
d+v:), which is

(&)

(o)

where v, is the group velocity. In this way, we finally ob-
tain (1.1) with Ay. = «. (i.e., y. = «a. + jB.). Equation
(1.1) provides a means for the evaluation of the spatial de-
cay rate in terms of the temporal decay rate of an initially
excited Fabry-Perot resonator.

The analysis of the decay of the Fabry-Perot resonator
in turn can take advantage of the correspondence between
the rate of decay of an initially excited mode and the
transmission characteristic of the Fabry-Perot. The trans-
mission is a steady-state problem. The energy decay rate
2 Im Aw is

; 1
LT

ow Vg

dv:

Jw

2 Im (Aw) = wy/Q, (1.10)

where Q, is the external Q of the resonator and w is its
resonance frequency. If the resonator has two escape
“‘ports,” then the decay rate is the sum of the decay rates
due to the individual ports. The full width at half maxi-
mum (FWHM) of the transmission characteristic is also

IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. QE-22. NO. 2. FEBRUARY 1986
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Fig. 2. Diagrams for the correspondences among the three cases: (a) steady-
state Fabry-Perot (transmission resonances under external excitation),
(b) initial value problem (temporal decay of a mode initially uniformly
excited along the entire guide), (c) boundary value problem (spatial decay
of a mode continuously excited at one end of the guide).

given by wy/Q,. Thus, evaluating the transmission char-
acteristic under steady-state excitation, one finds the de-
cay rate for the initial value problem which in turn can be
related to the original (boundary value) decay problem
through relation (1.1). The analysis is perturbational and
thus assumes a high vatue of Q,(Q, > 10). Fig. 1 illus-
trates the correspondence between the two ‘“‘experi-
ments.”’ In the transient initial value problem, 8, and 8.,
(the y components of Im () in the substrate and cladding,
respectively) point away from the slab. In the transmission
problem, the incident radiation and the transmitted radia-
tion both propagate in the positive y-direction. Fig. 2 lays
out pictorially the correspondences among the three cases
considered above.

In the following sections, we shall analyze the decay
rate of TE and TM modes beyond cutoff. We shall also
develop expressions for the rate of decay in leaky slab
waveguides with ““substrate’” and ““cover’” media of higher
index than that of the ““‘guiding’ slab. Finally, we shall
evaluate the group velocities v,, (the velocity of energy
propagation perpendicular to the slab) and v,..

II. THE TrRANSMISSION FABRY-PEROT

The transmission ‘Fabry-Perot” is illustrated sche-
matically in Fig. 3. The scattering matrices at the two sur-
faces are indicated. The normalized wave amplitudes on
the left are denoted with subscript (1), and those on the
right with subscript (2). The reflection coefficients for TE
waves are (see [6, p. 58])

- \/Z cos b\ mecos b
¢ cos Oy ng cos 0
r. = = 2.1)
|+ €, cos 8. R 25_.0_9
& cos 0 ng cos 65
and a corresponding expression for r,
cos 0
\/Ef o | Ty cos o; B
_ e cos 0, _ n, cos 22
s = - nf cos 0f ) ’ )
€r COS 0f +1 J
¢, cos 0, n cos 0,
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Fig. 3. Definitions of terms for dielectric slab structure.

For TM waves, the corresponding relations are

1 \/:f cos 6, n, cos b;
I LS
€ cos 6, n, cos 6,

r.o= = = (2.3)
€ cos O | . €os Yy
1+ |- — 3
¢ cos B, ny cos 6,
\/E, cos 0, _ | mcosb,
€, cos O, n—\ cos 0, -
r\ = = n ] . (24)
€ cos 0, | iy cos 0, 1
= + vy
€, cos O, n, cos by

The transmission of the Fabry-Perot defined by T = out-
put intensity -+ input intensity is (see [6. eq. (3.49)])

= tftf ! 2.5
U= rr) arr. .6 )
1 ——— §in"~ <
(1 — r,r.) 2
where
6 = 28n,1 cos 6. (2.6)
c d

The FWHM of the transmission gives the inverse external
Q of the Fabry-Perot resonator according to (1.6) (Com-
pare 6, eq. (7.54)}). From (2.5), we find the deviation of
6, Ad at which T is reduced to half its maximum value:

1 =nr

Ad = 2.7)
Nrr,

III. THE RATE OF DECAY OF LLEAKY MODES

In the preceding section, we found the widths of the
transmission window Ad for the Fabry-Perot. This param-
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eter has to be related to the temporal rate of decay of an
initially excited mode in the Fabry-Perot. The temporal
rate of decay in turn is related to the transmission as a
function of real frequency of the Fabry-Perot. In this last
“thought™™ experiment (the steady-state Fabry-Perot), the
exciting source varies its frequency, but keeps its spatial
character fixed and thus keeps (3. fixed as the frequency is
swept. This means that
w .

8. = Ny sin f; = constant (3.1
(i.e., dB./dw = 0). Therefore, we find a relation for d6,/
dw:

do wy dny
t,— = — ——. 3.2
@o €OL Ty dw ’ n; dw (3.2
Now, the change of 6, Ad = Awdb/dw is, from (2.6),
A wy dny do,
A8 = 2 =2 nl cos 0,)1 + =y tanb,— | .
c ‘ n; dw " dw
(3.3)
Using (3.2). we find
A wy dn ,
A6=2—wn,[c059,l] S l+tan'9,\.
¢ ! n; dw
(34)

Solving for Aw using (2.7) and (3.4), we find the inverse
external Q:

l_ZAw 1

Q(' Wy

w
- nd cos 8,

¢
1 1 I —rr,
w, dn; 1+ tan 0, \/ﬁ

ny dow

(3.5)

Next, we have to convert Aw/w,, into a spatial rate of decay
using (1.1) and (1.10) (i.e., we have to convert the steady-
state result to the boundary value result). The inverse
group velocity is the derivative of the propagation constant
with respect to frequency of 3.:

J——i&—icﬁn sin0>
v, dw dw\c F
n,’ i (7 dn’ (10,
= :sm 0, 1 + —I;E + wy, cot 0,d—w (3.6)

where the mode pattern in the v direction has to be kept
constant.

w
By = — nscos 6, = s = constant (3.7)
: c

with s equal to the mode number, s = 1,2, 3, - - - .1i.e.,

dB,s/dw = 0. Differentiating (3.7). we obtain
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Fig. 4. Plot of (2a/8) sm versus (cos 8, — cos §7) where 07 is 8, at cutoff;
TE cutoff mode for n./n; = n/n, = 0.9, 0.95.
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Fig. 5. Plot of (2a/8) s versus (cos 8, — cos 0) where 69 is 6, at cutoff;
TM cutoff mode for n,/n; = n,/n, = 0.9, 0.95.

do
~ g tan 6, d—f] =0. (3.8
w,

W d”l/
14—
nf dw

Therefore, combining (3.6) and (3.8),

w
— nycos 6
¢ f f[

n wg dn
1 _ J in @[1 + —O—f} [1 + cot’ Of] . 3.9
Ug: I ’lf dw

In a dispersion-free medium, dnsldw = 0, the above re-
duces to 1/v,, = n¢/(c sin ), which is the expression for
the group velocity of a waveguide with perfectly reflecting
walls. We find for the decay constant, combining (1.1),
(1.10), (3.5), and (3.9),

tan 0,1 — r,r. 1 + cot? by

[ \/rsrc 1 + tanz 9f '

This formula reduces to

(3.10)

20 =

cotb,1 — rer,
N

This is the desired formula. Note that the decay constant
is independent of the dispersion dnsldw. 0fis fixed by the

mode pattern. With s equal to the number of half wave-
lengths along the y direction,

Z1 1 SA
0f = COS ! [gfl} ,
all other parameters in expression (3.11) are functions of
ny/ng, n./ng, and 6. The solid curves in Figs. 4-7 (for equal

(3.11)

o =

(3.12)
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ns and n.) show the normalized attenuation 2a/B for the
leaky modes. Note that cos b = sw/(w/c) ne = (s/2ns) N
and thus is proportional to wavelength. The abscissas of
the plots are thus proportional to wavelength. In Figs. 4
and 5, the abscissas are measured from the cutoff wave-
length. Also indicated in the figures are the approximate
values obtained after certain approximations that lead to
the expressions of Hall and Yeh [3] and Yariv[4]. Next we
turn to the approximations.

IV. APPROXIMATE EXPRESSIONS FOR THE ATTENUATION
CONSTANTS

If ro and r, are close to unity and cos 0y << 1, we may
write, instead of (3.11),

cos 6,

)

In the case of cutoff modes, the angles 0, and 6, are closer
to w/2 than 0, One may set

200 = (1 - rr). 4.1)

cos f/cos 0, << 1 cos §./cos B, << 1
and write for r, and r,, using (2.1) and (2.2) for TE waves,

n. cos 6,

I

r. 1 -2

ny cos 6,

I—Zﬂcosﬂc
s
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1000 T T T T T T T ]
800 - .
& 600}
3
H L
S 400}
200 -
I | 3+ i
o ! . !
[of 0.02 0.04 0.06 008
cos 8 —»
Fig. 9. Plot of 2a [em™'] versus cos 8, forn, = n. = 3.63, 1, = 3515. A
= 0.85u. s = 1: TM mode.

and a corresponding expression for r,. For TM waves, one
has
ny cos 6.,
1 —2—
n,. cos 0,

| % cos 6.
n,

I

Il

n

and an analogous expression for |r,].

In the case of the leaky guide, cos 6, approaches zero
faster than cos 6, or cos 6. Therefore, cos f;/cos 6, << 1
and cos 6/cos 0, << 1, and one obtains for r, for TE

waves,
ns cos 6f
r. = —<1 2 >
n. cos .

1
I

4.4

and an analogous expression for r,. Figs. 4-7 show the
comparison between the two sets of expressions. For cos
6, — 0 or cos 6; — 0, the approximate expressions ap-
proach the more exact ones, but appreciable deviations oc-
cur even for very small attenuations per wavelength. Figs.
8 and 9 show the attenuation constant computed for a typ-
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TABLE I
THE POWER-ATTENUATION RATE 2«
TE

Cutoff 2 (n, n.
Mode 7 ;fcos 0, + ;f cos 6, 4.5
If 8, or 8, is imaginary, the corresponding term is to be omitted.
Leaky SN |y 1 L 1
M 'l N

ode 2007 | n, L <f{ 2 on L n 2 (4.6)

n n,
™

Cutoff 2 Enf o 4+ 0 @7
Mod —§—cos 8, — ¢os 8, .

ode ! (n, n
If 8, or 8, is imaginary, the corresponding term is to be omitted.
Leaky SN n 1 g 1
Mode 2[3,1,1 4.8)

iy n\* M n\*
\/ <n‘> \/ <n,.>

ical GaAlAs leaky guide structure with n, = n, = 3.63
and n; = 3.515 at a wavelength of A = 0.85u. Thickness /
of the film for the lowest order mode are indicated on the
abscissa calibrated in terms of cos 6, = sN/(2nsl). Equa-
tions (4.6) and (4.8) of Table I agree with those of Hall and
Yeh [3].

V. THE MoDE PATTERNS OF THE FABRY-PEROT

It is of interest to compare the mode patterns of the slab
modes beyond cutoff and those of the leaky guides because
they are quite different. A slab guide is surrounded by
lower index material. The effective wavelength associated
with propagation in the y direction is shorter outside than
that inside. The reflection at the wall approaches that of
an open circuit. These statements enable one to draw the
field patterns for the TE mode of the Fabry-Perot at dif-
ferent instants of time. Remember that E, and 0E,/dy must
be continuous at the boundary. The slab is an integer mul-
tiple of half wavelengths thick at resonance. We see from
Fig. 10 that the field pattern obeys all these conditions at
several instants of time. As time proceeds, the node of the
external field proceeds until it coincides with the slab wall.
The mode is predominantly antisymmetric with respect to
the slab center, except, of course, when the node of the
external field lies on the slab wall. Then it is symmetric.

The surprising feature of the plot of Fig. 10 is that the
energy storage per unit length outside is very comparable
to that inside. Yet the system has high Q. This follows
from the fact that the transverse group velocity in the ex-
ternal region is small; the power density is small com-
pared to w, times the energy per unit area of the slab. The
mode is, mostly, the antisymmetric mode with dE,/dy =
0 at the slab boundary, which is equivalent to open-circuit
boundary conditions.

A different situation prevails in leaky guides. Now the
effective wavelength along y is smaller outside than inside,
and for the same slab thickness and for the mode of the
same frequency, the field pattern evolution looks as shown
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Fig. 10. Field patterns E, at resonance in transmission through the slab (for
various instants in time separated by 7/8w); TE mode (cutoff mode); s
=L n,=n,nin =12 8;/8, = 5.

—y

o sLAB — ]

Fig. 11 Field patterns E, at resonance in transmission through the slab (for
various instants in time separated by 7/8w): TE mode (leaky guide); s
=l.n,=n.nin = 12, B,/B; = 5.

in Fig. 11. The F field reaches maximum amplitude inside
the slab when the node of the wave coincides with the slab
wall. The pattern is predominantly symmetric with re-
spect to the slab midplane. It is antisymmetric when the
maximum of the external field amplitude occurs at the slab
wall. The boundary condition of the mode is approxi-
mately that of a short circuit.

Another way to understand the boundary conditions
obeyed by the leaky modes and slab modes beyond cutoff
is to consider the phase change at reflection at a dielectric
boundary. In the case of the leaky modes, the wave within
the film sees a 180° phase shift on reflection at the inter-
faces to the higher index layers; this tends to cancel the
incident wave, giving approximately a node at the edges
of the film. In the case of the slab modes beyond cutoff,
the wave within the film sees no phase change on reflec-
tion at the interfaces to the lower index material, and
hence tends to have antinodes at these interfaces.

The mode patterns for the initial excitation of the Fa-
bry-Perot (the initial value problem) and subsequent es-
cape of radiation resemble those of Figs. 10 and 11, with
some changes, of course. We can approximately evaluate
the mode patterns for initial excitation of the Fabry-Perot,
and compare these to Figs. 10 and 11. Our results are
shown in Figs. 12 and 13. In evaluating Figs. 12 and 13,
we started with the given mode pattern identified by nscos
6; from the formula (w/c)ngl cos Oy = s. Then the fre-
quency was perturbed by Im (Aw), which was evaluated
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Fig. 12. Field pattern E, for initial excitation and subsequent decay; TE
mode (cutoff mode): s = 1, neng =12, 8,8, =35, Q = 10.
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AL

o] 1 2 3

Fig. 13. Field pattern E,_ for initial excitation and subsequent decay; TE
mode (leaky guide); s = 1, n/n, = 1.2, B8./B, = 5.0 = 10.

from the perturbation analysis at constant 8., producing
(imaginary) changes of By Bye, and B,,. These were then
used to plot the space-time evolution of the E field. The
mode pattern of Fig. 12 stays symmetric for all time; that
of Fig. 13 remains antisymmetric. Instead of the waves
moving from left to right on both sides of the Fabry-Perot,
the waves now escape on the two sides in opposite direc-
tions. The slopes are not continuous, as seen in Fig. 12,
This is the consequence of the perturbation approxima-
tion, which gives frequency changes correctly to first or-
der in 1/Q, but not the field patterns, which contain errors
of order 1/Q. Further, note the growth of the field ampli-
tude with distance from the slab. This growth is discussed
further in the Appendix.

CONCLUSIONS

We have used the formula for the transmission charac-
teristic of a Fabry-Perot resonator to arrive at the atten-
uation constant of cutoff modes and leaky modes of di-
electric slab structures. The formulas for Fabry-Perot res-
onators derived for high O remain reliable for Q’s as low
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as 10. One would expect, therefore, that the attenuation
coeflicients derived here would apply to all structures of
practical interest. Appreciable deviations have been found
from other approximate formulas quoted in the literature
at normalized attenuation rates 2a/8 exceeding 1072, It is
expected that the present formulas are more accurate in
these regimes of larger attenuation. We have also looked
at some interesting field patterns of the slab Fabry-Perot
under steady-state excitation and under an excitation at an
initial time.
APPENDIX

SpaTIAL GROWTH OF LEAKY MODES

In Figs. 12 and 13, we saw spatial growth of the field in
the transverse direction as it traveled away from the slabs.
This growth is contained; it does not signify an infinite
energy storage per unit length if the details of the excita-
tion are taken into account.

A brief discussion for the reasons of this behavior is in
order. If the ““‘mode” is not confined to the guide and it
radiates, the propagation constant along the z direction
must be complex, v, = o,y + jB,5 This complex propa-
gation constant has to be matched by the external field as
shown in Fig. 14. The external field in the substrate has a
spatial dependence exp —7; - F with

¥s = & + jB,. (A1)

The z components of 7, must equal «, ¢ and 8, ;, respec-
tively. In a uniform loss-free medium, o; must be perpen-
dicular to f,, as can be verified by substitution into the
wave equation. But this means that the field grows in the
$ direction as shown. Of course, the growth does not per-
sist to y = oo, but persists only up to a ‘“‘cone” that is
determined by the source position.

Imagine a section Az of the guide excited by the mode
pattern of interest. This is analogous to the initial excita-
tion of a Fabry-Perot resonator over a length Az by a par-
ticular mode of the Fabry-Perot with dependences exp +
JjByy and exp —jB,z. The internal field of the Fabry-Perot
decays as power leaks out. The propagation constant in

the y direction is
a2 _ 2.
Yys = B s wszEs

and is imaginary for real w. A complex éw with Im (dw)
> 0 gives

(A2)

d
Re 8y, = Re [77& 6w}

w
= Im <d—615 6w> = —!— Im (bw) > 0 (A3)
dw Uy

where v,, is the group velocity in the y direction of the
escaping radiation..
)

1 4 1 dn,
=£y=—nscos05[l +wol——wctan05
c dw dw
(Ad)

v

ey dw
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Fig. 14. The propagation vectors inside and outside the dielectric film ( f).

Fig. 15. The growth cone of the escaping radiation.

This group velocity measures speeds of propagation to-
ward, and out of, the externally excited Fabry-Perot res-
onator. In this context, it refers to an excitation of fixed
B, i.e., fixed n;sin 6; = n, sin 6,. One has the constraint
(3.1) which, written in terms of n; and 8., is of the same
form, with n; replaced by n, and 6, by 6. Using the con-
straint corresponding to (3.1), one obtains from (A4)

wp dng

1 1
— = —ng cos 0, <1 + —
Ugy € n, dw

> [1 + tan’ 0,]. (AS5)

With v,, > 0, we have a growth exp (Im dw)/v,, of the
escaping radiation. Because the excitation proceeds along
z with the group velocity v,,, an initial excitation at z =
0 produces an exponentially increasing excitation that ex-
tends up to a cone of angle (see Fig. 15):

U dg./dw
tan § = & = —— A6
Y e dBdw (A0)
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