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11.1  INTRODUCTION
Recent developments in spatially multiplexed optical communication systems 
demand a deeper understanding of mode coupling effects in fibers. Spatial multi-
plexing is being considered for long-haul systems using coherent detection [1–6] or 
short-range systems using direct detection [7–9]. It increases transmission capacity 
by multiplexing several data signals in the cores of multicore fibers (MCFs) or in the 
modes of multimode fibers (MMFs), in which case, it is often called mode-division 
multiplexing (MDM). Index perturbations in fibers, whether intended or not, can 
induce coupling between signals in different modes, and can cause propagating fields 
to evolve randomly. Mode coupling may be classified as weak or strong, depending 
on whether the total system length is comparable to, or much longer than, a length 
scale over which propagating fields remain correlated. Mode coupling can affect 
MDM systems in several important ways.

First, mode coupling, whether occurring in transmission fibers [10,11] or in 
modal (de)multiplexers [12], leads to crosstalk between spatially multiplexed sig-
nals. In direct-detection systems, mode coupling must either be avoided by careful 
design of all these components, or mitigated by adaptive optical signal processing 
[13–15]. In systems using coherent detection, any linear crosstalk between modes 
can be compensated fully by multi-input multi-output (MIMO) digital signal pro-
cessing (DSP) [1–4], but DSP complexity increases with an increasing number of 
modes. If mode coupling can be restricted to occur only within mode groups having 
nearly degenerate propagation constants [7,8], then DSP complexity may be reduced 
by processing each mode group separately [1].

Second, mode coupling substantially affects the end-to-end group delay (GD) 
spread of a system [10,16,17], which substantially affects the complexity of 
MIMO DSP. The GD spread determines the temporal memory required in MIMO 
time-domain equalization (TDE) of single-carrier modulation [1,18–20], while 
it determines the fast Fourier transform (FFT) block length in MIMO frequency-
domain equalization (FDE) of single-carrier modulation [18] or in orthogonal 
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frequency-division multiplexing (OFDM) [2,18]. When using FDE or OFDM with 
an optimized FFT block length, the DSP complexity per two-dimensional informa-
tion symbol depends very weakly on the GD spread [18]. Nevertheless, the overall 
DSP circuit size and convergence time of an adaptive FDE scale roughly linearly 
with the GD spread or FFT block length [18], and unless strong mode coupling is 
used to significantly reduce the GD spread, long-haul spatially multiplexed systems 
may not be technically feasible.

Third, transmission fibers [21,22] and inline optical amplifiers [23–25] can 
introduce mode-dependent loss or gain, which we collectively refer to as MDL. 
MDL causes random variations of the powers of signals propagating in different 
modes. These power variations may affect the various frequency components of 
each signal differently, and may change over time. Like multipath fading in a MIMO 
wireless system [26,27], these power variations cause MIMO system capacity to 
become a random variable. As a result, the mean capacity may be reduced. Moreover, 
at a given point in time, the instantaneous capacity may drop below the transmission 
rate, causing system outage [28,29]. Strong mode coupling can reduce the power 
variations and the associated capacity fluctuations. In conjunction with modal 
dispersion (MD), mode coupling creates frequency diversity that can further reduce 
the capacity fluctuations and thus reduce the outage probability [30].

Mode coupling can be described by field coupling models [31, ch. 3], which 
account for complex-valued modal electric field amplitudes, or by power coupling 
models [31, ch. 5], a simplified description that accounts only for real-valued modal 
powers. Early MMF systems used incoherent light emitting diode sources, and 
power coupling models were used widely to describe important properties, including 
steady-state modal power distributions and fiber impulse responses [32–34]. Most 
recent MMF systems use lasers, but power coupling models are still used to describe 
important effects, including reduced GD spreads in plastic MMFs [16] and a filling-
in of the impulse response [35]. By contrast, virtually all practical SMF systems have 
used laser sources. The study of random birefringence and mode coupling in SMF, 
which leads to polarization-mode dispersion (PMD), has always used field cou-
pling models, which predict the existence of principal states of polarization (PSPs) 
[36–38]. PSPs are polarization states that undergo minimal dispersion, and which 
form the basis of optical compensation of PMD in direct-detection SMF systems 
[39,40]. In recent years, field coupling models have been applied to MMF, predicting 
minimally dispersive principal modes (PMs) [17,41], which are the basis for optical 
compensation of MD in direct-detection MMF systems [13,14]. With heightened 
recent interest in spatial multiplexing, field coupling models have been applied to 
study crosstalk in MCFs [42,43], the statistics of coupled GDs in MMF [10,19], and 
the statistics and system impact of coupled MDL in MMF [28–30].

In this chapter, we review mode coupling effects, how they are modeled, their 
effect on key fiber properties such as MD and MDL, and their impact on the per-
formance and complexity of MDM systems. The remainder of this chapter is as fol-
lows. In Section 11.2, we review modes in optical fibers and the physical sources 
of coupling between modes. We then compare field- and power-coupling models, 
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present a matrix propagation model used throughout the chapter, and discuss regimes 
of weak and strong mode coupling. In Section 11.3, we study MD in the weak- and 
strong-coupling regimes, especially the statistics of strongly coupled GDs and the 
GD spread. In Section 11.4, we study MDL, describing its statistics in the strong-
coupling regime for both narrow- and wide-band systems. In Section 11.5, we briefly 
describe MDM in direct-detection systems. In Section 11.6, we discuss long-haul 
MDM systems using coherent detection, addressing the impact of MDL on average 
capacity and outage probability, and the effect of MD on DSP complexity.

11.2  MODES AND MODE COUPLING IN OPTICAL FIBERS
In this section, we discuss mode coupling, including its physical origins, models used 
to describe it, and regimes of weak and strong coupling. We begin the section by a 
brief review of modes in optical fibers.

11.2.1  Modes in optical fibers
Optical fibers are cylindrical waveguides comprising one (or possibly several) 
cores surrounded by a cladding having a slightly lower refractive index, as shown 
in Figure 11.1 [44–47]. A mode is a solution of a wave equation describing a field 
distribution that propagates in a fiber without changing, except for an overall scaling that 
describes amplitude and phase changes [44–49]. Throughout this chapter, we assume 
that a fiber supports D propagating modes, including spatial and polarization degrees of 
freedom. In fibers of circular cross section, in the limit of weak guidance (small index 
difference between core and cladding), the total number of propagating modes can 

Core

Cladding
(a) (b) (c)

FIGURE 11.1  Different fiber types: cross sections (upper row) and typical refractive index 
profiles (lower row): (a) step-index single-mode fiber, (b) graded-index multimode fiber 
(MMF), and (c) multicore fiber.
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assume a value D = 2, 6, 10, 12, 16, 20, 24, 30,… [49,50, Table 2.2]. In these weakly 
guiding fibers, there exist groups of modes having degenerate propagation constants 
or modal indices (including both phase and group indices) [8,49,50, Table 2.2]. When 
the refractive index difference between core and cladding is non-zero, the degeneracies 
within each mode group are generally broken slightly. Nevertheless, in typical glass 
fibers, the propagation coefficient differences within a mode group are usually small 
compared to the propagation coefficient differences between mode groups.

When the core radius and core-cladding index difference are sufficiently 
small, a fiber supports propagation of only one spatial mode in two polarizations 
(D = 2), and is called an SMF. An SMF having a step-index profile is shown in 
Figure 11.1a; other index profiles are also possible [48,50, Section 3.5]. Signals 
propagating in SMF are subject to chromatic dispersion (CD) arising both from 
material dispersion and waveguide dispersion [48,51,52], and are subject to PMD 
arising from random coupled birefringence [36–40], but are not subject to MD. 
In SMF, a change of the input launch conditions affects the launched power, but 
does not affect the spatial distribution at the fiber output, provided the fiber is 
sufficiently long (typically at least 1 m).

When the core radius and core-cladding index difference becomes sufficiently 
large, a fiber supports multiple spatial modes, and is called an MMF.  Assuming 
the number of propagating modes is large, it is given approximately by 
D ≈ (2π/λ)2

∫ R

0 [n2(r) − n2
c]

1/2
r dr, where n(r) describes the radial variation of 

the core index, nc is the cladding index, R is the core radius, and λ is the wavelength 
[47]. Typically, the number of propagating modes is roughly proportional to the core-
cladding index difference times (R/λ)2.

MMF is subject to MD, whereby different spatial modes propagate with different 
modal group indices or GDs. MD causes signal distortion in direct-detection links. 
MD is severe in fibers with step-index profiles, while it is reduced substantially in 
fibers using nearly parabolic graded-index profiles, as shown in Figure 11.1b. Con-
ventional glass MMFs for data centers or local-area networks have core diameters of 
50 or 62.5 μm and support over one hundred modes at an 850-nm wavelength. Vari-
ous optical multimode categories OM1 through OM4 [53] support increasing band-
width × distance products, with bit rates of 10 Gb/s over distances up to 500 m. In an 
MMF, the output spatial distribution and the impulse response depend on the input 
launch conditions. In particular, excitation of higher-order modes can be enhanced by 
launching a beam with a transverse offset from the center axis [7,32,33,54] or with an 
angular offset [54]. Plastic optical fibers having core diameters of 0.5–1 mm [55,56] 
are used in short-range links. In these plastic fibers, index inhomogeneity causes strong 
mode coupling, which significantly reduces the GD spread and increases the support-
able bit rate [16,57,58]. However, high losses in plastic optical fibers (33 dB/km is the 
minimum value given in [56]) limit link distances to under 100 m [56].

The plurality of modes propagating in MMF has long been viewed as a negative 
effect that limits the bit rate × distance product [33,53]. Attempts have been made 
to exploit multiple modes to increase capacity in short-range direct-detection links 
[7–9], but have not yet become practical, in part, because they did not address the 
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problem of MD. More recently, MDM has yielded capacity increases in long-haul 
systems using coherent detection [1–4], by exploiting MIMO signal processing to 
compensate both MD and modal crosstalk. Analogously, multipath fading in wireless 
communications was long considered a negative effect [59, chs. 13–14,60, Section 
5.5.1.2], but multipath is now exploited to increase system throughput in MIMO 
wireless systems [26,27].

As an alternative to MDM in MMF, spatial multiplexing can be performed in a 
MCF [5,6], as shown in Figure 11.1c. A MCF can be designed for very small cross-
talk between cores [61,62], making it analogous to an array of SMFs embedded in the 
same cladding. Alternatively, a MCF can be designed with strong coupling between 
cores [42,43], making it equivalent to a special type of MMF in which super-modes 
propagate [63]. Our treatment of coupled modes in MMF is applicable to super-
modes in strongly coupled MCF, where the total number of modes D is equal to twice 
the number of cores (assuming single-mode cores).

11.2.2  Mode coupling and its origins
In an ideal fiber, modes propagate without cross-coupling. In a real fiber, perturbations, 
whether intended or unintended, can induce coupling between spatial and/or 
polarization modes. Throughout this chapter, we consider only coupling between 
forward-propagating modes, since it has a dominant effect on the system properties of 
interest, including MD and MDL.

In multimode transmission fibers, unintended mode coupling can arise from sev-
eral sources. These include manufacturing variations causing non-circularity of the 
core, roughness at the core-cladding boundary, variations in the core radius, or varia-
tions in the index profile in graded-index fibers. They also include stresses induced 
by the jacket [64,65], or by thermal mismatches between glasses of different com-
positions. Finally, mode coupling can arise from micro-bending, macro-bending, or 
twists [66–68].

Most unintended random perturbations of transmission fibers are having 
longitudinal power spectra that are lowpass, e.g. scaling as �|F(�β)|2� ∝ �β−4 to 
�β−8 [11]. This notation is defined in Sections 11.2.3.1 and 11.2.3.2. As explained 
there, such lowpass perturbations can strongly couple modes having nearly equal 
propagation constants (small Δβ), while they weakly couple modes having highly 
unequal propagation constants (large Δβ). Therefore, in glass MMFs, nearly 
degenerate polarization modes or spatial modes within the same group are fully 
coupled after distances of order 300 m [32,33]. By contrast, even in fibers with low 
GD spread, spatial modes in different groups are only partially coupled after distances 
of order 100 km [1,69,70]. Hence, if full, strong mode coupling is desired, it may 
be necessary to introduce intentional perturbations to the fiber having longitudinal 
power spectra designed to couple different mode groups. These would be analogous 
to the spinning used to reduce the differential GD in SMF with PMD [48,71–74]. In 
Section 11.6, it is shown that strong mode coupling may be required to ensure the 
practicality of long-haul MDM systems using coherent detection.
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In long-haul MDM systems, MDL in transmission fibers is likely to be weak 
[1], so MDL is expected to arise mainly from inline optical amplifiers [23–25]. In 
order to minimize the impact of MDL from inline amplifiers, it is sufficient to have a 
correlation length equal to the amplifier spacing [28]. If mode coupling in transmis-
sion fibers proves insufficient, a mode scrambler can be placed in each amplifica-
tion node. Mode scramblers can be implemented using micro-bending [66–68] or by 
splicing together unlike fiber types [75,76].

In long-haul MDM systems, a modal multiplexer need not map each input data 
stream to a distinct uncoupled mode, but need only provide an approximately unitary 
mapping from the input data streams to those modes, which can imply significant 
mode coupling [12,77] (analogous considerations apply to a demultiplexer). Because 
such coupling occurs only at the beginning or end of a link, it cannot by itself reduce 
the correlation length below the total link length, i.e. it is not sufficient to achieve 
strong mode coupling.

11.2.3  Mode coupling models
Mode coupling can be described by field coupling models [31, chs. 3–4,78], which 
account for complex-valued modal electric fields, or by power coupling models [31, 
ch. 5,11,79,80], a simplified description that accounts only for real-valued modal 
powers. Both classes of models describe a coupling of energy between modes and 
how the coupling depends on the mode fields and on a perturbations inducing mode 
coupling. The transverse dependences of the mode fields and perturbation determine 
selection rules, while the longitudinal dependence of the perturbation governs phase 
matching.

Field coupling models, since they describe complex field amplitudes, can describe 
changes to the eigenmodes and corresponding eigenvalues of certain operators of 
interest that are caused by mode coupling. In the case of PMD in SMF, field cou-
pling models describe how the PSPs and their GDs are affected by mode coupling 
[36–40]. PSPs form the basis for optical PMD compensation [39,40]. Likewise, in 
MMF, field coupling models describe PMs and how their GDs are affected by mode 
coupling [10,13,17,41], and explain an observed polarization dependence of the 
impulse response [13,81]. PMs form the basis for optical signal processing to avoid 
or compensate MD [13,15]. As described below, field coupling models can describe 
various other important properties of MMF and MDM systems.

Power coupling models also describe an exchange of energy among modes and 
how it depends on the mode fields and on perturbations inducing mode coupling 
[11,33,79]. Because they describe coupling as a diffusion process (non-negative real 
modal powers are coupled by non-negative real coefficients), these models do not 
describe the changes in eigenmodes and their associated eigenvalues caused by mode 
coupling. Likewise, power coupling models do not describe changes of eigenmodes 
or coupling coefficients with optical frequency [30,82].

Both field coupling and power coupling models appeared early in the study of 
MMF [31]. Early MMF systems used spatially and temporally incoherent light 
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emitting diodes, and power coupling models were used to describe steady-state 
power distributions [11] and impulse responses [32,33]. Although more recent 
MMF systems use lasers, power coupling models have been used to explain reduced 
GD spreads in plastic fibers [16,57] and a filling-in of impulse responses in glass 
fibers [35].

Our brief review of field and power coupling models follows that in [31]. For 
simplicity, we expand propagating fields in a basis of ideal modes of an unperturbed 
fiber [31, Section 3.2]. This approach is suitable for perturbations of refractive 
index or geometry that represent small deviations from an ideal fiber. An alternate 
approach is to expand propagating fields in terms of local normal modes, which 
are eigenmodes that depend on the local refractive index and geometry [31, Sec-
tion 3.3]. While more complicated, this approach is suitable for geometrical per-
turbations, such as bends or tapers, which represent large deviations from an ideal 
fiber, provided they vary slowly along the fiber’s length. Also for simplicity, we 
assume weak guidance and assume the fields can be described as purely transverse. 
While including longitudinal components generally improves accuracy in detailed 
calculations, by ignoring them, we are able to obtain correct first-order insights in 
many problems. Important exceptions are known, e.g. longitudinal components are 
required to model coupling between orthogonal polarizations caused by elliptical 
core deformations [31, Section 4.5].

11.2.3.1  Field coupling models
We assume that light propagates along the z direction and let (x, y) define a transverse 
plane. The (square of the) unperturbed refractive index profile is n2

0(x , y), which 
is assumed to be independent of z. By solving a wave equation that depends 
on n2

0(x , y), we obtain a set of D orthonormal ideal propagating modal fields 
Eµ(x , y), µ = 1, . . . , D, which have propagation constants βµ, µ = 1, . . . , D. In this 
basis, any propagating field can be expanded as E(x , y, z) =

∑D
µ=1 Aµ(z)Eµ(x , y), 

where Aµ(z), µ = 1, . . . , D  are complex-valued coefficients describing the amplitude 
and phase of each propagating mode. The quantities E(x , y, z), Eµ(x , y) and 
Aµ(z), µ = 1, . . . , D are all functions of angular frequency ω, but we suppress the 
frequency dependence for simplicity throughout this section.

If the fiber’s refractive index profile (or geometry) is perturbed, since the Eµ(x , y) 
are eigenmodes of the unperturbed fiber, they are coupled by the perturbation. If 
loss is neglected, propagation and coupling are described by the field coupling 
equations [31]:

On the right-hand side, the first term describes uncoupled propagation, and the 
second term describes coupling. As an alternative, the propagating field may be 
expanded as E(x , y) =

∑
µ Aµ(z)Eµ(x , y) exp(− jβµz), which leads to coupling 

equations similar to (11.1) without the first term of the right-hand side [78].

(11.1)
d Aµ

dz
= − jβµ Aµ +

∑

ν �=µ

Cµν(z)Aν µ = 1, . . . , D.
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In order to illustrate some key principles governing spatial mode coupling, we 
assume the refractive index is modified by a small perturbation that can be factored 
to separate the transverse and longitudinal dependences. The (square of the) total 
index becomes:

Assuming a perturbation of the form (11.2), on the right-hand side of (11.1), the 
complex-valued field coupling coefficient is proportional to:

where the proportionality constant is given in [31, Section 3.2]. The first factor in 
(11.3) is an overlap integral describing how the transverse dependence of the index 
perturbation couples different modes depending on their field distributions, and it 
determines selection rules for mode coupling. For example, a perturbation indepen-
dent of (x , y) cannot couple modes of opposite parities, while a perturbation depend-
ing linearly on x or y can couple only modes of opposite parities. It is important to 
realize that the form of the perturbation (11.2) is hardly general. Being isotropic, 
it cannot couple spatial modes in orthogonal polarizations. A perturbation of the 
dielectric tensor is required to describe birefringence caused by stress anisotropy, 
which is a major cause of polarization coupling in nominally circular fibers.

In order to explain the effect of the second factor f (z) in (11.3), it is instructive 
to solve the coupled-mode Eq. (11.1). Instead of trying to solve them in general, we 
examine two special cases [31], which yield considerable insight.

As a first example, we assume that at z = 0, only one mode ν is excited, and that 
as the modes propagate, the other modes µ �= ν are only weakly excited:

After propagating to z = L, the amplitude of mode µ �= ν is:

The right-hand side of (11.5) comprises two factors. The first describes the propa-
gation phase. The second describes how the longitudinal dependence of the index 
perturbation couples different modes depending on their propagation constants, and 
defines conditions for phase matching. The integral in (11.5) is the Fourier transform 
of Cµν(z) given by (11.3), which is proportional to the Fourier transform of f(z), 
denoted as F(�β). The Fourier transform is computed over the interval (0, L) and 
evaluated at �β = βν − βµ, the difference between the two propagation constants. 
As a consequence, nearly degenerate modes (small Δβ) may be coupled efficiently 
by a lowpass f (z), whereas strongly non-degenerate modes (large Δβ) are coupled 
efficiently only by a broadband or resonant f (z) that has significant Fourier components 
at the large value of Δβ. Analogous principles are used in the design of spin profiles 

(11.2)n2(x , y, z) = n2
0(x , y) + δn2(x , y) f (z).

(11.3)Cµν(z) ∝
∫ ∞

−∞

∫ ∞

−∞
δn2(x , y)E∗

µ(x , y) · Eν(x , y)dxdy · f (z),

(11.4)Aν(0) = 1, Aµ(0) = 0, |Aµ(z)| ≪ |Aν(z)|, µ �= ν.

(11.5)Aµ(L) ≈ e− jβµL

∫ L

0

Cµν(z)e
− j (βν−βµ)zdz.
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for manufacturing low-PMD SMF [73,74]. This example has assumed that the 
index perturbation is perfectly separable and that only one mode is excited strongly. 
Nevertheless, even when these conditions are not satisfied strictly, the dependence of 
pairwise mode coupling implied by the second factor in (11.5) often remains valid 
qualitatively. Note that the coupling coefficient in (11.5) also includes the integral over 
(x , y) defined in (11.3), and hence is subject to the selection rules described above.

As a second example, we consider a system with two modes and a perturbation 
independent of z which, according to (11.3), induces a constant coupling coefficient. 
The field coupling Eq. (11.1) becomes:

Assuming initial conditions A1(0) = 1 and A2(0) = 0, the solution becomes

where

The solutions (11.7) and (11.8) describe fields propagating with an average prop-
agation constant 12 (β1 + β2). A fraction of the total energy is coupled back and forth 
between the two modes, as described by the factors cos γ z and sin γ z. The fraction of 
coupled energy depends on the ratio |C12/�β|, becoming small for |C12| ≪ �β, and 
approaching unity for |C12| ≫ �β. This observation helps explain how even weak 
perturbations can fully couple nearly degenerate modes, such as the two polariza-
tions in SMF [83].

11.2.3.2  Power coupling models
For many purposes, such as computing the redistribution of average power among 
modes [11,79,80], it is sufficient to describe evolution of the modal powers 
Pµ(z) =

〈∣∣Aµ(z)
∣∣2

〉
, µ = 1, . . . , D, which are non-negative and real. The brackets  

〈 〉 denote an ensemble average. Their evolution is described by the power coupling 
equations [31, ch. 5]:

On the right-hand side, the first term describes loss by power attenuation 
coefficients αµ, and the second term describes coupling by non-negative real 
coefficients hµν. Let us assume a perturbed index profile of the form (11.2), except 

(11.6)
d A1

dz
= − jβ1 A1 + C12 A2,

d A2

dz
= − jβ2 A2 − C∗

12 A1.

(11.7)A1(z) = exp

(
− j

β1 + β2

2
z

) (
cos γ z − j

�β

2γ
sin γ z

)
,

(11.8)A2(z) =
C12

γ
exp

(
− j

β1 + β2

2
z

)
sin γ z,

γ 2 =
(

�β

2

)2

+ |C12|2 and �β = β1 − β2.

(11.9)
d Pµ

dz
= −αµ Pµ +

∑

ν �=µ

hµν

(
Pν − Pµ

)
, µ = 1, . . . , D.
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that the longitudinal dependence f (z) is generally considered a stationary random 
process. The coupling coefficients are:

which is the power spectrum of the coupling coefficient Cµν(z) (11.3), which is 
proportional to the power spectrum of f(z), denoted by 

〈
|F (�β)|2

〉
. The power spectrum 

is evaluated at �β = βµ − βν, the difference between the two propagation constants. 
This describes phase matching conditions, and can be interpreted as a stochastic 
version of (11.5), which involves the Fourier transform of Cµν(z) or f (z). Note that 
the coupling coefficients (11.10) also include the squared modulus of the integral over 
(x , y) defined in (11.3), and hence is subject to selection rules, as described above.

In the simple case of two modes, the power coupling equations become

where we have assumed equal attenuation coefficients for the two modes. If the ini-
tial conditions are P1(0) = 1 and P2(0) = 0, the solution is

Unlike the field coupling result for a fixed, uniform perturbation, for any 
non-zero coupling coefficient, given sufficient propagation distance, the optical 
power distribution in the two modes always becomes uniform. This apparent 
inconsistency can be resolved by observing that, in practice, even a nominally 
fixed, uniform perturbation is subject to random fluctuations (especially of optical 
phase) that vary over time and space. Hence, in modeling field coupling, a long 
fiber should be subdivided into short segments over which the perturbation is very 
nearly uniform, and modeled for an ensemble of different random phase shifts 
between the segments. When this procedure is carried out, the field coupling model 
reproduces the ensemble-average result obtained using the power coupling model.

In the remainder of this chapter, only field coupling models are used to analyze 
MDM systems, as these models can account for the evolution of complex-valued 
modal amplitudes, enabling study of how mode coupling affects the eigenmodes and 
eigenvalues of coupled systems, such as the GDs or gains/losses of coupled modes. 
Power coupling models can provide partial explanations of some relevant phenom-
ena (e.g. in Section 11.3.1), but it is not clear how power coupling models can be 
extended to provide the quantitative predictions required for MDM systems.

11.2.3.3  Matrix propagation model
As mentioned above, a field at angular frequency ω propagating in a fiber  
can be represented as E(x , y, z, ω) =

∑D
µ=1 Aµ(z, ω)Eµ(x , y, ω), where the  

fields Eµ(x , y, ω), µ = 1, . . . , D, are the orthonormal eigenmodes of an unperturbed 

(11.10)hµν =
〈∣∣∣∣

∫ L

0

Cµν (z) e− j (βν−βµ)zdz

∣∣∣∣
2
〉

,

(11.11)

d P1

dz
= −αP1 + h12(P2 − P1),

d P2

dz
= −αP2 + h12(P1 − P2),

(11.12)
P1(z) = 1

2
exp(−αz)

[
1 + exp(−2h12z)

]
,

P2(z) = 1
2

exp(−αz)
[
1 − exp(−2h12z)

]
.
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fiber (this expression remains valid even if the fields are not strictly transverse). The 
eigenmodes Eµ(x , y, ω) are fixed, so it is convenient to represent the field by a vector 
A(z, ω) = (A1(z, ω), . . . , AD(z, ω))T, which we often write simply as A (ω). Ignor-
ing noise for now, linear propagation through an optical system can generally be 
described by a matrix equation:

where A(in)(ω) and A(out)(ω) describe the input and output fields and M(ω) is a  
propagation operator, which is described by a D × D matrix.

In preparation for the treatment of MD and MDL in Sections 11.3 and 11.4, we 
discuss how to model a cascade of K passive fiber sections enumerated by k = 1, …, 
K. Assume the kth section has length L(k) which, for now, has no specific relationship 
to the mode coupling correlation length. Uncoupled propagation of the modes in the 
kth section is described by the input-output relationship

where α(k)
µ are the power attenuation coefficients, which may be mode-dependent 

[21,22] but are assumed independent of frequency over the bandwidth of interest, 
and β(k)

µ (ω) are the propagation constants, which are generally mode-dependent  
[31, chs. 1,44,46,47,84].

To describe uncoupled power gain in the kth section, we define the mode-averaged 
attenuation constant ᾱ(k) = 1

D

∑
µ α

(k)
µ . We quantify MDL by the uncoupled gains 

g
(k)
µ = −

(
α

(k)
µ − ᾱ(k)

)
L(k), µ = 1, . . . , D, where 

∑
µ g

(k)
µ = 0. The vector

describes the uncoupled MDL in the kth section.
To describe uncoupled MD and CD in the kth section, we perform a Taylor 

series expansion of the propagation constant β(k)
µ (ω) and keep the terms linear and 

quadratic in ω. MD is described by the uncoupled GDs β(k)
1,µL(k), µ = 1, . . . , D, where 

β
(k)
1,µ = dβ

(k)
µ (ω)/dω. The mode-averaged uncoupled GD is β̄(k)

1 L(k) = L(k)

D

∑
µ β

(k)
1,µ.  

We quantify MD by the uncoupled GDs τ (k)
µ =

(
β

(k)
1,µ − β̄

(k)
1

)
L(k), µ = 1, . . . , D, 

where 
∑

µ τ
(k)
µ = 0. The vector

describes the uncoupled modal GDs in the kth section.
CD includes contributions from both material dispersion and waveguide 

dispersion. As wavelength increases, any mode has more power in the cladding, 
where the refractive index is lower, so waveguide dispersion is always negative. 
Waveguide dispersion is enhanced for modes near cutoff [85–87]. When all modes 

(11.13)A(out)(ω) = M(ω)A(in)(ω),

(11.14)A(out)
µ = exp

[
−

α
(k)
µ

2
L(k) − jβ(k)

µ (ω)L(k)

]
A(in)

µ , µ = 1, . . . , D,

(11.15)g(k) =
(

g
(k)
1 , g

(k)
2 , . . . , g

(k)
D

)

(11.16)τ
(k) =

(
τ

(k)
1 , τ

(k)
2 , . . . , τ

(k)
D

)
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are well above cutoff, which is desirable for low loss and good bend tolerance, mode-
dependent CD is reduced [88].

In the kth section, CD is described by the parameters

where D
(k)
µ = d

(
1/v

(k)
g,µ

)
/dλ is the dispersion coefficient of mode µ. The mode-

average CD parameter is β̄(k)
2 = 1

D

∑
µ β

(k)
2,µ

, and mode-dependent CD is described 

by �β
(k)
2,µ = β

(k)
2,µ − β̄

(k)
2 , where 

∑
µ �β

(k)
2,µ = 0.

Including MDL, MD, and mode-dependent CD, uncoupled propagation in the kth 
section is described by the diagonal matrix:

If it is necessary to include mode-averaged gain and dispersion, the diagonal 
matrix (11.17) can be multiplied by a constant factor:

Including mode coupling, propagation in the kth section is modeled by a product 
of three D × D matrices:

where ∗ denotes Hermitian transpose. The D × D matrices U(k) and V(k) are frequency-
independent unitary matrices representing mode coupling at the input and output of 
the kth section, respectively.

Finally, propagation through a cascade of K fiber sections is represented by a total 
propagation matrix M(t)(ω), which is the product of K matrices [10,17,19,28–30]:

The matrix model (11.19) and (11.20) can describe signal propagation through 
any cascade of linear elements, as illustrated in Figure 11.2. For example, an opti-
cal amplifier can be described by a section in which ᾱ(k) < 0, such that the factor 
exp

(
−ᾱ(k)L(k)

)
> 1 describes the mode-averaged power gain. (De)multiplexers with 

or without crosstalk can be described easily.
Addition of noise by optical amplifiers cannot be described by the matrix model 

(11.17) and (11.19), and is discussed in Section 11.4.5.

β
(k)
2,µ = d2β(k)

µ (ω)/dω2 =
(
−λ2/2πc

)
D(k)

µ , µ = 1, . . . , D,

(11.17)

�(k) (ω) =




e
1
2 g

(k)
1 − jωτ

(k)
1 − j

2 ω2�β2,1 L(k)
0

. . .

0 e
1
2 g

(k)
D − jωτ

(k)
D − j

2 ω2�β2,D L(k)


 .

(11.18)exp

(
−

1

2
ᾱ(k)L(k) − jωβ̄

(k)
1 L(k) −

j

2
ω2β̄2L(k)

)
.

(11.19)M(k)(ω) = V(k)
�

(k)(ω)U(k)∗, k = 1, . . . , K ,

(11.20)M(t)(ω) = M(K )(ω)M(K−1)(ω) · · · M(2)(ω)M(1)(ω).
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11.2.3.4  Regimes of mode coupling
Different regimes of mode coupling are familiar from the study of randomly coupled 
birefringence and PMD [37,89], and apply as well to mode coupling in MMF 
[16,17,82]. These regimes are especially relevant in studying key effects such as 
MD (Section 11.3) or MDL (Section 11.4), where operators describing MD or MDL 
are defined, whose eigenvalues describe physical properties of interest, i.e. coupled 
modal GDs or coupled modal gains.

As stated above, modal fields are assumed to be strongly correlated over distances 
less than or equal to a correlation length, and weakly correlated over distances far 
larger than the correlation length. This correlation length is a generalization of the 
polarization correlation length defined in the study of PMD [83,90–92].

In the weak-coupling regime, the correlation length is comparable to, or slightly 
shorter than, the total system length. In this regime, signal propagation can be mod-
eled using a small number of sections K, where each section should be slightly longer 
than the correlation length. If a larger number of sections K is employed, the unitary 
matrices U(k) and V(k−1) defined in (11.19) should be correlated to reflect correlation 
between sections. In the weak-coupling regime, the spread of eigenvalues describ-
ing quantities of interest, such as modal GDs or modal gains, scales linearly with 
the number of sections K or the total system length Lt =

∑
k L(k), and each coupled 

eigenmode is a linear combination of a small number of uncoupled modes.
In the strong-coupling regime, the correlation length is far shorter than the total 

system length. In this regime, signal propagation must be modeled using a large number 
of sections K, where each section should be slightly longer than the correlation length. 
The unitary matrices U(k) and V(k−1) should be statistically independent to ensure 
independence between sections. In the strong-coupling regime, the spread of eigenvalues 
describing quantities of interest, such as modal GDs or modal gains, scales with the 
square-root of the number of sections K or the square-root of the total system length Lt, 
and each coupled eigenmode is a linear combination of many uncoupled modes.

These regimes of mode coupling are further illustrated and compared in 
Section 11.3.1.

( )inA ( )outA( )( )ω1M ( )( )ω2M … ( )( )ω1–KM ( )( )ωKM… ( )( )ωkM

Modal
Multiplexer

Multimode 
Fiber Sections

Multimode
Fiber Amp.

(a)

(b)

FIGURE 11.2  (a) Matrix model for an MMF system described by the product of a cascade 
of matrices. (b) Each matrix in the cascade may represent a section of MMF, a modal 
multiplexer or demultiplexer, a multimode optical amplifier or other components.
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11.3  MODAL DISPERSION
In coherent MDM systems, MD poses no fundamental performance limitations. 
MIMO equalizer complexity increases with the GD spread [18–20], but if laser phase 
noise is sufficiently small and the channel does not change too rapidly, MD can 
be compensated with no penalty. To date, most long-haul coherent MDM systems 
[1–4,70] have operated in the weak-coupling regime. But as transmission distances 
and the number of multiplexed modes are increased, equalizer complexity is likely 
to become prohibitive unless strong mode coupling is exploited to reduce the GD 
spread.

In this section, field coupling models are used to study the effect of mode coupling 
on MD. PMs, which are coupled modes having well-defined GDs, are described. Of 
greatest relevance to long-haul MDM systems, the statistics of the GDs of the PMs 
in the strong-coupling regime are analyzed.

11.3.1  Coupled modal dispersion
The effect of mode coupling on MD was studied for the two-mode case in the context 
of PMD in SMF [36–40,89–91], where coupled polarization states having well-defined 
GDs were called PSPs. The theory was extended to the multimode case in [41], where 
coupled modes having well-defined GDs were called PMs. Following [41], we assume 
MDL is negligible (the combined impact of MD and MDL is studied in Sections 
11.4.6 and 11.6.2). We further neglect mode-averaged loss or gain to simplify the 
notation here, although that assumption was not made in [38,41]. In this case, the 
total propagation operator defined in (11.20) becomes unitary: M(t)∗(ω)M(t)(ω) = I, 
where I is a D × D identity matrix. We restrict attention to optical signals occupying 
a narrow bandwidth near angular frequency ω. We define a set of D input PMs as a 
set of input field patterns defined by vectors APM,(in)

µ , µ = 1, . . . , D. These input PMs 
are linear combinations of the uncoupled modes that have special properties. If an 
input PM is launched, the field at the fiber output is described by the corresponding 
output PM APM,(out)

µ = M(t)(ω)A
PM,(in)
µ . Each of the input PMs is defined such that 

if we fix the input field pattern to be APM,(in)
µ  and vary ω slightly, the output field 

pattern APM,(out)
µ  remains unchanged to first order in ω. One can define a Hermitian 

GD operator:

where M
(t)
ω = dM(t)(ω)/dω denotes differentiation with respect to ω. As shown 

in [41], the D input PMs are mutually orthogonal eigenmodes of the GD operator 
whose eigenvalues are the coupled GDs:

In general, each input PM differs from the corresponding output PM, since the 
operators M(t) and G do not commute.

(11.21)G = jM(t)
ω M(t)∗(ω),

(11.22)GAPM,(in)
µ = τµAPM,(in)

µ , µ = 1, . . . , D.
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For signals occupying a sufficiently narrow bandwidth near angular frequency ω, 
the overall input-output relationship of a fiber can be expressed as:

where U(t) and V(t) are unitary matrices that are independent of frequency (to first 
order), whose columns represent the input PMs and the output PMs, respectively, in 
the basis of ideal modes. The matrix

describes propagation of the PMs. The matrix (11.24) describes no crosstalk, since it 
is diagonal, and describes differential delay but no distortion, since its phase depends 
linearly on ω. Many factorizations of the form (11.23) are possible mathematically, 
but this choice is unique in yielding frequency-independent U(t) and V(t) and a diago-
nal �(t)(ω) with well-defined GDs.

In [17], the effect of spatial- and polarization-mode coupling on the modal 
GDs in graded-index MMF was studied. A fiber of fixed total length Lt was 
divided into a fixed number of sections K, and each section was given a random 
curvature to induce spatial-mode coupling and birefringence. Successive sections 
were rotated by a random angle to induce polarization-mode coupling. By chang-
ing the standard deviation (STD) of the curvature σκ, different regimes of mode 
coupling can be obtained. Figure 11.3 shows the coupled GDs of the PMs in 
a 1-km-long, graded-index MMF supporting D = 110 modes in two polariza-
tions. In the weak-coupling regime (σκ < 0. 3), modes form groups having GD 
degeneracies of 2, 4, 6, …, and the GD spread scales linearly with K or L. In the 
medium-coupling regime (0. 3 < σκ < 2), these GD degeneracies are broken, and 
each coupled PM is a linear combination of a small number of uncoupled modes. 
In the strong-coupling regime (2 < σκ < 20), the GD spread is reduced substan-
tially, scaling in proportion to 

√
K  or 

√
Lt , and each coupled PM is a linear com-

bination of many uncoupled modes. The reduction of the GD spread, while not 
commonly observed in glass MMFs of 1-km length, is analogous to that observed 
in plastic MMF. The regimes of mode coupling were explained previously using 
a power coupling model in [16]. The power coupling model, while intuitively 
appealing, may not be capable of providing the quantitative predictions required 
for MDM systems.

The field pattern of each PM varies with optical frequency ω, and is correlated 
over a coherence bandwidth that depends, in principle, on the uncoupled modes and 
GDs and the mode coupling [30,82]. In the absence of coupling and MDL, the PMs 
are essentially equivalent to the ideal modes [41], so the coherence bandwidth is 
extremely large, of the order of THz. In [17], the coherence bandwidths of the PMs 

(11.23)M(t)(ω) = V(t)
�

(t)(ω)U(t)∗,

(11.24)�
(t)

(ω) =




e
−jωτ1 0

. . .

0 e
−jωτD






506 CHAPTER 11  Mode Coupling

in graded-index MMF were studied. For a 1-km fiber with weak coupling, coherence 
bandwidths were found to be about 300 GHz for a parabolic index profile, and smaller 
than 10 GHz for a non-parabolic profile. In the strong-coupling regime, following 
arguments similar to those given in Section 11.4.6 for coupled MDL, the coherence 
bandwidths of PMs should be of the order of 1/σgd, where σgd is the overall STD of 
coupled GD, given by (11.45).

When a modulated signal occupies a bandwidth that is not small compared 
to the coherence bandwidth, higher-order MD effects occur [30,82]. The overall 
input-output relationship becomes more complicated than (11.23); in particular, 
the phase of the propagation operator is no longer a linear function of ω, as in 
(11.24). Higher-order MD effects include a filling-in between peaks in the pulse 
response of a fiber (observed in [35]), a nonlinear relationship between input and 
output intensity waveforms, polarization- and spatial mode-dependent CD, and 
enhanced depolarization of modulated signals, all of which have analogs in higher-
order PMD [93,94]. Higher-order MD limits the signal bandwidth over which fre-
quency-independent optical signal processing can avoid distortion from MD in 
direct-detection links [95] or avoid crosstalk in direct-detection MDM systems 
(see Section 11.5).
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D = 2 × 55
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FIGURE 11.3  PM group delays (GDs) versus the standard deviation (STD) of curvature 
determining the mode coupling strength for a MMF of 1-km length, supporting D = 110 
propagating modes. The GDs exhibit regimes of weak, moderate, and strong mode coupling. 
Adapted from [17].
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In long-haul coherent MDM systems, MD poses no fundamental performance 
limitations. The MIMO equalizer complexity increases with the GD spread due to 
MD [18–20], but in systems with sufficiently small laser phase noise and sufficiently 
slow channel variation over time, an arbitrarily large GD spread and arbitrary-order 
MD can be compensated with no penalty. Most long-haul coherent MDM systems 
demonstrated to date [1–4] have operated in the weak-coupling regime. Neverthe-
less, as shown below, strong coupling reduces GD spread and thus minimizes MIMO 
signal processing complexity, and it mitigates MDL. Since strong coupling is benefi-
cial for long-haul coherent MDM systems, we analyze the statistics of strongly cou-
pled GDs in the remainder of this section, and we analyze the statistics of strongly 
coupled MDL in Section 11.4.

11.3.2  Group delay statistics in strong-coupling regime
In the strong-coupling regime, MD in an MMF can be modeled by random matrices, 
and the distribution of the GDs can be characterized by studying the statistics of the 
eigenvalues of those random matrices [10,96].

11.3.2.1  Zero-trace Gaussian unitary ensemble
In the strong coupling regime, in the matrix model of Section 11.2.3.3, a MMF is 
modeled using many independent sections. Using the diagonal matrix (11.17) and 
neglecting MDL and mode-dependent CD, uncoupled propagation in the kth section 
can be modeled by the diagonal matrix:

where the vector τ (k) (11.16) describes the uncoupled modal GDs.
In the absence of MDL, �(k)(ω), U(k) and V(k) are all unitary matrices, such that 

M(k)(ω)M(k)∗(ω) = I. With strong random mode coupling, following the discussion 
of Section 11.2.3.4, U(k) and V(k) can be assumed to be independent random unitary 
matrices, such that both input and output eigenvectors are independently oriented 
from one section to the next.

The model here is valid regardless of whether or not the modal delay vectors in 
each section τ (k) =

(
τ

(k)
1 , τ

(k)
2 , . . . , τ

(k)
D

)
, k = 1, . . . , K , (11.16) have the same sta-

tistical properties. The vector τ (k) may even be a deterministic vector, identical for 
each section. As in Section 11.2.3.3 and without loss of generality, we assume that ∑

µ τ
(k)
µ = 0, ignoring the mode-averaged delay of each section that does not lead 

to MD.
In the kth section, the input-output relationship is

(11.25)�
(k)(ω) =




e− jωτ
(k)
1 0

. . .

0 e− jωτ
(k)
D


 ,

A(out)
k

= M(k)
(ω)A(in)

k
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and A(in)
k = M(k)∗(ω)A

(out)
k . Using (11.22), the coupled GDs correspond to the eigen-

values of the GD operator G given by (11.21). With only a single section, we may 
verify that

where T(k) = diag
[
τ

(k)
1 , τ

(k)
2 , . . . , τ

(k)
D

]
 is a diagonal matrix of the uncou-

pled GDs in the kth section. With the constraint 
∑

µ τ
(k)
µ = 0, we have 

tr
(
T (k)

)
= tr

(
jM

(k)
ω M(k)∗

)
= 0. The GD operator matrices G(k) = jM

(k)
ω M(k)∗, 

k = 1, …, K, are all Hermitian matrices with real eigenvalues given by T(k).
Considering the overall propagation matrix M(t), the overall PMs and their 

GDs correspond to the eigenvectors and eigenvalues of the overall GD operator 
G = jM

(t)
ω M(t)∗(ω). Because of the chain rule

we obtain

The overall matrix G given by (11.28) is the summation of K random matrices. All 
those K random matrices are statistically identical to those of (11.26). Their eigenvec-
tors are independent of each other. The first matrix M(K )

ω M(K )∗ has the same eigen-
vectors as V(K ). The second matrix jM(K )M(K−1)M

(K−1)∗
ω M(K )∗ has eigenvectors 

from M(K )V(K−1). Both matrices V(K ) and M(K )V(K−1) are unitary matrices that are 
obviously independent of each other. The matrix M(K )V(K−1) is frequency-depen-
dent. All K random matrices in (11.28) are independent, owing to the different direc-
tions of their independent eigenvectors. Excepting the first matrix jM

(K )
ω M(K )∗, all 

other matrices are frequency-dependent, due to the frequency-dependent factor in  
�

(k)(ω) (11.25).
The matrix elements of G, gµ,ν , µ, ν = 1, . . . , D, are the summation of K 

independent random variables. When the number of independent sections K is large, 
the matrix G is a random matrix whose entries are Gaussian random variables from the 
Central Limit Theorem. Because all K component matrices in (11.28) are Hermitian, 
G is also a Hermitian matrix. The diagonal elements gµ,µ, µ = 1, . . . , D, are all real 
Gaussian random variables. All off-diagonal elements gµ,ν , µ �= ν, µ, ν = 1, . . . , D, 
are complex Gaussian random variables with independent real and imaginary parts.

If the D vectors in V(k) are assumed to be independent of each other, it can be 
shown that the variance of the matrix elements is

(11.26)G(k) = jM(k)
ω M(k)∗ = V(k)T(k)V(k)∗,

(11.27)
M(t)

ω = M(K ) · · · M(2)M(1)
ω + M(K ) · · · M(2)

ω M(1) + · · · + M(K )
ω · · · M(2)M(1),

(11.28)
G = jM(K)

ω M(K)∗ + jM(K)M(K−1)M(K−1)∗
ω M(K)∗ +

· · · + M(K) · · · M(2)M(1)
ω M(1)∗M(2)∗ · · · M(K)∗

.

(11.29)σ 2
g =

1

D2

K∑

k=1

∥∥∥τ
(k)

∥∥∥
2

=
1

D

K∑

k=1

σ 2
τ (k) ,
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where σ 2
τ (k), k = 1…, K, are variances of the GDs in each section. If all K sections 

have statistically identical GD profiles, we have

where σ 2
τ  are the GD variances in all sections.

The D vectors in V(k) are not independent of each other, however, as the Dth vector 
is determined by other D−1 vectors due to the unitarity condition. The elements of 
the vector τ (k) also sum to zero due to the zero-trace condition. The variance of 
matrix elements σ

2
g  is an averaged variance in which the diagonal elements have 

smaller variance than the non-diagonal elements.
In random matrix theory, the matrix G is described as zero-trace (or traceless) 

Gaussian unitary ensemble. Typically, a Gaussian unitary ensemble does not have 
any constraint aside from the variance of its matrix elements. However, in (11.28), 
all matrix components have zero-trace so that

In the strong mode coupling regime, the GDs in a MMF are statistically described 
by the eigenvalues of the zero-trace Gaussian unitary ensemble.

Assuming a Gaussian unitary ensemble of A without trace constraint, the diagonal 
elements are real Gaussian random variables with variance σ 2

a . The off-diagonal 
elements of A are complex Gaussian random variables with variance σ 2

a . Equivalently, 
the real and imaginary parts of the off-diagonal elements are independent of each 
other with variance σ 2

a /2. The corresponding zero-trace Gaussian unitary ensemble is 
equivalently the Gaussian random matrix A − tr(A)I/D. The off-diagonal elements 
have variance σ 2

a  but the diagonal elements have variance σ 2
a (1 − 1/D). The variance 

of all matrix elements has an arithmetic average σ 2
a (1 − 1/D2).

For the zero-trace Gaussian unitary ensemble G, numerical simulation shows that 
the diagonal elements have equal variance σ 2

g (1 − 1/D) and the off-diagonal ele-
ments have equal variance σ 2

g [1 + 1/D/(D − 1)], and the average variance is σ 2
g . If 

the zero-trace Gaussian unitary ensemble G is related to a Gaussian unitary ensemble 
A via G = A − tr(A)I/D, the Gaussian unitary ensemble A without trace constraint 
should have a variance σ 2

g D2/(D2 − 1). This variance correction is required because 
the statistics of zero-trace Gaussian unitary ensemble are always derived based on 
the corresponding Gaussian unitary ensemble without trace constraint.

11.3.2.2  Group delay distribution
In the regime of strong mode coupling, at each single frequency, the PMs and 
their GDs are given by the eigenvectors and eigenvalues of the zero-trace Gauss-
ian unitary ensemble (11.28). As above, the zero-trace Gaussian unitary ensemble 
G may be related to a Gaussian unitary ensemble without trace constraint A as 
G = A − tr(A)I/D. Without loss of generality, after normalization, the elements of 
A may be assumed to be zero-mean independent identically distributed Gaussian 

(11.30)σ 2
g =

K

D
σ 2

τ ,

(11.31)tr(G) = 0.
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random variables with variance σ 2
a = 1/2, similar to the classic normalization of [96, 

Section 3.3]. The diagonal elements of A are real with a variance of σ 2
a = 1/2. The 

off-diagonal elements of A are complex Gaussian distributed with independent real 
and imaginary parts, each having a variance of 1/4.

The joint distribution for a Gaussian unitary ensemble without the zero-trace con-
straint is well known. The unordered joint probability density function of the eigen-
values of a D × D Gaussian unitary ensemble is [96, Section 3.3,97]:

where

With suitable normalization, the random variables xµ, µ = 1, . . . , D, yield the GDs 
of the MMF with strong mode coupling. With the zero-trace constraint (11.31), the 
joint probability density function becomes

The constant C̃D2 is not the same as CD2 and is found equal to C̃D2 = CD2/
√

π D 
later in this section.

The eigenvalue distribution for zero-trace Gaussian unitary ensemble G is given by

The D × D Vandermonde determinant gives [98, Section 4.6]

where det[·] denotes a determinant. Following the method of [96, Section 6.2], and 
directly from the properties of determinants, the Vandermonde determinant can be 
expressed in terms of Hermite polynomials as

(11.32)pnc(x) = C−1
D2

�

D�µ�ν�1

�
xµ − xν

�2
exp


−

D�

µ=1

x2
µ


 ,

CD2 =
π D/2

2D(D−1)/2

D∏

n=1

n!.

(11.33)

pzt(x) = C̃−1
D2δ




D�

µ=1

xµ




�

D�µ�ν�1

�
xµ − xν

�2
exp


−

D�

µ=1

x2
µ


 .

(11.34)

pD(x1) = C̃−1
D2

� +∞

−∞
· · ·

� +∞

−∞
δ




D�

µ=1

xµ




�

D�µ�ν�1

(xµ − xν)
2 exp


−

D�

µ=1

x2
µ


 dx2 · · · dxD .

det
[
xν−1
µ

]
µ,ν=1,2,...,D

=
∏

D�µ�ν�1

(
xµ − xν

)
,

(11.35)

det
[
xν−1
µ

]
µ,ν=1,2,...,D

= det

[
1

2ν−1
Hν−1(xµ)

]

µ,ν=1,2,...,D

= det

[
1

2ν−1
Hν−1(xµ + cν)

]

µ,ν=1,2,...,D

,
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where Hn(x) are Hermite polynomials and cv are constants. The leading terms in the 
entries of the determinants (11.35) are all xν−1

µ . Using the Hermite polynomials, we 
obtain

where

Without trace constraint, the eigenvalue distribution is given by K D(x , x)/D and 
K D(x , x) is called the correlation function [96, Section 6.2].

With zero-trace constraint, the joint density becomes

Similar to [99,100] but using Fourier instead of Laplace transform,

With some algebra, we obtain

In the above expression, the argument inside the Hermite polynomial changes from 
xµ to xµ + iω/2 using the relation (11.35).

Similar to the method used to find the eigenvalue distribution, the probability 
density of the eigenvalues is given by

or

(11.36)pnc(x) =
1

D!
det[K D(xµ, xν)]µ,ν=1,2,...,D ,

(11.37)K D(x , y) =
D−1∑

n=0

1

2nn!
√

π
Hn(x)Hn(y) exp

(
−

x2 + y2

2

)
.

(11.38)pzt(x) =
CD2

C̃D2

δ




D�

µ=1

xµ


 det[kD(xµ, xν)]µ,ν=1,2,...,D .

(11.39)

pzt(x) =
CD2

2πC̃D2 D!

� +∞

−∞
exp


iω

D�

µ=1

xµ


 det[K D(xµ, xν)]µ,ν=1,2,...,D dω.

(11.40)

pzt(x) =
CD2

2πC̃D2 D

∫ +∞

−∞
exp

(
−

D

4
ω2

)
det

[
K D

(
xµ +

iω

2
, xν +

iω

2

)]

µ,ν=1,2,...,D

dω.

(11.41)

pD(x) =
CD2

2πC̃D2 D

∫ +∞

−∞
K D

(
x +

iω

2
, x +

iω

2

)
exp

(
−

D

4
ω2

)
dω

(11.42)

pD(x) =
CD2

2πC̃D2 D

∫ +∞

−∞
exp

(
−

D

4
ω2

) D−1∑

n=0

1
√

π2nn!
H2

n

(
x +

iω

2

)
dω.
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We may first integrate (11.42) over x before integrating over ω to obtain 
C̃D2 = CD2/

√
π D. The integration (11.42) becomes

Using the substitution s = iω, the integration is very similar to the Mellin inver-
sion formula for the Laplace transform [101] with an integration from x − i∞ to 
x + i∞. Based on the Laplace transform, we obtain

In the probability density (11.44), the summation gives a 2(D−1)-degree 
polynomial in t. The power tk is algebraically substituted by the Hermite polynomial 
(−1)k Hk

(
Dx/

√
D − 1

)
.

The GD distribution (11.44) is valid for MMFs with various numbers of modes. 
The GD has zero mean and a variance 1

2
(D − 1/D). Figure 11.4 compares DpD(x) 

with the correlation function K D(x , x). Scaling the distribution (11.44) by a factor 
D enables comparison to K D(x , x). Figure 11.4 is plotted for D = 2, 6, 12, 20, 30, 
and 64 modes. As the distribution is always symmetric with respect to the center, 
Figure 11.4 shows only the positive side of the curves.

(11.43)

pD(x) =
1

2
√

π D

∫ +∞

−∞
exp

(
−

D

4
ω2 −

(
x +

iω

2

)2
)

D−1∑

n=0

1
√

π2nn!
H2

n

(
x +

iω

2

)
dω.

(11.44)

pD(x) =
exp

(
− D

D−1
x2

)

√
π D(D − 1)

D−1∑

n=0

1

2nn!
H2

n

(
t

2
√

D − 1

)∣∣∣∣
tk←(−1)k Hk

(
Dx√
D−1

) .
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FIGURE 11.4  Probability density of the normalized GD (11.44) scaled by D, DpD (x ) shown 
as solid curves for D = 2, 6, 12, 20, 30, and 64. The correlation functions KD (x , x ) given by 
(11.37) are shown as dash-dotted curves for comparison.
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Especially for large number of modes, the general curves of (11.44) are similar to 
the case without trace-constraint of K D(x , x). The number of peaks is the same as the 
number of modes D. Each peak corresponds to values of x where individual eigen-
values tend to be concentrated. There are more ripples with zero-trace constraint 
(11.31) as compared to the case without the constraint. Beyond the theory of this 
section, further theoretical study finds that the mean of each eigenvalue xµ, assumed 
ordered, is not changed by the zero-trace constraint (11.31). However, the variance 
of the eigenvalues xµ is always reduced by 1

2
D−1. The variance reduction yields more 

localized eigenvalues.
As the probability density function (11.44) is derived from a Gaussian unitary 

ensemble in which all matrix elements have a variance of 1/2, if the elements of zero-
trace Gaussian unitary ensemble G (11.28) have average variance σ 2

g , the Gaussian 
unitary ensemble A without zero-trace constraint has variance σ 2

g D2/(D2 − 1). Com-
bining all normalization factors together, given a zero-trace Gaussian unitary ensem-
ble G (11.28) with average variance σ 2

g , the GD variance is σ 2
gd = Dσ 2

g . Assuming all 
fiber sections have identical statistical properties and using (11.30) for σ 2

g , the overall 
GD variance is

Regardless of number of modes, the overall STD of GD among modes is always 
σgd =

√
Kστ and increases with the square-root of the number of sections. Equiva-

lently, the overall GD increases with the square-root of system length. This result is 
consistent with the similar theory of PMD [36,37,89] and the results of [16,17] with 
strong mode coupling. Note that this is only relevant for fibers with strong mode 
coupling. As mentioned above, strong mode coupling is desirable to reduce the GD 
spread caused by MD.

The matrix G (11.28) is the summation of independent random matrices. The 
number of those random matrices is the same as the number of independent sections. 
Equivalently, the summation (11.28) may be considered the concatenation relation-
ship for MD in MMF. For the case in which the number of independent sections in 
the fiber link is small, the matrix G may be calculated numerically to find the empiri-
cal GD distribution.

11.3.2.3  Few-mode fibers
Two-mode fiber is the simplest case, and may correspond to the two polarization 
modes in a SMF, i.e. the well-known PMD problem [36–38]. The purpose here is not 
to derive new properties of PMD, but to verify that the general random matrix model 
is applicable to PMD.

Using the density (11.44) for two-mode fiber, we obtain

(11.45)σ 2
gd = Kσ 2

τ .

(11.46)p2(x) =
√

2

π
4x2 exp(−2x2).
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As in the PMD literature, we define x1,2 = ±τ/2 with τ as the differential GD with 
probability density

which is the well-known Maxwellian distribution with normalized mean differential 
GD τ̄ = 2

√
2/π ≈ 1. 60. Random matrix models specialized to the two-mode case 

were used to derive the Maxwellian distribution in [37,89,102].
For fibers with up to eight modes, direct integration of (11.34) has been used to 

find the GD distribution analytically, as given in [10,28].
Figure 11.5 compares the analytical distribution from (11.44) with simulation results 

for fibers with D = 6 modes. The simulation is conducted similar to that in [10]. The 
fiber has K = 256 independent sections. In each section, the six modes are chosen to 
have deterministic delays of ±τ, three of positive sign and three of negative sign, where 
τ = 1/

√
K , to ensure that the overall STD of GD is unity, as from (11.45). This par-

ticular choice may not correspond to a physical fiber, but simplifies the simulation. The 
random unitary matrices U(k), and V(k), k = 1, …, K, are first initialized by 6 × 6 random 
complex Gaussian matrices and then converted to unitary matrices using the Gram-
Schmidt process [98, Section 5.2.8]. All sections have independent unitary matrices U(k)

and V(k). A total of 300,000 eigenvalues are used in the curves shown in Figure 11.5.
In Figure 11.5, the simulation results show excellent agreement with the analytical 

eigenvalue probability density p6(x). Although the modes in each section have only 
two GDs, with strong mode coupling, a probability density function having six peaks 
is obtained. In the strong-coupling regime, similar results would be obtained using 

(11.47)p2(τ ) =
√

2

π
τ 2 exp

(
−

τ 2

2

)
, τ � 0,
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FIGURE 11.5  Probability density of GDs in a fiber with D = 6 modes, with GD variance 
normalized to unity. The curve represents the theoretical probability density (11.44) and the 
circles are from simulation.
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any uncoupled GD vector in each section, provided that the six uncoupled GDs sum 
to zero and have a variance of 1/K. To provide a more physically realistic example, 
four modes may have modal delays of +τ1 and the other two modes may have modal 
delays of −2τ1 with τ1 = 1/

√
2K . Similar results are obtained if the GDs in each 

section are, for example, ±τ2, where τ2 is random and follows a distribution with 
second moment 1/K.

The simulation results in Figure 11.5 verify that zero-trace Gaussian unitary 
ensemble can be used to model the GD of few-mode fibers.

11.3.2.4  Many-mode fibers
With a large number of modes, a Gaussian unitary ensemble without the zero-trace 
constraint is described by a semicircle distribution with radius 

√
2D [96, Section 

4.2]. With the normalization used in Sections 11.3.2.2 and 11.3.2.3, the variance 
of the eigenvalues is D/2. This semicircle law was first derived by Wigner for large 
random matrices [103,104]. The Wigner semicircle law is universally valid for many 
different types of large random matrices [105,106].

A Gaussian unitary ensemble, even with the zero-trace constraint, should follow 
the semicircle distribution [107,108]. As an alternative to considering G as a Gauss-
ian unitary ensemble, a more straightforward derivation may use the Central Limit 
Theorem for free random variables.

In free probability theory, free random variables are equivalent to statistically 
independent large random matrices [109,110]. The Central Limit Theorem for the 
summation of free random variables gives the semicircle distribution [109,111]. The 
matrix G (11.28) is the summation of many independent random matrices.

The Central Limit Theorem for free random variables states the following: let Xk, 
k = 1, …, K, be identically distributed independent zero-mean free random variables 
with unit variance, the summation

is described by semicircle distribution with radius of two and unit variance:

as K approaches infinity.
In the Central Limit Theorem of free random variables, when free random variables 

are represented by large random matrices, the distribution of the free random variables 
is equivalent to the distribution of the eigenvalues of the random matrices. When the 
theorem is applied to G given by (11.28), if the variance of the zero-mean GD per 
section is σ 2

τ  for all K sections, the eigenvalues of G are described by a semicircle 
distribution with radius 2

√
Kστ and variance Kσ 2

τ . Equivalently, the GD of the MMF 
has a semicircle distribution with variance Kσ 2

τ . The normalization used in this section 
based on the eigenvalues of Xk and YK in (11.48) is customary in free probability 
theory. However, the normalization used in Section 11.3.2.2 is based on the matrix 
elements of G, similar to that in Mehta [96].

(11.48)YK =
X1 + X2 + · · · XK√

K

(11.49)pY (r) =
{

1
2π

√
4 − r2 |r | < 2,

0 otherwise,
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Figure 11.6 compares the simulated marginal probability density of GD in fibers 
having D = 16, 64, and 512 modes to the semicircle distribution. In Figure 11.6a, the 
probability density for D = 16 modes from (11.44) is also shown for comparison. 
Each MMF is comprised of K = 256 sections. In each section, the uncoupled GDs 
are deterministic, with the first D/2 modes with a delay of τ and the other D/2 modes 
with a delay of −τ. For normalization purposes, τ = 1/

√
K  is chosen to facilitate 

comparison with a semicircle distribution with radius 2 and unit variance. The simu-
lated curves are obtained from 1,600,000 and 640,000 and 102,400 eigenvalues for  
D = 16 and 64 and 512, respectively. The model here is valid as long as the compo-
nent matrices in (11.28) may be modeled as free random variables [111].

In Figure 11.6, the simulated distributions match the semicircle distribution well 
for D = 64 and 512 modes. For a fiber having D = 16 modes, the distribution is close 
to a semicircle distribution, but has an obvious periodic structure with 16 peaks, 
consistent with the probability density (11.44). The ripples become less obvious as D 
increases from 16 to 64 to 512. Upon close examination of the curve for D = 64, the 
ripples seem periodic, consistent with the ripples in Figure 11.4.

The GD relationship σ 2
gd = Kσ 2

τ  (11.45) remains valid when the number of 
modes D is very large. With a large number of modes, the relationship (11.45) can be 
derived directly from free probability theory.

The semicircle distribution, which describes the GDs in fibers with an infinite 
number of modes has strict upper and lower limits, so such fibers have a strictly 
bounded GD spread, given by 4σgd. In fibers with large but finite number of modes 
D, it will be sufficient to accommodate a GD spread just slightly larger than 4σgd. 
In the next section, the statistics of the GD spread of fibers with a finite number of 
modes is studied.

11.3.3  Statistics of group delay spread
As shown in Section 11.6.3.3, the complexity of MIMO equalization depends on 
the GD spread of the fiber [18,19]. This GD spread is equivalent to the difference 
between the maximum and minimum eigenvalues of a zero-trace Gaussian uni-
tary ensemble. Comparing G and A related by G = A − tr(A)I/D, the difference 
between maximum and minimum eigenvalues is the same for both G and A with and 
without zero-trace constraint. The GD spread may be studied by the Gaussian unitary 
ensemble without trace constraint. As discussed earlier, the average variance of the 
matrix elements of A is a factor of D2/(D2 − 1) larger than that of G. The difference 
between the maximum and minimum eigenvalues for a Gaussian unitary ensemble A 
without trace constraint is studied here.

Many works have studied the maximum eigenvalue of Gaussian unitary ensemble, 
especially when the dimension of G approaches infinity. For many-mode fibers, the 
GD spread is approximately 4σgd, as mentioned in Section 11.3.2.4.

For a finite-dimensional Gaussian unitary ensemble, the GD spread may be 
studied using the Fredholm determinant [96, Section 20.1], which was first derived 
to study integral equations. The solution of an integral equation gives numerical 
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FIGURE 11.6  GD distribution compared to semicircle distribution. (a) D = 16: solid line 
with ripples from (11.44), circles from simulation. (b) D = 64: solid line with ripples from 
simulation. (c) D = 512: solid line with ripples from simulation. Adapted from [10].
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values of the Fredholm determinant [112,113]. The joint probability density for the 
maximum and minimum eigenvalues is given by [114]

where J = (−∞, y)
⋃

(x , +∞) specifies a region, E2 (0, J ) denotes no eigenvalue 
in the region J, and det

[
1 − K D(x , y)|J

]
 is the Fredholm determinant for the kernel 

K D(x , y) given by (11.37). The corresponding integral equation involves the kernel 
K D(x , y) integrated over the complement of J. The function F (D)(x, y) can be found 
by numerically solving the corresponding integral equation [113,114].

The GD spread distribution has a cumulative distribution of

Figure 11.7 shows the complementary cumulative distribution Pr (λmax − λmin > x) 
for fibers with D = 6 and 12 modes. In the curves of Figure 11.7, the overall GD 

(11.50)

F (D)(x , y) = Pr(λmax � x , λmin � y) = E2(0, J ) = det[1 − K D(x , y)|J ],

(11.51)Pr(λmax − λmin � x) = −
∫ +∞

−∞

∂ F (D)(t , y)

∂y

∣∣∣∣∣
t=y+x

dy.

0 1 2 3 4 5 610-8

10-6

10-4

10-2

100

Normalized Delay Spread (λmax—λmin)

C
om

pl
em

en
ta

ry
 C

um
ul

at
iv

e 
D

is
tri

bu
tio

n

D = 12

D = 6
-8 -6 -4 -2 0 2

0

0.1

0.2

0.3

0.4

0.5

x

F'2(x)

F'ds(x)
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D = 12 modes, with GD variance normalized to unity. The solid curves are obtained by 
evaluating the Fredholm determinant (11.51) using a toolbox from [114]. The dash-dotted 
curves are derived using the approximation (11.54). The inset shows the Tracy-Widom 
distributions F ′

2
(x ) and the GD spread distribution F ′

ds
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variance σ 2
gd is normalized to unity. Figure 11.7 is consistent with the empirical sim-

ulations in [18]. The complementary cumulative probability Pr (λmax − λmin > x) 
corresponds to the event that the normalized GD spread of the fiber exceeds a value 
x, which typically describes the normalized temporal memory length of an equalizer 
for compensating MD. Here, Pr (λmax − λmin > x) is referred to here as the “GD 
spread outage probability,” although system outage does not necessarily occur when 
the fiber GD spread exceeds the equalizer length.

For many-mode fibers, the distribution of the GD spread can be approximated 
very accurately. For very large matrices, the maximum eigenvalue is described by the 
celebrated Tracy-Widom distribution [115,116]. For the Gaussian unitary ensemble 
described by the distribution (11.32), the largest eigenvalue is approximately 

√
2D. 

The Tracy-Widom distribution for a Gaussian unitary ensemble is given by

where λmax denotes the maximum eigenvalue and F2(x) is the cumulative density 
function for the Tracy-Widom distribution, with numerical values given in [113,114].

For many-mode fibers, as shown in [117], the maximum and minimum eigen-
values are independent of each other. The GD spread for a large Gaussian unitary 
ensemble is given by

as the summation of two independent Tracy-Widom random variables. The inset of 
Figure 11.7 shows the Tracy-Widom distribution F ′

2(x) and the corresponding GD 
spread distribution F ′

ds(x).
Figure 11.7 also shows the approximate complementary cumulative distribution 

computed using (11.53):

for fibers with D = 6 and 12 modes with GD variance normalized to unity. The 
approximation (11.54) follows directly from (11.53) for all values of D and takes into 
account that the GD variance for the statistics corresponding to (11.53) is  12 (D − 1/D).  
The GD spread outage probabilities in Figure 11.7 govern the temporal memory 
length required for MD equalization. For typical outage probabilities in the range 
of 10−4–10−6, the equalizer length should be about 4 to 6 times σgd, the STD of GD.

The approximation based on the sum of two independent Tracy-Widom random 
variables always over-estimates the GD spread outage probability, but is sufficiently 
accurate for most engineering purposes for D � 12. The approximation (11.54) 
shows that as D → ∞, the delay spread is upper-bounded by four times the STD 

(11.52)lim
D→∞

Pr

(
λmax −

√
2D

2−1/2 D−1/6
≤ x

)
= F2(x),

(11.53)

lim
D→∞

Pr

(
λmax − λmin − 2

√
2D

2−1/2 D−1/6
� x

)
= Fds(x) =

∫ +∞

−∞
F2(x − t)

d

dt
F2(t)dt

(11.54)Pr(λmax − λmin > x) ≈ 1 − Fds

[
D2/3(x

√
1 − D−2 − 4)

]
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of GD. In this limit, the GD follows a Wigner semicircle distribution from Section 
11.3.2.4, which has a finite support equal to four times the STD.

The Tracy-Widom distribution has a mean of −1.77, and the normalized GD 
spread has a mean of approximately

The mean GD spread (11.55) approaches 4 as D increases. The Tracy-Widom 
distribution has an STD of 0.902 and the normalized GD spread has an STD of 
approximately

The GD spread STD (11.56) decreases to zero as D−2/3 as D increases.
In Section 11.6.3.3 below, the GD spread outage probabilities in Figure 11.7 are 

used in quantifying the complexity of equalizers for compensating MD.

11.4  MODE-DEPENDENT LOSS AND GAIN
Multimode transmission fibers [21,22] or passive components may introduce loss 
that is mode-dependent, while multimode optical amplifiers [23–25] may introduce 
mode-dependent gain. Throughout this chapter, these effects are referred to collec-
tively as MDL. MDL is likely to be relatively unimportant in short-range systems 
without amplifiers, but long-haul MDM systems with many cascaded amplifiers may 
accumulate significant amounts of MDL. Unlike MD, MDL is fundamentally a per-
formance-limiting factor. In the extreme case, MDL is equivalent to a reduction in 
the number of propagating modes, leading to a proportional decrease in overall data 
rate or channel capacity.

Like the MD studied in Section 11.3, MDL can be studied using the matrix 
propagation model of Section 11.2.3.3. The overall propagation matrix M(t) (11.20) 
describes coupled propagation of signals from input to output in an MMF, while 
M(t)∗ describes propagation from output to input. We can define a round-trip propa-
gation operator M(t)∗M(t) whose eigenmodes are the electric field profiles that, when 
propagated from the input to the output and then back to the input, remain unchanged 
except for a scaling describing gain or loss. The eigenvalues of M(t)∗M(t) describe 
the power gains or losses of these eigenmodes, and the square-root of the eigenvalues 
describe the scaling of the electric field amplitudes. MDL can obviously be defined 
equivalently in terms of the operator M(t)M(t)∗. Since its eigenvalues describe modal 
power gains, we may refer to M(t)∗M(t) as a modal gain operator.

For polarization-dependent loss (PDL) in SMF (D = 2), the two eigenmodes are 
the modes having maximum and minimum gains. For MDL in MMF, the eigenmodes 
represent directions along which the gain is an extremum, which is either a maximum 
or minimum when approached from different orientations. For D = 3, MDL may be 

(11.55)
4 − 3. 54D−2/3

√
1 − D−2

.

(11.56)
1. 28D−2/3

√
1 − D−2

.
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visualized in a three-dimensional space using a triaxial ellipsoid with three unequal 
semi-axes, where the distance from the origin to a point on the surface represents 
modal gain. The directions of maximal and minimal gain are obvious. The triaxial 
ellipsoid has an extremum, which can be either a maximum or minimum, depending 
on the direction from which it is approached. This extreme point corresponds to the 
third eigenmode. Without MDL, the ellipsoid degenerates to a sphere, and any three 
orthogonal directions may be chosen as eigenmodes.

Like the GD spread caused by MD, the variation of loss caused by MDL is minimized 
by strong mode coupling. In the remainder of this section, we study the statistics of 
MDL in the strong-coupling regime. In this regime, the propagation operator of an 
MMF can be represented by the product of many independent random matrices of 
the form (11.19) which converges to a limiting form whose statistics depend only 
on the number of modes and the accumulated MDL. In this regime, the accumulated 
MDL increases with the square-root of the number of independent matrices or the 
square-root of the total system length. However, the overall MDL exhibits a nonlinear 
dependence on the accumulated MDL.

11.4.1 � Statistics of strongly coupled mode-dependent gains and 
losses

Based on the Central Limit Theorem for the product of random matrices [28], MDL 
follows a limiting distribution that depends only on the number of modes and a single 
additional parameter. In the regime of small MDL, the following two results are 
valid.
Proposition I: In the strong-coupling regime, when the overall MDL is small, the 
distribution of the overall MDL (measured in units of the logarithm of power gain 
or decibels) is identical to the eigenvalue distribution of zero-trace Gaussian unitary 
ensemble.
Proposition II: In the strong-coupling regime, when the overall MDL is small, the 
STD of the overall MDL σmdl depends solely on the square-root of the accumulated 
MDL variance ξ (often referred to simply as accumulated MDL) via:

If the MMF comprises K independent, statistically identical sections, each with 
MDL variance σ

2
g , the accumulated MDL is ξ =

√
Kσg. In (11.57), σmdl and ξ are 

measured in units of the logarithm of power gain. Quantities measured in units of log 
power gain can be converted to decibels by multiplying by γ = 10/ln10 ≈ 4.34, i.e. 
σmdl(dB) = γ σmdl (log power gain). Unless noted otherwise, all expressions in this 
chapter assume that both ξ and σmdl are expressed in log power gain units.

Proposition I describes the shape of the MDL distribution, which is the same as 
(11.44) or Figure 11.4, whose variance depends on the variance of a Gaussian unitary 
ensemble used to describe MDL, just as such an ensemble was used to describe MD 
in Section 11.3. MDL has the same statistics as MD.

(11.57)σmdl = ξ

√
1 +

1

12
ξ2.
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Propositions I and II have not been proven rigorously. Using numerical simulation, 
we have found that in the small-MDL region, the shape of the overall MDL 
distribution essentially depends only on the dimension of the zero-trace Gaussian 
unitary ensemble, which is the number of modes. For systems with overall MDL 
in the range of practical interest, σmdl � 12 dB or ξ =

√
Kσg � 10 dB, the overall 

MDL (measured in decibels or log power gain) has a distribution very close to the 
eigenvalue distribution of zero-trace Gaussian unitary ensemble.

In Proposition II, the STD of the overall MDL depends solely on the accumulated 
MDL ξ =

√
Kσg. For MD in MMF (see Section 11.3) or for PMD in SMF [36,37,89], 

the overall modal GD spread depends linearly on 
√

Kστ (11.45). For MDL in MMF, 
the overall MDL depends nonlinearly on ξ =

√
Kσg, as described by (11.57). The 

nonlinear relationship in Proposition II cannot be proven rigorously in the general 
case, but related results can be derived analytically in the limit of many modes. 
Proposition II has been tested by comparing (11.57) to numerical simulations. The 
approximation (11.57) is highly accurate for two-mode fibers with ξ =

√
Kσg up to 

10 dB, and the region of its validity increases with an increasing number of modes.
In the region with ξ =

√
Kσg larger than 10 dB, which is beyond the range of 

practical interest, the overall MDL measured in log power gain units has the same 
statistical properties as the eigenvalues of the summation of two matrices [118]

where G is a zero-trace Gaussian unitary ensemble similar to that used to describe 
MD in Section 11.3, except it has unit eigenvalue variance, F is a deterministic 
uniform matrix, and κD = 1

2
D/(1 + D) is a constant lying between 1/3 and 1/2, 

depending on number of modes D. The uniform matrix F has its eigenvalues deter-
ministically and uniformly distributed between ±1. For D = 2, an example is F = 
diag[1,−1] or any other Hermitian matrix having the same eigenvalues. From the 
theory of MD in Section 11.3.2.1, the summation (11.58) represents the concatena-
tion of two MMFs: the first with strong mode coupling represented by G and the 
second with deterministic and uniform MD represented by F.

Comparing (11.57) with (11.58), the Gaussian unitary ensemble G gives the 
linear term ξ (or the 1 inside the square-root) to the overall MDL. With κ∞ = 1/2,  
the uniform matrix F gives the nonlinear factor (ξ

2/12 inside the square-root). To a 
certain extent, Propositions I and II approximate the zero-trace uniform matrix F using 
a zero-trace Gaussian unitary ensemble. The approximation in Propositions I and II is 
sufficiently accurate for practical purposes.

Using κD = 1
2

D/(1 + D) and (11.58), the accuracy of Proposition II may be 
improved slightly for few-mode fibers. The improved Proposition II is

which gives more accurate values of overall MDL for D = 2, 3 but gives results 
similar to (11.57) for D � 4. The improvement in (11.59) is useful only in the large-
MDL regime.

(11.58)ξG + κDξ2F,

(11.59)σmdl = ξ

√

1 +
ξ2

12(1 − D−2)
,
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11.4.2  Model for mode-dependent loss and gain
In the strong-coupling regime, a MMF is divided into K independent sections, with 
each section modeled as a random matrix, similar to that in Section 11.3. The length 
of each section should be at least equal to the correlation length, such that each sec-
tion can be considered independent of the others [10,28–30].

The fiber system is described by a product of matrices of the form (11.20) with each 
matrix given by the product of three matrices of the form (11.19). Mode-dependent 
CD is neglected. Initially, in modeling MDL at one frequency, the frequency depen-
dence of MDL is neglected, so in the diagonal matrix (11.17), the modal delay vector 
(11.16) is set to zero, and only the modal gain vector g(k) =

(
g

(k)
1 , g

(k)
2 , . . . , g

(k)
D

)

(11.15) is non-zero. Hence, uncoupled propagation in the kth section is described by

In the overall propagation operator M(t) given by (11.20), overall MDL is described 
by the singular values of M(t) or, equivalently, by the eigenvalues of M(t)M(t)∗ or 
M(t)∗M(t), which are both Hermitian matrices. Mathematically, the eigenvalues of 
M(t)M(t)∗ are the squares of the singular values of M(t). The singular values of M(t) 
describe electric field gains, while the eigenvalues of M(t)M(t)∗ describe power 
gains. As described earlier, M(t)∗M(t) or M(t)M(t)∗ can be considered a round-trip 
propagation or modal gain operator.

As in MIMO wireless systems [26,27], at any single frequency, using singular 
value decomposition (SVD), the overall matrix M(t) can be decomposed into D spa-
tial channels:

where U(t) and V(t) are input and output unitary beam-forming matrices, and we have 
defined

Here, g(t) =
(

g
(t)
1 , g

(t)
2 , . . . , g

(t)
D

)
 is a vector of the logarithms of the eigenvalues of 

M(t)M(t)∗, which quantifies the overall MDL of the MIMO system. Our goal here is 
to study the statistics of the overall MDL described by g(t).

In order to describe MDL properly, we need to explain the difference between 
accumulated MDL and overall MDL. Accumulated MDL refers to the sum of the 
uncoupled MDL values in all K sections comprising a fiber. The variance of the 
accumulated MDL is:

(11.60)�(k) =




e
1
2 g

(k)
1 0

. . .

0 e
1
2 g

(k)
D




(11.61)M(t) = V(t)
�

(t)U(t)∗,

(11.62)
�(t) =




e
1
2 g

(t)
1 0

. . .

0 e
1
2 g

(t)
D




(11.63)ξ2 = σ 2
g(1) + σ 2

g(2) + · · · + σ 2
g(k) ,
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where σ 2
g(k) , k = 1, · · · , K, are the variances of the uncoupled MDL vectors in the 

individual sections. The accumulated MDL is similar to the variance of the elements 
of the MD operator in (11.27). If the individual sections are statistically identical, we 
have ξ =

√
Kσg, where σ 2

g  is the variance of the uncoupled MDL in each section. 
This accumulated MDL ξ =

√
Kσg increases with the square-root of number of sec-

tions or the square-root of the total system length.
Overall MDL refers to the end-to-end coupled MDL of a fiber comprising K 

independent sections. The overall MDL is computed from the gain vector g
(t)

 that appears 
in (11.62). The gains in g(t) are assumed to be ordered as g(t)

1 � g
(t)
2 � · · · � g

(t)
D

, and 
are assumed to sum to zero: g(t)

1 + g
(t)
2 + · · · + g

(t)
D = 0. When taken together, the D 

elements of g(t) have zero mean; equivalently, an element g
(t)
µ chosen randomly from g

(t)
 

has zero mean.
Two statistical parameters are especially useful for characterizing MDL: the STD 

of overall MDL σmdl and the mean of the maximum MDL difference 
〈
g

(t)
1 − g

(t)
D

〉
. The 

maximum MDL difference is similar to the GD spread that is the difference between  
the maximum and minimum eigenvalues in Section 11.3.3; equivalently it is the con-
dition number of the overall matrix M(t) (11.20) expressed on a logarithmic scale. 

The mean of the maximum MDL difference, 
〈
g

(t)
1 − g

(t)
D

〉
, quantifies the gain differ-

ence between the strongest and weakest modes. In a two-mode fiber, 
〈
g

(t)
1 − g

(t)
2

〉
 is 

commonly referred to as the mean PDL.
The STD of overall MDL is computed over all D elements of the gain vector 

g(t); equivalently, it is the square-root of σ 2
mdl =

〈(
g

(t)
µ

)2
〉
, where g

(t)
µ  is an element 

chosen randomly from g(t). The STD of overall MDL σmdl has the same units as the 
gains in g

(t)
.

The accumulated MDL variance ξ2, given by (11.63), does not equal the variance 
of overall MDL because of the nonlinearity inherent in Proposition II, given by 
(11.57). Much of the complexity of PDL and MDL arises from the nonlinearity of 
(11.57).

11.4.3  Properties of the product of random matrices

Characterizing the statistics of the singular values of M(t), or those of the eigenvalues 
of M(t)M(t)∗, is the key to understanding the performance of MDM systems, as in 
MIMO wireless systems [26,27]. The analysis here is complicated by the fact that 
M(t) is the product of random matrices by (11.20), rather than the sum of random 
matrices (11.28). Since the early works [119,120], there have been many studies on 
the statistics of the products of random matrices, but most addressed the Lyapunov 
exponent of the products [120–122]. We are interested here in the statistics of the 
eigenvalues of a product of matrices, not the Lyapunov exponent.

Because matrix multiplication is not commutative, i.e. AB is not generally equal 
to BA, even for square matrices, the logarithm of the product of two matrices, 
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log AB, is not equal to the sum of log A and log B. Unlike the product of positive 
random variables (that do commute), which has its central limit as the log-normal 
distribution, the product of positive-definite random matrices (those with positive 
eigenvalues) does not generally have its central limit as the exponent of a Gauss-
ian unitary ensemble. The Central Limit Theorem for the summation of random 
matrices is not necessary helpful for the understanding of the products of random 
matrices.

For any matrix X and a very small number δ, we have log(I + δX) ≈ δX, where 
I + δX is intended to describe a matrix M(k) when the gain vector g

(k)
 has small 

norm. If both matrices A and B are positive-definite and both log A and log B are 
small, log AB ≈ log A + log B. As an approximation, the product of positive-defi-
nite random matrices with small logarithm has a central limit as the exponential of 
a Gaussian ensemble. When applied to the overall product matrix M(t), if all gain 
vectors g(k) are small, the matrix M(t) is the exponential of the Gaussian ensem-
ble. The approximation used here is similar to the results of Berger [123]. This 
small-gain approximation yields Proposition I, but not Proposition II. If we made 
the approximation log(I + δX) ≈ δX, Proposition II would be a linear relation-
ship, unlike the nonlinear relationship of both (11.57) and (11.59). Of course, the 
approximation (11.57) is linear when ξ is far less than unity. Numerical simulation 
shows that Proposition I remains valid for ξ up to 10 dB (about 2.3 in log power 
gain units), a regime in which, equivalently speaking, log A and log B are not very 
small. The nonlinearity in (11.57) may be understood as related to the second-
order term in the approximation log(I + δX) ≈ δX − 1

2
δ2X2. The factor of 1/2 in 

this approximation is difficult to relate to the factor of 1/12 in (11.57), however. 
Also, the more accurate model has the factor 1/12 related to the matrix dimension 
in (11.59).

For random matrices of the form (11.19), at a single frequency, we are interested 
in the statistics of the singular values of the product (11.20) in the decomposition 
(11.61). Approximate results were obtained for the 2 × 2 case in the study of PDL 
in SMF [124,125], and for very large matrices in the study of free random vari-
ables [109,110]. In both cases, for positive-definite matrices A and B, the product 
AB may be interpreted as A1/2BA1/2∗, similar to free probability theory. The repeti-
tion of A1/2BA1/2∗ with A = M(2)M(2)∗ and B = M(1)M(1)∗ from k = 2 to K yields 
M(t)M(t)∗.

The simplest possible case, a two-mode fiber modeled using 2 × 2 matrices, 
describes PDL in SMF, where approximate analytical results were derived for the 
small-PDL regime [124] and extended to the large-PDL regime [126]. Both [124,125] 
showed that for low PDL, the PDL (measured in decibels or log power gain units) has 
a Maxwellian distribution, the same as the distribution of the GD in SMF with PMD 
[89,102]. As shown in (11.47) of Section 11.3.2.3, the Maxwellian distribution is the 
eigenvalue distribution for a zero-trace 2 × 2 unitary Gaussian ensemble. The zero-
trace 2 × 2 unitary Gaussian ensemble may be obtained by the summation of many 
zero-trace 2 × 2 Hermitian matrices. Numerical simulations confirm that Propositions  
I and II are correct for an accumulated MDL ξ smaller than 10 dB.
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Using the notation here, the exact PDL distribution [126] is

which can be approximated accurately by a Maxwellian distribution even in the high-
PDL regime.

The exact distribution (11.64) is a non-central chi distribution with three degrees 
of freedom [127]. The Maxwellian distribution is the “central” chi distribution with 
three degrees of freedom [127]. The chi distribution is not as well known as the chi-
square distribution [59, Section 2.3]. In D = 2, PDL has a non-central Maxwellian 
distribution but with very specific noncentrality parameter of ξ/3.

The exact PDL distribution (11.64) is the same as that of the exact MDL model 
(11.58) with κ2 = 1/3, corresponding to concatenation of a random Maxwellian dis-
tributed PMD with root-mean-square differential GD (DGD) ξ and deterministic PMD 
with DGD ξ2/3 that is analyzed in [102]. The large-PDL model of [126] is identical to 
the exact model (11.58) [118]. The exact model gives σmdl = ξ

√
1 + ξ2/9, the same 

as (11.59) for D = 2, which is very close to the approximation (11.57), supporting 
Proposition II.

From the above discussion of the PDL, the comparison of the results of [124,125] 
with that in Section 11.3.2.3 supports Proposition I. By comparing (11.64) from 
[126] with the similar distribution derived from (11.58), the PDL of SMF is exactly 
the same as the exact model of (11.58), which reduces to Propositions I and II in the 
small-MDL regime.

Free random variables are equivalent to large matrices of the form (11.19) 
[109,110], and the statistics of free random variables are the statistical properties of 
the eigenvalues of the large matrices. The Central Limit Theorem for the summation 
of independent free random variables gives a semicircle distribution from Section 
11.3.2.4, similar to the distribution of the eigenvalues of a large class of large random 
matrices [105,106]. In free probability theory, the semicircle distribution serves a 
function analogous to the normal distribution, which is the central limit for the sum-
mation of random variables in traditional probability theory [128, Section 5.10.4].

In traditional probability theory, the product of independent positive random 
variables has a central limit as the lognormal distribution. The lognormal distribu-
tion can model shadowing in wireless systems [60, Section 11.3.2.9] or distortion 
by stimulated Raman scattering in optical communication systems [129]. As shown 
in [130], the log-semicircle distribution is found to be the central limit of the prod-
uct of positive free random variables if the free random variables have small vari-
ance; in the notation used here, this corresponds to ξ, defined in (11.63) having a 
small value.

From the results of [130], equivalently speaking, when the MDL is small and in 
the strong-coupling regime, the overall MDL has a log-semicircle distribution. The 
modal GDs follow a semicircle distribution in the limit of a large number of modes 
in Section 11.3.2.4. MDL (measured in decibels or log power gain) has the same 

(11.64)p2(x) = 3

√
6

π

x sinh x

ξ3
exp

(
−

3x2

2ξ2
−

ξ2

6

)
, x � 0,
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distribution as the modal GDs in the limit of a large number of modes. Expression 
(11.58) is basically equivalent to the results in [130], which were derived from the 
free probability theory.

For MMF with larger number of modes, the overall MDL from (11.57) is the 
same as the more exact model from (11.58). We may conclude that Proposition II is 
valid in both small and large MDL regime for MMF with large number of modes.

11.4.4  Numerical simulations of mode-dependent loss and gain
Numerical simulation verifies the approximation in Propositions I and II and the 
more exact model (11.58). PDL in two-mode fiber has well-known exact results in 
[126], consistent with Propositions I and II in the small-PDL regime and described 
exactly by the model of (11.58) is all regimes. For many-mode fibers, analytical 
results from free-probability theory are consistent with the exact model of (11.58) 
and Proposition II in all regimes, and Proposition I in the low-MDL regime. Results 
for six-mode fibers are shown to match theory in Section 11.4.4.2.

11.4.4.1  Many-mode fibers
For fibers with a large number of modes, the modal GDs have the same statistical 
properties as the eigenvalues of a large zero-trace Gaussian unitary ensemble from 
Section 11.3.2.4. The eigenvalues of large random matrices have a semicircle distri-
bution, as shown by Wigner [103,104] and verified numerically in Figure 11.6. The 
summation of free random variables also gives a semicircle distribution, as explained 
in Section 11.3.2.4.

Figure 11.8a shows the simulated eigenvalue distribution of a fiber with 64 
modes. Similar to the simulation in Figure 11.6b, the fiber has K = 256 sections 
and all unitary matrices are generated by the method described in Section 11.3.2.3  
or [28]. Each curve of Figure 11.8a is constructed using 64,000 eigenvalues. Each 
MMF section has uncoupled modal gains g

(k)
µ = ±α, where α = σg. The first 32 

modes have gains of +α, and the last 32 modes have gains of −α, such that the gains 
sum to zero. The x-axis of each curve in Figure 11.8a is normalized by the simulated 
STD of the overall MDL σmdl.

In Figure 11.8a, the simulated eigenvalue distribution is very close to the semicircle 
distribution up to ξ = 15 dB. The exact model (11.58) is also shown in Figure 11.8a  
as dashed lines. The distribution given by (11.58) is not available analytically for 
very large ξ but the moment generating function is given by [118, 130]

where 1 F1(a, b; z) is the confluent hypergeometric function. The curves of 
Figure 11.8a are shown as the inverse Fourier transform of (11.65) with s = iω.

For ξ less than 15 dB, there is no significant difference between the semicircle 
distribution and the exact model. Even for ξ up to 20 dB, the simulation results are 

(11.65)exp

(
1

2
ξ2s

)

1

F1(1−s; 2; −ξ2s),
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closer to the exact model but the difference between the exact and semicircle distri-
bution is small.

Figure 11.8b compares the simulated STD of the overall MDL σmdl as a function 
of ξ =

√
Kσg to the approximation for σmdl given by (11.57) for a fiber with  

D = 64 modes. The approximation (11.57) agrees with simulated results within 
0.01 dB for ξ up to 10 dB. For ξ from 10 to 20 dB, the overall MDL approximation 
(11.57) is always smaller than the simulated results and the discrepancy between the 
simulations and the approximation (11.57) increases to 0.15 dB. The discrepancy may 
arise from our simulating matrices of size D = 64 instead of infinitely large matrices. 
The discrepancy may also be caused by numerical uncertainty. Nevertheless, the 
approximation (11.57) can be considered highly accurate.

Figure 11.8b also shows the simulated maximum MDL difference, which is the 
mean of the maximum gain difference 

〈
g

(t)
1 − g

(t)
64

〉
. In the range of ξ up to 15 dB, 

where the simulated distribution is close to the semicircle distribution (as seen in 
Figure 11.8a), the STD of overall MDL σmdl is as high as 33.4 dB and the maximum 
MDL difference is as high as 81 dB. Practical MDM systems should have MDL well 
below those values.
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FIGURE 11.8  Mode-dependent loss (MDL) in fiber with D = 64 modes. (a) Comparing 
simulated distribution of the overall MDL (circles) with the semicircle distribution (solid 
curves) and exact model from (11.65) (dashed curves). The x-axis of each curve is 
normalized by the simulated STD of the overall MDL σmdl. (b) Comparing simulated STD of the 
overall MDL (circles) to approximation (11.57) (solid curves). The simulated mean maximum 
MDL difference is also shown (squares). Adapted from [28].
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We conclude that for fibers with 64 modes, Proposition I is valid for ξ up to 
15 dB, corresponding to σmdl up to 21.2 dB. The overall MDL approximation (11.57) 
from Proposition II is valid for values of ξ up to 20 dB. Over the range of validity of 
Proposition II, there is no observable difference between the exact model (11.58) and 
simulation results.

11.4.4.2  Six-mode fibers
The previous section confirms numerically that Propositions I and II are valid for 
fibers with D = 64 modes. The theoretical comparisons in Section 11.4.3 also found 
that Propositions I and II are valid for PDL in SMF, i.e. D = 2 modes. The eigenval-
ues of small zero-trace Gaussian unitary ensembles can be derived analytically by 
direct integration [10,28] or by algebraic substitution, as in (11.44).

Figure 11.9 compares results simulated for D = 6 modes with the approximate dis-
tribution (11.44), shown by solid lines. The approximate distribution (11.44) according 
to Proposition I is scaled by the overall MDL (11.57) according to Proposition II. The 
exact model (11.58), with distribution given by [118], is also shown by dashed lines. 
The MMF has K = 256 sections. Each curve is constructed using 300,000 eigenvalues.
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FIGURE 11.9  MDL in MMF with D = 6 modes. (a) Comparing simulated distribution of the 
overall MDL (circles) with the six-peak distribution from Figure 11.5 (solid curves). The 
x-axis of each curve is normalized by the simulated STD of the overall MDL σmdl. Also shown 
as dashed curves are the distributions derived from the exact model (11.58). (b) Comparing 
simulated STD of the overall MDL (circles) to approximation (11.57) (solid curves). The 
simulated mean maximum MDL difference is also shown (squares).



530 CHAPTER 11  Mode Coupling

In Figure 11.9a, for a fiber with D = 6 modes, we observe that the simulated 
distribution matches the probability density (11.44) until ξ = 13 dB. The exact model 
(11.58) is valid up to ξ = 20 dB. As explained in Section 11.3, the number of peaks 
is the same as the number of modes, and each peak corresponds to values where the 
gain is concentrated.

In Figure 11.9b, for a fiber with D = 6 modes, we observe that the approximation 
for σmdl given by (11.57) is always smaller than the simulated results. The discrepancy 
is up to 0.05 dB for ξ up to 10 dB, but increases to 0.20 dB for ξ up to 20 dB. The exact 
model should provide a more accurate value of overall MDL, but the difference is 
already very small.

The numerical simulations of Figure 11.8 and Figure 11.9 show that Propositions I 
and II are valid in the small-MDL regime. With Proposition II and to a large extent even 
the exact model (11.58), the overall MDL depends solely on the accumulated MDL ξ. 
In strong-coupling regime, similar to the MD relationship (11.45), MDL depends on 
the square-root of the number of independent sections or the square-root of system 
length. With strong coupling, due to averaging effects, both MD and MDL depend on 
the square-root of the system length, i.e. strong coupling reduces both MD and MDL.

11.4.5  Spatial whiteness of received noise
In multimode systems using optical amplifiers, the amplified spontaneous emission 
noises generated in different uncoupled modes should be statistically independent. 
The MDL described in the previous sections affects both signal and noise, how-
ever, potentially making the noise spatially non-white. In system simulation using 
the matrix cascade of (11.20), it is straightforward to include multiple noise sources 
to capture this spatial correlation, as in [29]. It is helpful to observe, however, that if 
the number of noise sources is very large, the noises in different modes should have 
nearly the same power, and should be nearly uncorrelated with each other. This spa-
tial whiteness is explained here.

Consider a system comprising K spans. For simplicity, suppose the Kth (last) 
fiber section contains a noise source, and that in the local uncoupled modes of the 
Kth section, it contributes independent noises with powers σ 2

K ,µ, µ = 1, . . ., D. At 
the fiber output, the electric fields from this noise source are described by a vector 
V(K )diag

[
σK ,1, σK ,2, . . . , σK ,D

]
n, where n is a D-dimensional Gaussian noise vec-

tor having independent identically distributed (i.i.d.) elements with unit variance. At 
the fiber output, the noise correlation matrix is:

For a given realization of the random unitary matrix V(K ), the output noises may 
be neither independent nor identically distributed. Taking an expectation over all 
random matrices V(K ) yields:

(11.66)V(K )diag
⌊
σ 2

K ,1, σ 2
K ,2, . . . , σ 2

K ,D

⌋
V(K )∗ .

(11.67)

〈
V(K )diag

[
σ 2

K ,1, σ 2
K ,2, . . . , σ 2

K ,D

]
V(K )∗

〉
=

σ 2
K ,1 + σ 2

K ,2 + · · · + σ 2
K ,D

D
I,
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which is a constant times the identity matrix, and hence describes a noise vector with 
i.i.d. elements.

Considering a noise source in the kth fiber section, its output noise contribution is

The SVD of M(K ) · · · M(k+1)V(k)diag
[
σk,1, σk,2, . . . , σk,D

]
 may be assumed to 

yield Ṽ(k)
n �̃

(k)
n Ũ

(k)
n , with output noise correlation matrix equal to Ṽ(k)

n (�̃
(k)
n )2Ṽ

(k)∗
n , 

which is of the same form as (11.66), with Ṽ(k)
n  independent of V(K ).

When the total number of noise sources is very large, by the law of large numbers 
[128, Section 7.4], the overall noise correlation matrix converges to a form similar to 
(11.66). The law of large numbers is applicable provided the number of noise sources 
is large and the Ṽ(k)

n  for each k indexing a noise source are independent, random uni-
tary matrices. Based on the law of large numbers, at the fiber output, the noises in the 
different modes are i.i.d. Ideally, the receiver uses V(t)∗ to diagonalize the channel, 
as in (11.61). After diagonalization, provided the number of noise sources is large 
and the V(t)∗Ṽ

(k)
n  for all values of k indexing noise sources are independent, random 

unitary matrices, the law of large numbers is applicable, and the noises in the differ-
ent diagonal spatial channels are i.i.d. Because of the relationship between V(t), Ṽ

(k)
n , 

and the individual U(k) and V(k), the matrices V(t)∗Ṽ
(k)
n  are random unitary matrices, 

except in special cases.
Typically, the law of large numbers is concerned with averages. The overall noise 

correlation matrix is a summation over the correlation matrices corresponding to all 
the independent noise sources. The normalized cross-correlation of the noise is char-
acterized by the ratios between its off-diagonal elements and its diagonal elements 
that are variances proportional to the number of noise sources. Thus, the normalized 
cross-correlation is implicitly an “average,” to which the law of large numbers is 
applicable.

Figure 11.10 shows simulations quantifying the spatial non-whiteness of the 
output noise as a function of 1/

√
K , where K is the number of noise sources. These 

simulations, for D = 8 modes, are similar to those in [28]. All K noise sources are 
spatially white, i.e. they contribute i.i.d. noises with equal variance in all D uncoupled 
modes. The accumulated MDL ξ =

√
Kσg is held constant at either 5 or 10 dB.

Given a realization of the M(k), k = 1, . . . , K, described by (11.19) with �(k) given 
by (11.60) and a realization of the K noise sources, a realization of the D output noises 
is obtained; the absolute square of its discrete Fourier transform yields a realization of a 
spatial noise spectrum. Taking an ensemble average of the spatial noise spectrum over 
realizations of the noise sources yields a spatial spectral distribution, which quantifies 
the spatial whiteness of the output noise. If the output noises are uncorrelated (and thus 
i.i.d., since they are jointly Gaussian), the spatial spectral distribution is white, whereas 
if the noises are correlated, the spatial spectral distribution is non-white. The spatial 
spectral distribution is also the discrete Fourier transform of the spatial autocorrelation 
sequence of the D output noises [128, Section 9.3.4]. The procedure for calculating the 
spatial spectral distribution from the spatial autocorrelation sequence is similar to the 
serial correlation test for randomness described in [131, Section 3.3.2.K]. Figure 11.10 

M(k) · · · M(k+1)V(k)diag
[
σk,1, σk,2, . . . , σk,D

]
n.
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quantifies non-whiteness by the STD of the spatial spectral distribution, presenting 
both the worst-case (maximum) and mean of the STD among 100 realizations of M(k) 
for each value of K. The number of noise sources K ranges from 4 to 256.

In Figure 11.10, the spatial spectral distribution is observed to approach a white 
spectrum as K increases, with the STDs decreasing with the square-root of K, as given 
by the law of large numbers [128, Section 5.10.3]. The straight lines in Figure 11.10 
indicate the best-fit slope of the STDs as function of 1/

√
K . For different values of 

accumulated MDL ξ =
√

Kσg, the slope is found to be approximately proportional 
to the value of overall MDL σmdl  (11.57). While the simulated worst-case STD at 
any particular value of K is not statistically significant, slopes fitted to the worst-case 
STDs are clearly about twice as large as those fitted to the mean STDs. If a mean 
STD of 0.5 dB is desired, K needs to be larger than 8 and 42 for ξ = 5 and 10 dB, 
respectively. If a worst-case STD of 0.5 dB is desired, K needs to be larger than 25 
and 160 for ξ = 5 and 10 dB, respectively. In any case, the spatial spectral distribu-
tion exhibits far smaller variations than the signal power variations caused by MDL.
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FIGURE 11.10  Spatial non-whiteness of the output noise, quantified by the STD of the spatial 
spectral distribution as a function of 1/

√
K , where K is the number of noise sources, for  

D = 8 modes. The markers are simulation results, and the solid lines are fitted numerically. 
Upper and lower data sets for the corresponding accumulated MDL represent the maximum 
and mean of the STD over 100 random realizations at each value of K. The upper two data 
sets are for accumulated MDL ξ  = 10 dB and the lower two are for accumulated MDL ξ  =  5 dB. 
Adapted from [28]. (For interpretation of the color in this figure, the reader is referred to the 
web version of this book.)
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Figure 11.10 confirms that spatial whiteness is a good assumption for systems 
with many noise sources, such as the long-haul systems considered in this chap-
ter. This assumption may not be accurate for systems with a small number of noise 
sources, however.

11.4.6  Frequency-dependent mode-dependent loss and gain
In general, MDL depends on frequency if the diagonal matrix in each section, �(k) (ω) 
(11.17), includes both non-zero MDL vector g(k) (11.15) and non-zero modal GDs 
vector τ (k) (11.16). The overall propagation matrix M(t)(ω), given by (11.20), is 
frequency-dependent. This frequency dependence of MDL gives frequency diversity. 
Frequency-dependent MDL has a coherence bandwidth that should be inversely 
proportional to the STD of GD, σgd. If MDM signals occupy a bandwidth far larger 
than the MDL coherence bandwidth, because of statistical averaging, signals at 
frequencies with large MDL are complemented by signals at frequencies with small 
MDL. This frequency diversity is described here, and its system implications are 
explained in Section 11.6.2.

Similar to MIMO wireless systems [26,27], at any single frequency, using SVD, 
the overall matrix M(t)(ω) can be decomposed into D spatial channels:

where U(t)(ω) and V(t)(ω) are frequency-dependent input and output unitary beam-
forming matrices, respectively, and

Here, g(t)(ω) =
(

g
(t)
1 (ω), g

(t)
2 (ω), . . . , g

(t)
D (ω)

)
 is a frequency-dependent vector 

of the logarithms of the eigenvalues of M(t)(ω)M(t)(ω)∗, which quantifies the 
overall MDL of an MDM system. The decomposition (11.68) is the same as that of 
(11.61) at each individual frequency and the diagonal matrix (11.69) is the similar 
to (11.62).

The MDL given by the SVD (11.68) is frequency-dependent in general. In the 
special case that there is no MD, such that σgd =

√
Kστ is equal to zero, the MDL is 

independent of frequency as assumed in Section 11.4.3. Assuming non-zero σgd, the 
correlation of the MDL at two frequencies depends on the frequency separation. If 
the frequency separation is small, the phase factors for the uncoupled modes appear-
ing in (11.17) are similar, leading to similar MDL values at the two frequencies. If 
the frequency separation is large, the values of M(t)(ω) at the two frequencies are 
independent, leading to independent MDL at the two frequencies.

Considering the simplest case of two modes, Figure 11.11 illustrates the frequency 
dependence of MDL in the regimes of small and large GD spread, quantified by σgd,  

(11.68)M(t)(ω) = V(t)(ω)�(t)(ω)U(t)(ω)∗,

(11.69)�
(t)

(ω) =




e
1
2 g

(t)
1 (ω)

0

. . .

0 e
1
2 g

(t)
D

(ω)


 .
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the STD of GD. Over the frequency range shown, the gains g
(t)
1 (ω) and g

(t)
2 (ω) 

(and thus the MDL) vary slowly for small σgd and rapidly for large σgd, as shown in 
Figure 11.11a and b, respectively. For signals launched into two orthogonal reference 
modes, the output powers (in logarithmic units) are

respectively. Over frequency, these output powers vary slowly for small σgd and 
rapidly for large σgd, as shown in Figure 11.11c and d, respectively. For MDM 
signals spanning the frequency range shown, Figure 11.11c and d would corre-
spond to regimes of low diversity order and moderate-to-high diversity order, 
respectively.

The correlation properties of MDL should depend on the normalized frequency 
separation ϑ = �ωσgd/2π, where Δω is the angular frequency separation. For small 
normalized frequency separation, ϑ ≪ 1, the MDLs at the two frequencies are iden-
tical, while for large normalized frequency separation, ϑ ≫ 1, the MDLs at the two 
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FIGURE 11.11  Frequency dependence of the MDL in a two-mode fiber for (a) small σgd 
and (b) large σgd, where σgd is the STD of GD. Output powers of signals launched into two 
orthogonal reference modes for (c) small σgd and (d) large σgd. Adapted from [30].
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frequencies are independent. The coherence bandwidth of MDL should be of the 
same order as the reciprocal of the overall STD of GD, 1/σgd; hence, the normalized 
coherence bandwidth should be of order unity.

Figure 11.12 shows simulations of the gain vector g(t)(ω) defined in (11.69) as 
a function of normalized frequency separation ϑ. The MMF has D = 10 modes and 
an accumulated MDL ξ =10 dB. The MMF comprises K = 256 statistically identi-
cal sections, the same as in Section 11.3.2. The gain vector in each section g

(k)
 is the 

same as that in Section 11.4.4. The GD vector τ (k) in each section is generated as 
a Gaussian random vector whose entries sum to zero, using the method described 
in the Appendix of [28]. Each curve in Figure 11.12 corresponds to one of the ele-
ments of the vector g(t)(ω) as a function of normalized frequency separation ϑ. The 
x-axis of Figure 11.12 is the normalized frequency separation with respect to the first 
frequency.

Figure 11.12 illustrates how the correlation of the MDL depends on frequency 
separation, similar to Figure 11.11a and b. The gain of each mode is a smooth, 
continuous curve, so each modal gain is highly correlated for small frequency 
separations. Conversely, each modal gain is uncorrelated for large frequency 
separations. Figure 11.12 also shows that the highest and lowest modal gains are 
subject to larger variations than the intermediate modal gains because the outer peaks 
of the probability density function exhibit a larger spread than the inner peaks.

Figure 11.13 shows the correlation coefficients of the elements of the modal 
gain vector g(t)(ω) as a function of normalized frequency separation. The simulation 
parameters are the same as in Figure 11.12, but the correlation coefficients are calcu-
lated with 23,000 realizations of modal gain curves, each similar to Figure 11.12. In 
Figure 11.13, the correlation coefficient is calculated for each gain coefficient after 
conversion to a decibel scale. In Figure 11.13, the 10 curves are observed to cluster 
into five pairs, which are for the gain coefficients g

(t)
µ  and g

(t)
D−µ+1, µ = 1, . . ., 5. 
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FIGURE 11.12  Modal gains, g (t )
µ µ = 1, …, D, as a function of normalized frequency 

separation for a fiber with D = 10 modes. Adapted from [30].
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The correlation coefficients are observed to decrease with an increase of μ. Refer-
ring to Figure 11.12, the highest and lowest two curves (µ = 1, g

(t)
1 , g

(t)
10) exhibit 

the largest (and similar) correlation over frequency, while the middle two curves 
(µ = 5, g

(t)
5 , g

(t)
6 ) exhibit the smallest (and similar) correlation over frequency.

In Figure 11.13, it is difficult to uniquely define a single coherence bandwidth for 
all the modal gains, because they decay at different rates, and do not decay fully to 
zero at large normalized frequency separation (this may arise, at least in part, from 
numerical errors). Considering the highest and lowest gains with the largest correla-
tions, the normalized one-sided coherence bandwidths are 0.25 or 0.67 for correla-
tion coefficients of 50% or 10%, respectively. At 10% correlation coefficient, the 
normalized one-sided coherence bandwidth ranges from 0.32 to 0.67 for the different 
gain coefficients. At a normalized frequency separation of unity, the correlation coef-
ficients range from 0 to 4.7% for the different gain coefficients.

Figures 11.11–11.13 illustrate the frequency dependence of MDL. For wide-band 
MDM systems, frequencies having large MDL may be statistically averaged with 
frequencies having small MDL, at a frequency separation beyond the coherence 
bandwidth. The system benefits of this frequency diversity are quantified in Section 
11.6.2.

Because the MDL is frequency-dependent, the potential exists for the received 
noise power spectrum to become non-white over frequency. Using arguments similar 
to those in Section 11.4.5 above, it can be shown that as the number of noise sources 
K becomes large, the received noise becomes white over frequency.
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FIGURE 11.13  Correlation coefficients of modal gains, g (t )
µ µ = 1, …, D, as a function of 

normalized frequency separation for a fiber with D = 10 modes. Also shown is the correlation 
coefficient of the average channel capacity, which is used in Section 11.6.2, assuming a 
SNR of 20 dB and assuming CSI is not available at the transmitter. Adapted from [30].
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11.5  DIRECT-DETECTION MODE-DIVISION MULTIPLEXING
In short-range links, MDM using direct detection may be possible. Signals may be 
intensity-modulated or modulated by differential phase-shift keying. The entire end-
to-end system must be designed with great care to avoid crosstalk between multi-
plexed signals and signal distortion by MD, or else these effects must be avoided 
by adaptive optical signal processing. If signal distortion and crosstalk are allowed 
to occur, they cannot be compensated fully by linear electrical signal process-
ing, because of nonlinearity caused by higher-order MD [30,82], as explained in 
Section 11.3.1.

Direct-detection MDM has been proposed numerous times since the early 1980s. 
Some of the first proposals were based on multiplexing signals at different angles 
[132] or at different radial offsets [7], and attempted to exploit the relatively weak 
coupling between different mode groups over short distances, especially in step-
index fibers with high GD differences between different mode groups. More recent 
works have pursued various approaches to multiplexing signals into weakly coupled 
mode groups [8,9,14,15,133,134]. As of this writing, however, we are not aware of 
any direct-detection MDM systems that have achieved significantly higher through-
put than conventional MMF links.

In systems where MDL is negligible or small, MDM using optical signal 
processing to exploit PMs [135] can avoid crosstalk and signal distortion from 
MD in principle. Figure 11.14 shows a conceptual link design, assuming a single 
wavelength channel. To explain the operating principle, assuming the signal spans 
a narrow band near angular frequency ω, we can represent signal propagation by 
M(t) (ω) = V(t)

�
(t) (ω) U(t)∗ (11.23). Recall that the columns of U(t) and V(t) describe 

the input and output PMs, respectively. In Figure 11.14, a modal multiplexer at the 
transmitter maps input signals into different input PMs, implementing U(t), while 
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FIGURE 11.14  Schematic direct-detection mode-division multiplexed (MDM) system that 
multiplexes transmitted signals in input PMs, and demultiplexes received signals from output 
PMs. Adaptive optical components are used in both multiplexer and demultiplexer, with 
spatial light modulators shown as an example.
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a modal demultiplexer at the receiver maps output signals from the corresponding 
output PMs, implementing V(t)∗. Propagation of the multiplexed signals is described 
by �(t), given by (11.24), which causes no crosstalk and no distortion, as explained 
in Section 11.3.1. By performing only memoryless optical signal processing, we 
have avoided signal distortion, obviating the need for signal processing that has 
memory. If the coherence bandwidth of the PMs (see Section 11.3.1) is sufficiently 
large, it may be possible to use the modal multiplexer and demultiplexer for multiple 
wavelength-division-multiplexed channels, similar to [136].

The modal multiplexer and demultiplexer in Figure 11.14 must be adjusted 
to track changes in the PMs caused by environmental perturbations. Spatial light 
modulators (SLMs) [13–15,133–137] or photonic integrated circuits [138–140] can 
be employed, but some algorithm is needed to determine the device settings. If the 
fiber propagation operator is known, the SVD M(t) (ω) = V(t)

�
(t) (ω) U(t)∗ given 

by (11.23) may be computed, and then the input and output SLMs can be set to 
implement U(t) and V(t)∗, respectively. In practice, it may be difficult to measure the 
propagation operator and compute the SVD, so it may be preferable to adjust the mul-
tiplexer and demultiplexer using an adaptive algorithm that optimizes their settings 
based on measurement of eye openings, signal-to-noise-plus-interference ratios, or 
some other metrics. Standard adaptive algorithms [141] are not readily applicable. 
An adaptive algorithm for setting the SLMs is described in [135]. Adaptation of the 
modal multiplexer at the transmitter can be problematic in long-haul systems, where 
the round-trip signal propagation delay can be tens of milliseconds, which is longer 
than the time scale on which fiber properties can change.

An important outstanding question concerns how to implement the adaptive 
multiplexer and demultiplexer so as to minimize loss and crosstalk. For multiplexing 
(or demultiplexing) D modes, one can use D separate SLM regions to track the 
input (or output) PMs, and use beamsplitters for signal combining (or splitting). A 
multiplexer or demultiplexer would have a loss of at least 1/D, for a combined loss of 
at least 1/D2. Alternatively, these devices can be implemented using the principle of a 
multiplexed correlator [15] or photonic integrated circuit [138–140], but it is not clear 
how the resulting loss and crosstalk scale with the number of multiplexed modes D.

Higher-order MD, described in Section 11.3.1 above, poses a fundamental 
limitation to direct-detection MDM systems. Although PMs are independent of 
frequency to first order, their frequency dependence can become important for 
wideband signals or long-haul propagation [30,82]. When U(t) or V(t) become fre-
quency-dependent, SLMs or similar frequency-independent devices cannot realize 
them, and it may be too difficult or costly to implement frequency-dependent adap-
tive optics. Higher-order MD can cause nonlinear signal distortion and crosstalk 
that cannot be compensated effectively by linear electrical signal processing after a 
direct-detection receiver.

MDL poses another fundamental limitation to direct-detection MDM systems. 
Even in short links without optical amplifiers, MDL can be caused by offset 
connectors. MDL can make the signal-to-noise ratios different for various multiplexed 
signals. When signals are multiplexed into orthogonal input PMs, MDL can cause the 
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received signals to become non-orthogonal, making it impossible to simultaneously 
avoid MD and crosstalk [142].

For D = 2, Figure 11.14 corresponds to polarization multiplexing in SMF by 
adaptively multiplexing into input PSPs and demultiplexing from output PSPs, which 
is fundamentally limited by higher-order PMD [143,144] and by PDL. To avoid the 
difficulties associated with an adaptive transmitter, it is far easier to multiplex signals 
into any pair of orthogonal polarization states, and use adaptive optical PMD com-
pensation at the receiver prior to polarization demultiplexing (as a further simplifica-
tion, PMD compensation may be replaced by simple polarization tracking, making 
the system subject to degradation by PMD [145–147]). By contrast, for D > 2, using 
a fixed orthogonal launch is probably not practical, because receiver-based adaptive 
optical compensation of MD becomes increasingly complicated as D increases.

11.6  COHERENT MODE-DIVISION MULTIPLEXING
As described in Section 11.5 above, in direct-detection MDM, unless the entire 
end-to-end system can be designed to achieve minimal crosstalk and distortion, it 
may be necessary to multiplex into input PMs at the transmitter and demultiplex 
from output PMs at the receiver using adaptive optics. Assuming frequency-
independent multiplexers and demultiplexers, the usable signal bandwidth should 
not exceed the coherence bandwidth of the PMs, or higher-order MD will cause 
nonlinear distortion and crosstalk.

By contrast, in coherent MDM, the transmitter needs only multiplex signals into 
some orthogonal set of modes, and the receiver needs only to project the received sig-
nal onto some orthogonal set of modes [12,77] and perform dual-quadrature detec-
tion of each mode, providing sufficient statistics for signals to be separated using 
MIMO DSP [1–4,12,18,20]. In a coherent system, an arbitrarily large GD spread and 
arbitrary-order MD can be compensated with no penalty, provided laser phase noise 
is sufficiently small and the channel does not change too rapidly.

A coherent system may use either single- or multi-carrier modulation [1,2,18,148]. 
Multi-carrier modulation is typically implemented using OFDM, as we assume 
throughout this section. To compare these options briefly, single-carrier modulation 
is expected to incur less degradation from fiber nonlinearity, and typically requires a 
simpler transmitter but slightly more complex DSP at the receiver. OFDM is expected to 
incur more degradation from fiber nonlinearity and requires more complex DSP at the 
transmitter, but uses a simpler receiver architecture with lower computational complexity.

In this section, we address important issues governing the complexity and per-
formance of coherent MDM systems, using the analyses of MD and MDL from 
Sections 11.3 and 11.4. In Section 11.6.1, we study how MDL can reduce average 
channel capacity. In Section 11.6.2, we show that strong mode coupling and MD 
lead to frequency diversity that can reduce outage probability. In Section 11.6.3, we 
discuss MIMO DSP methods for multi- or single-carrier MDM systems, and study 
how MD affects the implementation complexity of MIMO DSP.
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11.6.1  Average channel capacity of narrowband systems
Long-haul MDM systems are assumed here to use inline optical amplification and 
coherent detection. The dominant noise at the receiver is assumed to arise from ampli-
fied spontaneous emission. The received noise power spectral density is assumed to 
be the same in each mode, as was assumed in wireless communications [26,27]. This 
assumption of spatially white noise was justified analytically and verified numeri-
cally in Section 11.4.5, but differs from the assumption made in [29]. The signal-to-
noise ratio (SNR) ρt is defined as the received signal power (total over all D modes) 
divided by the received noise power (per mode). Throughout this subsection, the 
channel capacity at a single frequency is considered, assuming the signal has a very 
narrow bandwidth, as in [28,29].

Our definition of SNR follows the convention used in wireless MIMO systems 
[26] and is compatible with a conservative assumption that the total signal power 
in all D modes is constrained independent of D, while the noise power per mode is 
independent of D. Nevertheless, our results, if interpreted correctly, do not depend on 
this assumption in any way. For example, one might reason that the total signal power 
constraint scales in proportion to the number of modes D for a fixed time-averaged 
nonlinear phase shift, since D scales approximately in proportion to the core area 
from Section 11.2.1 and [47]. To accommodate such a constraint, one may scale the 
SNR as ρt = D · ρ1, where ρ1 is the SNR per mode. Note, however, that both MD and 
CD may reduce nonlinear interactions between different modes [149–152].

In an MMF without MDL, such that all modes have equal gain, the power received 
in each mode is equal, and the channel capacity is equal to

Throughout this chapter, channel capacity is expressed on a per-unit-bandwidth 
basis (i.e. in terms of spectral efficiency), and has units of b/s/Hz. When the SNR is 
much greater than the number of modes, the capacity (11.70) increases almost linearly 
with the number of modes. When the SNR is much less than the number of modes, 
the channel capacity is approximately proportional to SNR and independent of the 
number of modes. In the limit of an infinite number of modes, the capacity is given 
asymptotically by C∞ = ρt log2 e, which is independent of the number of modes.

In MMF with MDL, channel state information (CSI) represents the information 
about a channel, described by a propagation operator M(t)(ω) (11.20), required by 
a transmitter to allocate transmit power optimally. CSI is defined more precisely in 
Section 11.6.1.2. In a coherent MDM system, the availability of CSI at the trans-
mitter is an essential factor governing channel capacity. In the absence of CSI, an 
increase in MDL always leads to a decrease in capacity. In the extreme limit of MDL, 
the fiber supports propagation in only one mode. If CSI is available to the transmit-
ter, only the surviving mode is used for transmission, and the channel capacity is 
log2(1 + ρt ), which is (11.70) with D = 1. If CSI is not available and the surviving 
mode is not known to the transmitter, the transmitter must allocate equal power to all 

(11.70)C = D log2

(
1 +

ρt

D

)
.
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modes, and the channel capacity is log2(1 + ρt/D). As demonstrated below, channel 
capacity can be improved greatly by the availability of CSI. In some situations, when 
CSI is available, the channel capacity with MDL may exceed the capacity (11.70) 
without MDL.

Because MDL is a statistical phenomenon, as explained in Section 11.4, the 
channel capacity by itself is a random variable. In narrowband MDM systems, it is 
more relevant to study outage capacity, as in [28,29], than average capacity. As shown 
in Section 11.6.2, it is likely that practical MDM systems will need to operate in a 
wideband regime in which strong mode coupling and MD provide frequency diversity, 
such that the overall outage capacity approaches the average channel capacity, which 
is independent of bandwidth (when expressed on a per-unit-bandwidth basis). With 
this in mind, here we study only the average channel capacity of narrowband systems.

11.6.1.1  Average channel capacity without channel state information
When CSI is not available, the transmitter allocates equal power to each mode. Given 
the number of modes D and a realization of the gain vector g(t) (11.15), the instanta-
neous channel capacity is

Taking the average of (11.71), the average channel capacity is:

where pD(x) is the probability density defined in (11.44) with unit variance, σmdl is 
the STD of overall MDL, and the constant χ is determined by the constraint:

If the noise power per mode is normalized to unity, the constant χ is the total 
transmitted power and χ/D in (11.72) is the transmitted power per mode. Because 
of Proposition I of Section 11.4.1, the probability density pD (x) is the same as 
(11.44). However, scaling is required, as the probability density given by (11.44) has 
a variance of  

1
2
(D − D−1) instead of unity.

From Section 11.4, the MDL (measured in units of decibels or log power gain) 
has zero mean. Measured on a linear scale, the overall power loss/gain of a K-section 
MMF, summed over all D modes, is equal to coshKσg. This overall gain gives a 
Lyapunov exponent, defined in [120–122], of log cosh σg. The factor χ, given by 
(11.73), normalizes the overall gain to unity, as measured on a linear scale. For a 
system with MDL, the channel gains are not constant, but are random variables. 
The SNR ρt is the mean (statistical average) SNR, and the factor χ given by (11.73) 
can be interpreted as the ratio of the mean SNR to the mean gain of the channel.  

(11.71)C =
D∑

i=1

log2

[
1 +

χ

D
exp

(
g
(t)
i

)]
.

(11.72)C = D

∫ +∞

−∞
log2

[
1 +

χ

D
exp(σmdlx)

]
pD(x)dx ,

(11.73)χ =
ρt∫ +∞

−∞ exp(σmdlx) pD(x)dx
.
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The product χ exp (σmdlx) in (11.72) can be interpreted as the SNR of a channel 
realization with normalized gain x.

Analytical expressions are available for the constant χ, given by (11.73), but are 
too complicated for practical calculations. There is no known analytical expression 
for the capacity (11.72) except in the limit of very large D. Numerical integration of 
(11.72) may be employed to find the channel capacity. For fibers with a large number 
of modes, MDL is log-semicircle distributed, and the constant χ becomes

where I1(·) is the modified Bessel function of the first kind. If D is far larger than 
χ · exp(2σmdl), where 2σmdl is the upper limit of the semicircle distribution, the chan-
nel capacity approaches C∞. In this limit, each mode is allocated a very small power, 
and the overall capacity is proportional to the total power.

Figure 11.15 shows the average capacity with MDL but without CSI, as a function 
of the accumulated MDL ξ =

√
Kσg, for fibers with various numbers of modes D. As 

CSI is unavailable, equal power is allocated to each mode. The mean SNR is ρt = 10 
dB. In Figure 11.15, the theoretical channel capacity is calculated by using (11.57) to 

χ =
ρtσmdl

2I1 (σmdl)
,
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find the STD of overall MDL σmdl, and the probability distributions (11.45) (scaled 
to unit variance) are used in both (11.72) and (11.73) to compute the average channel 
capacity. The simulations use channel matrices generated by the same methods used 
to generate Figure 11.9.

In Figure 11.15, in the absence of CSI, average channel capacity always decreases 
with increasing ξ, particularly in fibers with smaller numbers of modes D. For values 
of ξ up to 10 dB, the average channel capacities from theory and simulation match 
very well. For a two-mode fiber, theoretical and simulated capacities match within 
5% up to ξ = 11 dB. For a 512-mode fiber, theoretical and simulated capacities match 
within 5% up to ξ = 19 dB. The discrepancy between theory and simulation decreases 
with an increase in the number of modes.

The total launched power, equivalent to χ given by (11.73), is assumed not to 
change with the random realization of MDL. Satisfying this assumption requires 
that there be no amplifier saturation caused by MDL in each stage. For example, 
consider a two-mode case with unit total input power, unit noise level (in the absence 
of saturation), unit SNR, and gains of 0.5 and 1.5 (measured in linear units). In the 
absence of saturation, the output powers may vary from 0.5 to 1.5, depending on the 
alignment of the input signal to the eigenmodes of MDL (i.e. the modes of minimum 
and maximum gain). When saturation occurs, however, the maximum output pow-
ers may be limited to values less than the nominal value of 1.5, while noise levels 
decrease proportionally to maintain the mean SNR of unity. The model given here 
does not take account of these effects. If there are many optical amplifier stages or 
the system has a wide bandwidth, similar to the arguments of Section 11.4.5 based on 
the law of large numbers, a gain reduction in one stage (or at one frequency) should 
be compensated well by a gain enhancement in other stages (or at other frequencies). 
However, saturation effects for MDM systems are not well studied at this writing.

Due to statistical averaging, the outage capacity approaches the average channel 
capacity for a wideband system with strong mode coupling, as shown in Section 
11.6.2.

11.6.1.2  Average channel capacity with channel state information
Ideally, in the operation of a MIMO system, the receiver estimates the overall 
channel matrix M(t), computes the channel decomposition M(t) = V(t)

�
(t)U(t)∗ 

(11.61), sends a description of the precoding matrix U(t) and the gain vector g(t) to 
the transmitter, and uses the received beam-forming vector V(t) in decoding received 
signals [26]. The matrix U(t) and the gain vector represent CSI that is to be fed back 
from the receiver to the transmitter. Transmit power and information bits are allocated 
to spatial channels based on the gain vector g(t).

In a long-haul system, the feedback process described above may become 
impractical if the MMF changes on a time scale shorter than or comparable to the 
round-trip propagation delay, which can be tens of milliseconds. When feedback 
becomes impossible, space-time codes [153–155] or error-correction codes across 
the spatial channels can provide diversity. In these cases, all spatial channels are 
allocated equal power, yielding the capacity computed in Section 11.6.1.1. As 
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described below in Section 11.6.3.3, receivers for systems with or without CSI have 
the same architecture, apart from the means to estimate CSI to feed back to the 
transmitter.

When CSI is available at the transmitter, transmit power may be allocated to 
spatial channels in an optimal way. If the noise power per mode is normalized to unity 
and the overall gain vector is g(t) known, the optimal transmit powers are given by

where [ ]+ denotes limiting to non-negative values, i.e. [x]+ = max(0, x). The con-
stant η is chosen to satisfy the total power constraint:

with χ given by (11.73). The average channel capacity is

which is an expectation over random realizations of the MDL.
A brute-force method to compute the channel capacity (11.75) involves generating 

many random realizations of the overall matrix (11.20) and computing their singular 
values to evaluate the average capacity [29]. Each realization of (11.20) is the product 
of 3K matrices. Obviously, the total number of matrices can be reduced to 2K + 1 by 
combining U(k+1) and V(k), k = 1, . . . , K − 1, into single random unitary matrices.

Assuming values of MDL sufficiently small to be of practical interest, Propositions 
I and II are valid (see Section 11.4.1). In this regime, a more efficient method of 
computing (11.75) is based on Proposition I, namely, that the joint probability density 
for the vector g(t) is given by the eigenvalue distribution of a zero-trace Gaussian 
unitary ensemble. Hence, a zero-trace random Gaussian Hermitian matrix may be 
generated using the method described in the Appendix of [28], and the eigenvalues 
of the random matrix can be used to compute the capacity (11.75). Also, instead of 
generating new matrices for different values of ξ, Proposition II can be exploited. 
A single matrix may be generated, and the eigenvalues can be scaled using the 
approximation for σmdl given by (11.57).

Figure 11.16 shows the average capacity for a system with MDL and with CSI, as 
a function of the accumulated MDL ξ =

√
Kσg, for fibers with various numbers of 

modes D. The SNR is ρt = 10 dB, which represents a statistical average. The theoreti-
cal curves are obtained using 100,000 zero-trace random Gaussian-Hermitian matri-
ces. Simulated results are obtained using brute-force generation of channel matrices 
by the same methods used for Figures 11.8 and 11.9.

In Figure 11.16, we see that for fibers with D = 2, 4, or 8 modes, even with 
CSI, the channel capacity decreases with increasing MDL. With D = 16 modes, 

[
η − e−g

(t)
µ

]+
, µ = 1, . . . , D,

(11.74)
D∑

µ=1

[
η − e−g

(t)
µ

]+
= χ ,

(11.75)C =
〈

D∑

µ=1

log2

(
1 +

[
ηeg

(t)
µ − 1

]+)〉
,
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at small MDL, the capacity increases with increasing MDL, although it eventu-
ally decreases with a further increase in MDL. More generally, MDL can increase 
capacity when the SNR measured in linear units is small relative to the number of 
modes D. This may seem counter-intuitive, but can be made plausible by the fol-
lowing example for D = 2 modes. Assume that the total transmitted power is unity, 
the noise power per mode is unity, and the mean SNR is ρt = 1. Hence, the mean 
channel gain is 0 dB, corresponding to unity in linear units. Without MDL, using 
(11.70), the channel capacity is 2 log2(1 + 0. 5) = 1. 17  b/s/Hz. Now suppose that 
MDL is present, and that in a particular channel realization, the modal gains are 
−3.01 dB and +1.76 dB, which correspond to 0.5 and 1.5 in linear units (the mean 
of these two values is unity, as in the absence of MDL). When CSI is not avail-
able, the transmitter allocates equal power of 0.5 to each mode. The capacity is 
log2(1 + 0. 5 · 0. 5) + log2(1 + 1. 5 · 0. 5) = 1. 13  b/s/Hz, slightly smaller than that 
without MDL. When CSI is available, the transmitter may allocate all the power to 
the stronger mode. The capacity becomes log2(1 + 1. 5 · 1) = 1. 32  b/s/Hz, slightly 
larger than that without MDL.
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FIGURE 11.16  Average channel capacity for MDM in an MMF as a function of accumulated 
MDL ξ for fibers with various numbers of modes D. CSI is available, and transmit power is 
allocated optimally to each mode, and the SNR is ρt = 10 dB. Theoretical results are shown 
as curves and simulated results are shown as circles. Adapted from [28].
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In Figure 11.16, for a two-mode fiber, theoretical and simulated average capacities 
agree within 5% up to ξ = 11 dB. For a 16-mode fiber, theoretical and simulated 
average capacities agree within 5% up to ξ = 17  dB. The discrepancy decreases with 
an increasing number of modes. While the more exact MDL model (11.58) gives 
slightly more accurate results, values of accumulated MDL ξ > 10 dB are likely too 
large for practical systems.

Although mathematically correct, the results of Figure 11.16 are difficult to 
reconcile with the saturation effects of optical amplifiers. The constraint (11.74) is 
nearly linear in χ, independent of η. Amplifier saturation effects may lead to inter-
dependence between χ and η. Even for wideband systems and systems with many 
amplifier stages, it is not expected that amplifier saturation effects will fully average 
out between frequencies or stages.

In the remainder of this chapter, unless noted otherwise, we assume that CSI is 
not available.

11.6.2  Wideband systems and frequency diversity
In Section 11.4.6, Figures 11.11–11.13 demonstrate that MDL is frequency-dependent, 
and is strongly correlated only over a finite coherence bandwidth. If MDM signals 
occupy a bandwidth far larger than the coherence bandwidth, the outage channel 
capacity should approach the ensemble average channel capacity computed in Section 
11.6.1 due to statistical averaging. For typical values of MDL and SNR, the coherence 
bandwidth of the capacity is found to be approximately equal to 1/σgd, the reciprocal 
of the STD of GD. The difference between the average capacity and the outage 
capacity is found to decrease with the square-root of a diversity order that is given 
approximately by the ratio of the signal bandwidth to the coherence bandwidth of the 
channel capacity.

As explained earlier, the channel capacity for narrowband MDM systems is a 
random variable. Figure 11.17 shows the simulated distribution of the channel 
capacity of a narrowband system with D = 10 modes at an SNR ρt = 20 dB, 
corresponding to an SNR per mode ρ1 = 10 dB, assuming CSI is not available at the 
transmitter. The system parameters are the same as those in Figure 11.13 of Section 
11.4.6. The distribution in Figure 11.17 is constructed using about 5,900,000 channel 
capacity values. In Figure 11.17, the average channel capacity, near the peak of the 
distribution, is about 17.2 b/s/Hz, while the capacity for 10−3 outage probability is 
about 14.3 b/s/Hz. In a wideband MDM system, at any single frequency, the channel 
capacity has the same distribution as that in Figure 11.17.

Figure 11.13 of Section 11.4.6 shows the correlation coefficients of the modal 
gains versus normalized frequency separation, illustrating how the gains at nearby 
frequencies are highly correlated. Figure 11.13 also shows the correlation coef-
ficient of the channel capacity. The capacity is computed as in Figure 11.17, 
assuming an SNR ρt = 20 dB, no CSI available at the transmitter, and equal power 
allocated to all modes. The normalized one-sided coherence bandwidths of the 
channel capacity are 0.31 and 0.92 for correlation coefficients of 50% and 10%, 
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respectively. A normalized frequency separation of unity gives a correlation coef-
ficient of 8.8%.

If MDM signals occupy a bandwidth much greater than the coherence bandwidth 
of the capacity, statistical averaging over frequency should cause the outage channel 
capacity to approach the average channel capacity. Figure 11.18 shows the outage 
capacity as a function of SNR, for signals occupying different bandwidths. All 
parameters are as in Figure 11.13 and Figure 11.17 and the outage probability is 10−3.  
A normalized signal bandwidth is defined as b = Bsigσgd, where Bsig is the signal 
bandwidth (measured in Hz). In Figure 11.18, signals occupy normalized bandwidths 
from b = 0 (a single frequency) to b = 8. The average capacity is also shown for 
comparison. Figure 11.18 shows that as the normalized bandwidth increases, the 
outage capacity approaches the average capacity.

Statistical averaging over frequency is a consequence of the law of large numbers. 
For example, consider two OFDM subchannels at frequencies whose separation 
far exceeds the coherence bandwidth of the capacity, e.g. at two frequencies well 
separated in Figure 11.12b. We assume that the subchannels have capacities C1 and 
C2; these are independent random variables following a common distribution (e.g. 
that in Figure 11.17). A channel comprising the two subchannels has an overall 
capacity 1

2
(C1 + C2), as the capacity is computed on a per-unit-frequency basis. If 
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with D = 10 modes and an SNR of 20 dB, assuming CSI is not available. The average 
capacity and outage capacity at 10−3 outage probability are indicated. Adapted from [30].
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each subchannel capacity has variance σ 2
C, the overall channel capacity has variance 

1
2
σ 2

C, i.e. it is reduced by a factor of two. The channel comprising two independent 
subchannels has a diversity order of two. More generally, given a channel spanning 
a finite bandwidth Bsig, we define the diversity order in terms of a reduction of the 
variance of capacity: a diversity order equal to FD corresponds to a reduction of the 
variance of capacity from σ 2

C to σ 2
C/FD. With this definition, the diversity order may 

be any real number not smaller than unity.
It would be useful to be able to estimate the diversity order FD directly from the 

statistics of the frequency-dependent gain vector g(t)(ω), rather than having to com-
pute the frequency-dependent capacity and characterize its statistics. The method 
of principal component analysis [156] may be used to calculate the diversity order 
directly from the frequency correlation coefficients of the channel capacity. Principal 
component analysis is very similar to the discrete Karhunen-Loève transform [157]. 
The conversion from correlation coefficients to diversity order is explained in detail 
in [30].

Numerical simulations of MDM systems similar to those in Figure 11.18 have 
been performed, with number of modes D = 10 and normalized bandwidth b ranging 
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from 0 to 16. Regardless of the normalized bandwidth b, the distribution of the chan-
nel capacity is found to retain approximately the same shape as that of Figure 11.17, 
but the variance is reduced from σ 2

C to approximately σ 2
C/FD. The mean channel 

capacity does not change with diversity order. The outage capacity as a function 
diversity order is found to follow

where Cout,1 is the single-frequency outage capacity following the distribution in Figure 
11.17. The relationship (11.76) is found to be independent of the outage probability, 
provided the outage capacities Cout,1 and Cout,FD refer to the same outage probability. 
The relationship (11.76) is found to be valid even if the shape of the distribution of 
capacity deviates from that shown in Figure 11.17. If the capacity distribution is 
assumed to be Gaussian, as in [29], the relationship between outage capacity and 
diversity order FD at any particular outage probability can be computed analytically. 
However, when plotted on a semi-logarithmic scale, as in Figure 11.17, the capacity 
distribution is observed to deviate noticeably from a Gaussian distribution, i.e. it is 
slightly asymmetric. This non-Gaussianity is consistently observed at all SNRs and 
all diversity orders.

Figure 11.19 shows the outage capacity reduction ratio, defined as

as a function of 1/
√

FD , where FD is the diversity order computed using principal 
component analysis from the correlation coefficients of the channel capacity shown 
in Figure 11.13. The simulation parameters used for Figure 11.19 are the same as 
those of Figure 11.13 and Figure 11.18, i.e. the MDM system uses D = 10 modes, 
and CSI is not available at the transmitter. Values of the diversity order FD are only 
computed for SNR ρt = 20 dB, as in Figure 11.13, but Figure 11.19 shows values of 
(11.77) computed at SNR ρt = 10 and 20 dB, illustrating that the diversity order FD 
is valid over a wide range of SNR values. The correlation coefficients in Figure 11.13 
are subject to numerical error, as they never go to zero even for large frequency sepa-
rations. To limit numerical error, diversity orders in Figure 11.19 are computed only 
using values of the correlation coefficients from Figure 11.13 that are larger than 1%.

Based on (11.76), the outage capacity reduction ratio (11.77) should approxi-
mately equal 1/

√
FD , and the plots in Figure 11.19 should be straight lines with unit 

slope. In Figure 11.19, the best-fit slope is found to be 1.06. Figure 11.19 clearly 
shows that Cavg − Cout,FD approaches zero as the diversity order FD increases. The 
observed dependence of the difference between average and outage capacities on 
1/

√
FD  is a direct consequence of the law of large numbers. The outage and average 

capacities converge slowly with an increase in diversity order FD. The diversity order 
FD must be four to decrease the capacity difference to half that without diversity, and 
must be 100 to decrease the difference to 10% of that without diversity.

(11.76)Cout,FD
≈ Cavg −

1
√

FD

(
Cavg − Cout,1

)
,

(11.77)
Cavg − Cout,FD

Cavg − Cout,1
,
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The ratio of outage to average capacities, Cout,1/Cavg, decreases with an increase 
of MDL or a reduction of SNR. In the limit of a very high SNR and an MDL smaller 
than the SNR, the channel capacity without CSI (11.71) is approximately equal to 
D log2 χ/D + log2 e

∑D
i=1 g

(t)
i = D log2 χ/D, which is independent of the fre-

quency-dependent gain vector g(t)(ω). The average SNR ρt needs to be large enough 
that even the weakest mode has sufficiently high SNR. At high SNR, the channel 
capacity is independent of g(t)(ω) even for a system with CSI.

The combined matrix model (11.20) shows that the GD statistics do not depend 
on the mode-averaged CD. In the case of spatial-mode-dependent CD, the higher-
order frequency dependence of the GD statistics may be modified slightly. The general 
approach presented here should remain valid. The STD of GD becomes a frequency-
dependent σgd(ω) to include the effect of spatial-mode-dependent CD. The normalized 
frequency separation may be modified to ϑ = (2π)−1

∫ �ω

0 σgd(ω0 + s)ds, where ω0 is 
a reference frequency and Δω is the frequency difference. The normalized bandwidth b is 
always the normalized frequency separation between the lowest and highest frequencies.

Numerical simulation of Figure 11.19 uses a maximum normalized bandwidth of 
b = 16. The diversity order FD is approximately equal to the normalized bandwidth 
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for systems with b � 4. As shown in Section 11.6.3.3 below, receiver DSP complex-
ity scales in proportion to the normalized bandwidth b. Complexity constraints may 
permit systems to have normalized bandwidths b up to the order of 100 or larger. 
Assuming practical MDL values, the outage channel capacity of a wideband system 
with b = 100 should approach the average channel capacity of a narrowband system. 
With such high-order frequency diversity, average channel capacity is a good metric 
for characterizing system performance.

11.6.3  Signal processing for mode-division-multiplexing
In coherent MDM systems, DSP is used at the receiver, and possibly at the transmitter, 
to perform various functions [1–4,18,20]. In the transmitter, DSP may be used for 
precoding, and is used to perform modulation in OFDM systems. In the receiver, 
DSP is used for timing synchronization, frequency and phase synchronization, 
MIMO channel estimation and equalization, and other functions.

Figure 11.20 schematically shows key transmitter and receiver functions in an 
OFDM system, while Figure 11.21 shows corresponding functions in a single-car-
rier system, assuming an FDE-based receiver. These figures show only those func-
tions that are relevant to the discussion in this section, and omit other important 
functions. For simplicity, only one channel in a wavelength-division-multiplexed 
system is shown. “Tx” includes digital-to-analog conversion and electrical-to-
optical conversion and “Rx” includes combination of the signal and a local oscil-
lator in an optical hybrid, optical-to-electrical conversion, and analog-to-digital 
conversion.

In Figures 11.20 and 11.21, the transmitter may optionally include a precoder. 
If CSI is available, precoding may be used with power and bit allocation (often 
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known as “bit loading”) to enhance performance, as discussed in Section 11.6.1.2. 
In this case, assuming the overall propagation matrix is decomposed using SVD 
to M(t)(ω) = V(t)(ω)�(t)(ω)U(t)(ω)∗ (11.68), the ideal precoder is U(t)(ω). Alter-
natively, precoding may be used to implement space-time coding [153–155] for 
spatial diversity. In general, the actual precoder employed is denoted by Ũ(t)(ω). If 
no precoder is used, we can make the assignment Ũ(t)(ω) = I. Even if CSI is avail-
able, the actual precoder Ũ(t)(ω) may not be equal to U(t)(ω) because of estimation 
error in the receiver due to additive noise, quantization noise or round-off error, or 
because of delay in the CSI feedback and estimation process. CSI may be estimated 
for a group of adjacent frequencies, resulting in estimation error at some frequencies 
within the group.

We assume that the overall propagation matrix M(t)(ω) (11.20) includes the 
modal multiplexer and demultiplexer. Including the precoder and mode-averaged 
CD, and ignoring mode-averaged gain, the overall channel response becomes:

where Lt =
∑

k L(k) is the total system length.

11.6.3.1  Multi-carrier signals
Figure 11.20 shows key functions in an OFDM transmitter and receiver. In the 
transmitter, for the mth subchannel at angular frequency ωm, the precoder is Ũ(t)(ωm).  
In the receiver, after downconverting all D spatial channels and performing FFTs 
of each one, each subchannel may be compensated using a memoryless one-tap 

(11.78)H(ω) = M(t)(ω)Ũ(t)(ω) exp

(
− j

1

2
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FIGURE 11.21  Major functions of single-carrier transmitter and receiver in an MDM system, 
assuming the receiver uses frequency-domain equalization (FDE).
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equalizer [158–160]. Assuming a minimum mean-square error (MMSE) equalizer 
[59, Section 15.1–2], the equalizer response in the mth subchannel is:

where Sn(ωm) is the power spectrum of the sampled noise. From Section 11.4.5, 
Sn(ωm) is likely to be approximately proportional to I, but may exhibit variations 
among subchannels. In this section, Sn(ωm) ∝ I is assumed for each subchannel.

Frequency-dependent MDL causes the channel response H(ω) to become non-
unitary over space and frequency. At the output of the equalizer (11.79), the SNR 
may vary widely across different spatial and frequency subchannels. Strong error-
correction coding across subchannels exploits frequency diversity and provides coding 
gain. Many modern strong codes are decoded using soft information, typically the 
log-likelihood ratio [161,162], which is the logarithm of the ratio of the probabilities 
that a bit is equal to 1 or 0. If x(ωm) is the D-dimensional transmitted vector for the 
mth subchannel, the received signal is y(ωm) = H(ωm)x(ωm) + n(ωm), where n(ωm) 
is the additive noise in the subchannel. Assume that bl , l = 1, . . . , M, are all possible 
transmitted signal vectors, where M = 4D for quadrature phase-shift keying (QPSK) 
signals in each mode, for example. The log-likelihood ratio is given by

where the numerator sums over all possible transmit vectors in which a given bit 
is equal to 1 and the denominator sums over those in which it is equal to 0. The 
log-likelihood ratio in the form (11.80) is difficult to obtain. Using the log-max 
approximation, only the maximum terms in both numerator and denominator are 
used. Including only the maximum terms and ignoring some common factors, the 
log-likelihood ratio becomes

In a typical system, the approximation (11.81) is very close to the exact expres-
sion (11.80). To evaluate (11.81), we only need to calculate

in each OFDM subchannel and compare it with the possible bl to obtain the log-like-
lihood ratio. In an OFDM receiver, the equalizer just needs to multiply the received 
signal vector by the channel matrix (11.82), which is a very simple operation.

The possible transmitted bl depends on CSI and the bit loading procedure. Because 
the same CSI should be available at both transmitter and receiver, the bit loading table 
may be calculated by the same procedure at both transmitter and receiver. However, the 
CSI may not be fed back to the transmitter correctly. More robust schemes require that 

(11.79)
[
H∗(ωm)H(ωm) + Sn(ωm)

]−1
H∗(ωm),

(11.80)log

∑
l,bit=1 exp

(
−�y(ωm)−H(ωm)bl�2

Sn(ωm)

)

∑
l,bit=0 exp

(
−�y(ωm)−H(ωm)bl�2

Sn(ωm)

) ,

(11.81)2

[
max

l,bit=1
Re

{
b∗

l H∗
(ωm)y(ωm)

Sn(ωm)

}
− max

l,bit=0
Re

{
b∗

l H∗
(ωm)y(ωm)

Sn(ωm)

}]
.

(11.82)2S−1
n (ωm)H∗(ωm)y(ωm)
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the bit loading table or some indicator be transmitted as side information in the OFDM 
signals. In addition to the overhead of this side information, the round-trip delay of the 
feedback may be too long for a time-varying channel. For this reason, OFDM wire-
less systems typically do not use bit loading. In practice, if error correction coding is 
used across frequency and spatial subchannels, as in coded OFDM [163,164], the extra 
complexity of bit loading is usually not justified. The complexity of an OFDM receiver 
remains nearly the same regardless of whether CSI is fed back to the transmitter.

11.6.3.2  Single-carrier signals
Figure 11.21 shows key functions in a single-carrier transmitter and receiver, 
assuming an FDE-based receiver. As shown in [18,20], the DSP complexity for TDE 
is typically far higher.

A single-carrier transmitter, like its multi-carrier counterpart, may use a precoder 
Ũ(t)(ω). The single-carrier precoder Ũ(t)(ω) is frequency-dependent, and its imple-
mentation is not yet widely known. The precoder ̃U(t)(ω) should be designed to have 
minimal GD spread over the signal bandwidth, allowing it to be implemented in the 
time domain. If the GD spread of Ũ(t)(ω) is too large, a frequency-domain imple-
mentation is required, similar to the FDE in a receiver. Theoretically, any precoder 
described by

for any delay vector τ (p) =
(
τ

(p)
1 , τ

(p)
2 , . . . , τ

(p)

D

)
 will yield equivalent system per-

formance. In designing the precoder, the vector τ (p) should be chosen to minimize 
the GD spread of (11.83).

In the receiver, all D spatial channels are optically downconverted and sampled, 
broken into blocks, and converted to the frequency domain using FFTs. Assuming 
MMSE equalization, the blocks are equalized by

and converted back to time domain using IFFTs. In (11.84), H(ω) is given by (11.78) 
and Sn(ω) is the power spectrum of the sampled noise. Throughput may be maxi-
mized using overlap-add or overlap-save convolution [165,166], while receiver com-
plexity is minimized by inserting a cyclic prefix [167] or unique word [168–170] at 
the transmitter. Transmission of the cyclic prefix or unique word reduces through-
put and wastes energy, but the unique word can be used as pilots to aid in timing, 
frequency, or phase synchronization. Overlap-add or overlap-save convolution is 
assumed in the complexity analysis in Section 11.6.3.3.

When MDL causes the channel response H(ω) to become non-unitary over space 
and frequency, each spatial output of the single-carrier equalizer (11.84) represents 
a linear combination of different frequency components, providing the averaging 
required for frequency diversity. In single-carrier systems, strong error-correction 
coding, typically decoded with soft information, such as log-likelihood ratios 

(11.83)Ũ(t)(ω)diag
[
e− jωτ

(p)
1 , e− jωτ

(p)
2 , . . . , e− jωτ

(p)
D

]

(11.84)
[
H∗(ω)H(ω) + Sn(ω)

]−1
H∗(ω)



55511.6 Coherent Mode-Division Multiplexing

analogous to (11.80), provides coding gain, but is not essential to frequency diversity, 
unlike OFDM systems [171].

When CSI is not available at the transmitter, in the presence of significant 
frequency-dependent MDL, coded OFDM generally outperforms single-carrier 
modulation with the linear equalizer (11.84). Performance equivalent to OFDM 
can be achieved using single-carrier modulation with a decision-feedback equalizer 
(DFE) or a Tomlinson-Harashima precoder (THP) [172,173]. Unfortunately, both 
DFE and THP are extremely difficult to implement at very high speeds. Of course, 
if MDL is small and the overall channel (11.78) is nearly unitary, DFE or THP are 
not required for single-carrier modulation to have the same performance as OFDM.

Note that the above comparison between single-carrier and OFDM signals is in 
the context of linear propagation with MDL. In the presence of fiber nonlinearity, 
single-carrier signals are expected to tolerate a higher launched power and achieve a 
higher SNR [148], probably outweighing any performance advantage of OFDM in 
the linear regime.

11.6.3.3  Signal processing complexity
A primary goal of MDM is reducing energy consumption per bit [174]. Hence, the 
computational complexity and resulting energy consumption of DSP are of critical 
importance. In this section, we discuss the complexity of FDE in single- or multi-
carrier systems. TDE in single-carrier systems is not considered here, as its complex-
ity is typically far higher than FDE [18,20].

The received signal is sampled at a rate ros Rs, where ros is an oversampling 
ratio, usually between 1.5 and 2, and Rs represents the symbol rate for single-carrier 
modulation or the occupied bandwidth (an effective symbol rate) for OFDM. In an 
optimized architecture, only a fraction 1/ros of the frequency-domain subchannels 
require equalization. In the OFDM system of Figure 11.20, only a fraction 1/ros of 
the subchannels are modulated with nonzero amplitudes. In the single-carrier FDE 
receiver of Figure 11.21, it is only necessary to compute the IFFT over the middle 
subcarriers, which comprise a fraction 1/ros of the total number of subchannels. In the 
FDE, the IFFT also downsamples the signal by a factor 1/ros to the symbol rate Rs.

Receiver computational complexity depends strongly on the GD spread of the 
equivalent channel H(ω), given by (11.75). The GD spread arises mainly from CD 
and MD. The duration of the impulse response of CD, measured in samples, is given 
by [18,175,176]

where β̄2 is the mode-averaged CD coefficient described in Section 11.2.3.3, Lt is 
the total system length, and ⌈x⌉ denotes the smallest integer larger than x. Assuming 
the strong-coupling regime, the duration of the impulse response of MD, measured 
in samples, is

(11.85)Ncd =
⌈

2π
∣∣β̄2

∣∣ Lt (ros Rs)
2
⌉

,

(11.86)Nmd =
⌈
σgdu D(p)ros Rs

⌉
,
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where σgd is the STD of coupled GD defined in (11.45) and u D(p) is a function of the 
number of modes D and a GD spread outage probability p [18], which is the prob-
ability that a random realization of the impulse response has duration longer than 
(11.86). The value of u D(p) is given by the complementary cumulative GD spread 
distribution, as shown in Figure 11.7. For suitably small values of p (p = 10−6 is con-
sidered here), u D(p) = 4. 94 and 4.60 for D = 6 and 12, respectively, and decreases 
toward 4.00 as D → ∞, since the support of the semicircle distribution approaches 
4σgd. In the duration (11.86), the product σgd Rs approximately equals the normalized 
bandwidth b defined in Section 11.6.2 (equality is exact for OFDM signals).

Instead of choosing the FFT size to minimize computational complexity as in [18],  
we choose NFFT = 2⌈3+log2(Ncd+Nmd)⌉, where the number 3 (corresponding to a factor 
of 8) is chosen as a compromise to reduce complexity without requiring an excessively 
large value of FFT size NFFT. In an OFDM system, the IFFT in the transmitter has 
the same length as the FFT in the receiver. In a single-carrier receiver using FDE, the 
FFT size can be a factor ros larger than the IFFT size. For simplicity, we consider each 
FFT (or IFFT) to require approximately 

1
2

NFFT

⌈
log2 NFFT

⌉
 complex multiplications. 

In practice, the required number of complex multiplications depends on the FFT 
architecture, but the operations required per sample are always proportional to 
log2 NFFT.

The OFDM receiver of Figure 11.20 may compensate MD and CD together using 
D complex multiplications, according to (11.82). Here, we assume that MD and CD 
are compensated separately using D + 1 complex multiplications. Assuming a suf-
ficient cyclic prefix, and considering both transmitter and receiver, the required num-
ber of complex multiplications per two-dimensional symbol for OFDM is

In the single-carrier receiver of Figure 11.21, the total number of complex multi-
plications per two-dimensional symbol is

where D(NFFT − Ncd − Nmd + 1)/ros is the number of symbols processed per 
FFT block, assuming overlap-add or overlap-save convolution. Single-carrier FDE 
requires fewer FFT operations than OFDM signals, but achieves lower computa-
tional efficiency due to overlap convolution.

Figure 11.22 shows the number of complex multiplications per two-dimensional 
symbol as calculated by (11.88). The total system length is Lt = 2000 km and the 
mode-averaged CD is β̄2 = −22. 5ps2/km (corresponding to 17.5 ps/nm/km at the 
wavelength of 1550 nm). Assuming fibers with numerical aperture NA  = 0.15 and a 
graded-index depressed-cladding index profile, using values from [18], the STD of 
the uncoupled MD is

(11.87)CMOFDM = 1 + D + ros log2 NFFT.

(11.88)

CMFDE =
(1 + D)NFFT + 1

2
ros NFFT log2 NFFT + 1

2
NFFT

⌈
log2(NFFT/ros)

⌉

NFFT − Ncd − Nmd + 1
,

[
1

D

∑
µ

(
β1,µ − β̄1

)2
]1/2

= 277 and 383 ps/km
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for D = 6 and 12, respectively, corresponding to the value of στ per kilometer in 
(11.45). The symbol rate is Rs = 32 GHz. An oversampling ratio ros = 1.5 is assumed. 
In practice, although ros = 1.5 cannot be achieved exactly using power-of-two FFT 
sizes, a value close to ros = 1.5 such that NFFT/ros is an integer can be achieved 
using an appropriate FFT architecture. Figure 11.22 shows the number of complex 
multiplications per symbol as a function of the number of independent sections K. 
As K ranges from 10 to 105, the length of each section ranges from 200 km to 2 m. 
Over this wide range, the computational complexity is relatively insensitive to K. As 
K increases and the GD spread Nmd decreases, the FFT size NFFT decreases, but this 
reduces both the numerator and denominator of (11.88).

In Figure 11.22, the computational complexity exhibits small jumps when the 
FFT size NFFT changes. The values of NFFT, which are indicated in Figure 11.22, 
can be very large, which may have adverse implications for system practicality. In 
OFDM systems, large values of NFFT can cause sensitivity to carrier frequency offset 
and phase noise-induced inter-carrier interference [171] and may require phase noise 
cancelation [177,178]. In single-carrier systems, equalization-enhanced phase noise 
increases with the GD spread from MD [179], similar to the effect of CD in SMF 
systems [180–182]. The convergence times of adaptive equalizers [18], and DSP 
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memory requirements, increase at least linearly with NFFT, and both can become 
prohibitive for large values of NFFT.

For the particular type of MMF considered in Figure 11.22, the above issues are 
mitigated if the number of independent sections K is larger than 500–1000, corresponding 
to a mode-coupling correlation length shorter than 2–4 km. Within this range, the MD 
duration Nmd (11.86) is about 6 to 9 times CD duration Ncd (11.85), NFFT is less than 216, 
and compensating MD and the CD requires less than 30 or 37 complex multiplications 
per symbol for D = 6 and 12 modes, respectively. The corresponding normalized 
bandwidth in this range is always larger than b = 500. For comparison, compensating 
CD only requires NFFT = 213, and about 19 complex multiplications per symbol.

As mentioned in Section 11.2.2 above, a short correlation length can be achieved 
by intentionally introducing perturbations in the MMF that enhance mode coupling, 
analogous to the spinning used to reduce DGD in SMF with PMD [48,71–74]. It 
would be helpful to employ MMFs having lower values of uncoupled GD spread 
than those considered here. As of this writing, however, these have been demon-
strated only for D = 6 modes [1,183,184].

The overall complexity for MIMO DSP in MDM is expected to scale at least 
in proportion to D · NFFT. Given the high symbol rates employed, careful atten-
tion to DSP architecture optimization and application-specific integrated circuit 
implementation is required. In particular, FFT architectures must be chosen care-
fully, considering the available options. These include: radix-2 FFTs based on the 
Cooley-Tukey algorithm [185], which are often the most straightforward; split-radix 
FFTs [186,187], which minimize the total number of operations (multiplications and 
additions); Winograd FFTs [188], which minimize the number of multiplications; 
and prime-factor FFTs [189,190], which can implement FFTs of flexible size while 
avoiding twiddle factor multiplications. Also, buffer sizes and read/write bandwidths 
must be considered carefully, including those for performing FFTs [191,192] and 
those for storing channel matrix coefficients for LLR computations (11.82) or FDE 
(11.84). At each frequency in (11.82) or (11.84), a total of D2 complex-valued chan-
nel coefficients must be stored.

11.7  CONCLUSION
Fields propagating in a multimode fiber with mode coupling are strongly correlated 
over distances shorter than a correlation length, and are weakly correlated over lon-
ger distances. In a transmission system, mode coupling may be classified as weak or 
strong, depending on whether the total system length is comparable to or much lon-
ger than the correlation length. In the weak-coupling regime, MD and MDL accumu-
late linearly with system length, while in the strong-coupling regime they accumulate 
with the square-root of system length. For a given system length, both MD and MDL 
are minimized by strong mode coupling.

Strong mode coupling may be essential for the practicality of long-haul MDM 
systems, which employ inline optical amplifiers and use coherent detection and 
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MIMO DSP to compensate MD and to separate multiplexed signals. A system’s end-
to-end GD spread governs the MIMO DSP complexity. Achieving sufficiently low 
GD spread may require intentionally perturbing the MMF to ensure strong mode 
coupling, analogous to the spinning used to reduce the GD spread in SMF with PMD. 
MDL arising from inline amplifiers can cause random signal fluctuations analogous 
to multipath fading in wireless systems. This MDL can reduce average channel 
capacity and may cause outage in narrowband systems. Strong mode coupling can 
minimize MDL and maximize average capacity. In combination with sufficient MD, 
strong coupling leads to frequency diversity, which reduces outage probability in 
wideband systems, allowing outage capacity to approach average capacity.

The operator describing strongly coupled MD is equivalent to a zero-trace Gauss-
ian unitary ensemble, and the statistics of the GDs are the same as the statistics of the 
eigenvalues of the ensemble. The STD of coupled GD scales as the square-root of 
system length. The probability density of the GDs can be calculated analytically for 
few-mode fibers, and approaches a Wigner semicircle distribution for many-mode 
fibers. The statistics of the coupled GD spread, which governs DSP complexity, 
can be computed using the Fredholm determinant or approximated using the Tracy-
Widom distribution. Strongly coupled MDL, when described on a logarithmic scale 
in the low-MDL regime of practical interest, follows the same statistics as strongly 
coupled GDs. Accumulated MDL scales with the square-root of system length. The 
overall MDL is determined from the accumulated MDL by a nonlinear relationship.
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