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Time reversal of optical pulses by four-wave mixing
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Four-wave mixing with optical pulses is considered analytically. It is shown that, whereas true time reversal of an
amplitude pulse is not possible with continuous-wave pumping, this can be achieved by short-pulse pumping of a
long, narrow, nonlinear medium, although time-dependent phase variations are not time reversed.

Recently there has been much interest in degenerate
four-wave mixing as a mechanism for phase conjuga-
tion! (also known as wave-front reversal or as time re-
versal of monochromatic waves). Whereas mono-
chromatic waves can be time reversed, it has been
shown? that, when the two pump beams are continuous,
this time reversal does not extend to amplitude pulses
(which cannot be monochromatic by definition), al-
though, with a thin nonlinear medium, it is possible to
obtain true time reversal of time-dependent phase
disturbances. In this Letter we analyze the effect of
pumping a third-order nonlinear medium with pulses
and show that then amplitude pulses can be time re-
versed.

We consider the incident pulses split up into their
Fourier frequency components. Whereas in general the
nonlinear interaction among any three such components
from three distinct incident fields does not give a
phase-matched fourth wave, we show that when the
medium is pumped by counterpropagating short-pulse
fields, the nonlinear interaction between these and a
third, signal, field (propagating at right angles to the
pulse fields) does give rise to phase-matched interaction
among certain of the Fourier components and that the
sum of these phase-matched components is a time-
reversed counterpropagating replica of the signal-field
amplitude. The principal assumptions are that the
nonlinear medium is long and thin and the pump pulses
are short compared with the fastest variation in signal
field to be reversed accurately. The slowly varying
envelope approximation is used for the pulses.

Consider three electric fields incident upon the
nonlinear medium (Fig. 1): E; and E; illuminate the
medium uniformly on its long side (length z7) and Eg
the short side (width d). We expect a generated field
E4 to emerge at least approximately in the negative z
direction, and we define all four fields by

Ei(x,t) = YA (t)eiwt—kx) 4 cc;
A0 = [ aeeit day, (1a)
Eo(x,t) = YhAq(t)eilet+kx) 4+ cc.;

Ast) = [ aslwsleivn dws, (1)

Ej(zt) = 1/21‘13(t - E)ei(“"_”“) + c.c
v

As (t —%) = j::as(wg)ei“3[‘t‘(2/”)] dws, (Lc)

E4(z,t) = YoAy(rt)eilwttka) + c e

Ayulr,t) = J‘_ma4(r,w4)ei“’4t dws (1d)

In Egs. (1a)-(1d) we assume the following: the medium
is isotropic and nondispersive so that k = w/v, where v
= ¢/n (c is velocity of light in free space); the envelope
functions A, and A, are slowly varying over the width
d of the medium so that x dependence of these can be
dropped inside the medium; E3 is a pulse propagating
undisturbed in the positive z direction (with no non-
linear source terms) so that its envelope function A5 can
be described by the functional form As(t — z/v) (for
simplicity the surrounding medium is assumed to have
the same refractive index as the nonlinear medium, al-
though this is not a real restriction); any diffraction or
reflection of the fields is neglected.

We ignore any nonlinear refraction and assume that
|E4| < |Es| < |Eq| or |Ey| (i.e., a small-signal ap-
proximation) so that the generated nonlinear polar-
ization of interest can be expressed as
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Fig. 1. Configuration of incident fields E4, E5, and E5 and
the nonlinear medium.

Reprinted from Optics Letters, Vol. 5, page 300, July, 1980
Copyright © 1980 by the Optical Society of America and reprinted by permission of the copyright owner.



P(NL(r t)

=1/2JA_ j‘ J: X® (w + w1 + wp — ws;

w + wy, w + wg, —w — wz)ai(wr)a(ws)
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X dwidwedws + c.c. (2)

This polarization will act as the source term to generate
field E4. Substituting into the wave equation for a
lossless nonmagnetic medium, assuming that all enve-
lope functions A1, Az, A3, and A4 are slowly varying over
a wavelength or period of oscillation, we obtain, on
multiplying by e “i(«*+«9t and integrating over time,

voa . 2w ® ®
4_ LWy =1 f f x @
az n —w —

X(w+ wg o+ w, 0+ wy, —w—w; —ws + wy)
X ar(w)az(wr)asz*(wy + w2 — wy)
X eilertwr—ed/v)dwidws.  (3)

The right-hand side of Eq. (3) is simply a function of z;
x does not appear, so a4(r,ws) = a4(z,wq), and Eq. (3)
is readily solved. The origin of the coordinate system
is chosen to be exactly in the middle of the nonlinear
medium for convenience. For |z| > z1/2, there is no
nonlinear interaction and the right-hand side of Eq. (3)
is zero. Therefore, for z < z1,/2,
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agz,we) = —i 5 eiwsz/v f f x Paiazaz*

/DL
X f eifwrter—200@/0)dz’ dwidwe.  (4)
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The phase-matching integral
2L
f(Z/ ) ei(w1+w2—2w4)(z'/v)dzl
(—z/2)L
v . (wy + wa — 2w4)zg,

sin (5)

- (w1 + wo — 2(04) v

can be approximated by 206 (w; + we — 2wy4) provided

that either a;(wq) or as(we) is slowly varying for changes

in wj or we ~ 2mwv/zy; this condition is satisfied if A, or

A, (or both) is short compared with the length z; .
Thus we have the phase-matching criterion

w1 + wy = 2wy (6)
From Eqs. (4) and (5) we obtain
aq(z,0s) = D(wg)ag*(wq)eios@/v) (7
where
2 ®
D(wy) = =i (2:;)2 = f x®(w + wg

w+w1,w+2w4—w1,
- w — wyar(w)as(2ws — wi)dw. (8)

Equation (7) shows that the frequency component Es(w
+ wy) is coupled only to Es(w + wy); this can be used to
show that regardless of the form of D(w,), A4(z,t) is a
pulse propagating in the negative z direction.

If we now assume that x® is a constant near w, we
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may take it outside the integral in Eq. (8) and transform
the convolution of a; and as to a correlation of A; and
A, using the identity

Lial(w1)02(2w4 — w)dw;

= 1 fm A(t)As(t ) e 2iest’dt’.  (9)
2 J-=

We then obtain
3)
A= i 2o [2” ]F
nZc n

X f " ag*(wyeiedt+C/m=2tpldgy,,  (10)

where we have made the additional assumptions
that the product A(¢) X Ao(t) is significant only around
t =~ t, and that its length in time is much shorter
than 1/2w4 for all w4 of interest, so that the factor
exp(—2iw4t’) can be taken outside the integral in Eq.
(9) as exp(—2iwatp); these assumptions are valid if A,
or A, (or both) is a pulse that is shorter than the shortest
variation in A3 that we wish to time reverse accurately.
The factor F is the correlated fluence of pulses Ay and
As, given by

F = (nc/87) f_m ALt As(t)dr. (11)

But, from Eq. (1¢), we see that the integral in Eq. (10)
is simply Az* [—(t — 2t,) — (2/v)], s0

FAy* [—(t —2t,) ——Zl;l .(12)

To interpret what this means, we can write
As(7) = ag(T)eidsln), (13)

where «3 and ¢3 are real functions representing the
amplitude and the phase envelopes, respectively, of the
incident pulse. If ¢3(7) is a constant, ¢y, then we
have

A406a3

Z .
—(t — 2tp) — e~ o,
( p) Ule

so that A4 is a time-reversed replica of A3 (subject to a
constant phase shift) delayed by a time 2t,,, which is the
time taken for the relevant pulses to propagate to and
from the point where the nonlinear interaction takes
place. (The constant phase shift ¢o is also reversed,
indicating that phase conjugation may be retained
under our pulsed-pump excitation.) If, however, the
phase is allowed to vary in time, then
i

Ag ag |—(t — 2p) — f—}] exp{—i(bg{—(t —ot) =2

Now the phase envelope has been reversed in time and
in sense, and so the phase of the backward pulse A4 is
not a time-reversed replica of the input pulse Aj.
These phenomena are illustrated in Fig. 2.

In terms of real fields, for an input field of the
form
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Fig. 2. Comparison of incident and backward pulses for
short-pulse pumping of the nonlinear medium. (a) An ob-
server at O sees the incident and backward amplitude enve-
lopes as being time reversed; points a—e on the pulse pass him
in the order e, d, ¢, b, a for the incident pulse and in the order
a’, b, ¢/, d’, ¢ for the corresponding points on the backward
pulse. (b) An observer at O sees the wavefronts a’—e’ of the
backward pulse pass in the order a’, b/, ¢/, d’, €, compared to
the order e, d, ¢, b, a for the corresponding phase fronts of the
incident pulse; but additionally the phase leads 6 and vy have
been changed to phase lags with respect to z on the backward
pulse (although they remain phase leads with respect to t).
The pattern of spacings between phase fronts is therefore not
time reversed. (The phase leads and lags have been exag-
gerated for clarity.) The phase envelopes giving rise to these
phase-front patterns show also that true time reversal does
not apply because of the inversion of the backward phase
envelope.

Eas(zt) = aj (t - %)cos

wt —kz + d)g(t —E)] )
v

(14)
from Eqgs. (12) and (13),
3)
Eszt) = 8L;° 27X ||F|a3 —(t = 2tp) — 5]
nc n v
X coslwt + kz — ¢3l—(t - 2tp) — z + ¢0} » (15)
v

where Yo = ¢F + ¢, — 7/2 is a constant phase factor
with ¢ and ¢, defined through F = |F|exp(i¢r) and
x@® = |x®]exp(i¢,) (provided that the pump pulses
are not phase modulated).

Finally, in terms of intensities, we have

2 ]2
I, (_t _z) - (?19) [&WB_I

v n2c n

><|F|213[—(t—2t,,)—§ > (16)

which will appear time reversed even if there are time-
dependent phase variations. The x® defined here is
6X 3imno in the notation of Maker and Terhune,? where
I, m, n, and o refer to the polarization components of E4,
E, E5, and E3, respectively. If we choose all polariza-
tions out of the paper in Fig. 1, x® = 6x3;111 and
27x®/n = 2n,, where ns is the nonlinear refractive
index in electrostatic units, the additional factor of 2
arising from the nondegeneracy of all frequencies in our
x®). The factor | F| is the energy per unit area of one
pulse if both A; and A, are identical pulses in time with
no phase modulation and they overlap optimally in the
middle of the nonlinear medium.

For example, in CSs (where ny ~ 1011 esu), ~10-psec,
~100-ud coincident pump pulses at ~700 nm arranged
to illuminate uniformly a signal beam ~500 psec (i.e.,
~10 c¢m) long focused to ~0.03 mm (approximately the
diffraction limit) in diameter should produce a back-
ward pulse, time reversed to a resolution of $10 psec
with an intensity, 14, ~0.3% of the incident-signal-beam
intensity, I'5. The power of the signal beam should be
less than ~15 kW to prevent self-focusing and break-
down of the small-signal approximation. [In practice,
the width d can be thought of as the diameter of the
signal beam (here 0.3 mm) and z;, as the width of the
pump beams in the z direction (here 10 cm).]

The second pump beam could be generated by re-
flection of the first from a mirror just underneath the
signal beam in the nonlinear medium.

We have therefore demonstrated analytically that
true time reversal of an amplitude pulse by four-wave
mixing is possible provided that the nonlinear medium
is pumped by short pulses. The fact that a backward
pulse is generated even when the pump pulses are not
especially short or the signal beam is continuous or x®
is dispersive suggests possible extensions of this tech-
nique to gating, spectroscopy of x®, or pulse correla-
tion. A generalization of this analysis will be the subject
of future work.

The author thanks A. F. Gibson for suggesting the
possibility of true time reversal, W. J. Firth for a critical
reading of the manuscript, and referees for helpful
comments.
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