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Abstract—Mode-division multiplexing systems employ
multi-input multi-output (MIMO) equalization to compen-
sate for chromatic dispersion (CD), modal dispersion (MD) and
modal crosstalk. The computational complexity of MIMO equal-
ization depends on the number of modes and on the group delay
(GD) spread arising from CD and MD. Assuming the strong-cou-
pling regime, in which the total system length far exceeds the
correlation length of modal fields, we quantify the GD spread
arising from MD, showing that it can be reduced significantly
by mode coupling. We evaluate the computational complexity of
various MIMO single-carrier equalizers, considering separate or
combined equalization of CD and MD, in the time or frequency
domain. We present numerical examples for the optimally de-
signed graded-index depressed-cladding fibers supporting ,
12, 20 or 30 modes in two polarizations. Assuming a 2000-km
system length, a 1-km correlation length, and a combined CD+MD
frequency-domain equalizer, the complexity (in complex multipli-
cations per two-dimensional symbol) is a factor 1.4, 1.7, 2.2, 2.8
times higher for , 12, 20, 30 than for polarization-multi-
plexed systems in standard single-mode fiber .

Index Terms—DSP complexity, equalization, MIMO, mode cou-
pling, mode-division multiplexing, multimode coherent receiver,
multimode fiber, receiver signal processing.

I. INTRODUCTION

T HE continued growth of data traffic has motivated
research on increasing long-haul optical transmission

system capacity [1]. Promising approaches to move beyond
the limits of single-mode fibers include spatial multiplexing
in multi-core fibers or mode-division multiplexing (MDM) in
multi-mode fibers (MMFs), a form of multi-input multi-output
(MIMO) transmission [2]–[4]. In MDM, system capacity ide-
ally scales in proportion to the number of modes employed [3],
[4]. At present, MMF is widely used for short-range optical
links because of relaxed connector alignment tolerances and
reduced transceiver component costs [5].
Current long-haul systems already use multiplexing in the

two polarization modes of a single-mode fiber (SMF), enabled
by coherent detection and digital signal processing (DSP) to
compensate for chromatic dispersion (CD), polarization-mode
dispersion (PMD) and polarization crosstalk [6], [7]. The latter

Manuscript received June 12, 2012; revised November 15, 2012; accepted
December 07, 2012. Date of publication December 28, 2012; date of current
version January 02, 2013. This research was supported by National Science
Foundation Grant Number ECCS-1101905, Corning, Inc., and in part by a Stan-
ford Graduate Fellowship.
The authors are with E. L. Ginzton Laboratory, Department of Electrical En-

gineering, Stanford University, Stanford, CA 94305 USA (e-mail: soarik@stan-
ford.edu; daskarov@stanford.edu; jmk@ee.stanford.edu).
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/JLT.2012.2234083

effects are compensated using a 2 2 MIMO equalizer. In-
creasing the number of spatial modes beyond one tends to in-
crease DSP complexity, because of the increased dimensionality
of the MIMO equalizer, and because of the group delay (GD)
spread associated with modal dispersion (MD), which can ex-
ceed the GD spread associated with PMD or CD. One of the
primary goals of MDM is reducing energy consumption per
transmitted bit [8]. Hence, the computational complexity and
resulting energy consumption of theMIMO equalizer are of crit-
ical importance.
There are two general approaches to reducing MIMO equal-

izer complexity. The first approach is to design the entire
transmission system to minimize mode coupling crosstalk
[9]–[11], with goal of using a sparse MIMO equalizer. While
possible in principle, this approach requires low crosstalk in
all system components, including modal (de)multiplexers,
transmission fibers, amplifiers, and optical switches, and may
be problematic in practice. The second approach is to design
the transmission system for low GD spread, with goal of using
a temporally short MIMO equalizer. Several recent MDM
experiments [12]–[15] used fibers supporting six modes (two
polarization modes and three spatial modes, the latter com-
prising two degenerate mode groups) with the index profile
optimized for low uncoupled GD spread. Achieving low un-
coupled GD spread is likely to be more challenging when the
number of modes exceeds six (the number of degenerate mode
groups exceeds two); some approaches are discussed in [16],
[17].
Strong mode coupling can help reduce the GD spread in

MMF [18], [19]. This approach is synergistic with a low
uncoupled GD spread, since the latter tends to enhance mode
coupling. Unintentional mode coupling can arise from random
index perturbations, bends, twists or crosstalk at modal (de)mul-
tiplexers and other components. Furthermore, mode coupling
might be enhanced via mode couplers or scramblers [20] or by
intentional perturbation of the MMF [21]. The latter would be
analogous to the spinning of SMF employed to reduce the GD
spread due to PMD [22]. In the presence of mode coupling,
modal fields [23] in a MMF are correlated over a correlation
length, which is a generalization of the polarization correlation
length in SMF [24], [25]. In the strong-coupling regime, when
the total system length far exceeds the correlation length, the
GD spread arising from MD is reduced significantly, and scales
in proportion to the square-root of the total system length or
equivalently the number of independent sections [18], [19].
Aside from reducing GD spread and thus MIMO equaliza-

tion complexity, strong mode coupling can also mitigate the ef-
fects of mode-dependent loss or gain (collectively referred to
as MDL), increasing average channel capacity [3], [26]. In the
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presence of MDL, channel capacity becomes a random variable,
and system outage occurs with finite probability. Strong mode
coupling, in conjunction with MD, can lead to frequency diver-
sity, significantly reducing outage probability [27].
In this paper, we study the effect of strong mode coupling

on MIMO equalization complexity. Using the equivalence of
strongly coupled MD to a Gaussian unitary ensemble [19],
we quantify the GD spread arising from MD for MMFs sup-
porting various numbers of modes. We consider various MIMO
equalizers using separate or combined equalization of CD
and MD in the time or frequency domain. We study a model
long-haul system using MMFs designed for low uncoupled
GD spread, and evaluate the computational complexity of
the various MIMO equalizers as a function of the number of
modes and the correlation length. Quantifying complexity in
terms of complex multiplications per two-dimensional symbol,
we find that complexity increases with an increase in the
number of propagating modes, and decreases with a decrease
of the correlation length. Nevertheless, with sufficiently short
correlation length and optimized MIMO equalizer structures
(combined frequency-domain equalization of CD and MD),
the complexity per symbol for MDM systems using ,
12, 20, 30 modes (in two polarizations) can be only a factor of
about 1.3 to 2.9 times higher than for polarization-multiplexed
systems in standard SMF .
The remainder of the paper is organized as follows. Section II

reviews models for MMF with strong mode coupling and quan-
tifies the GD spread arising from MD. Section III describes
various MIMO single-carrier equalizer structures and their
computational complexities. Section IV presents a long-haul
system example, and evaluates the complexity of different
MIMO equalizer structures as a function of the number of
modes and the correlation length. Sections V and VI provide
discussion and conclusions, respectively.

II. TEMPORAL MEMORY OF MODAL DISPERSION

A. Multi-Section Propagation Model

We consider a fiber supporting a total of propagating
modes (including spatial and polarization degrees of freedom).
In a basis of the ideal uncoupled eigenmodes of an ideal fiber,
a propagating field can be represented by a vector.
Neglecting additive amplifier noise and nonlinear effects, the
fields at the fiber input and output, at angular frequency , can
be related by a linear time-invariant propagation operator (or

matrix):

(1)

where describes CD (or group velocity dispersion)
operator and describes MD operator.
For analytical convenience, without loss of generality,

can be written as:

(2)

where is the mode-averaged CD constant, is the total
fiber length, and is a identity matrix.

Assuming the strong-coupling regime, the fiber can be de-
scribed in terms of independent equal-length sections, where
the section length is equal to or slightly greater than the correla-
tion length. As the total fiber length far exceeds the correlation
length, . The modal dispersion operator can be expressed
as [19], [26]:

(3)

Here, and are frequency-independent random
unitary matrices representing randommode coupling, which are
independently distributed over in the strong-coupling regime,
and denotes Hermitian conjugate. The diagonal matrix

(4)

describes propagation of uncoupled modes, assuming mode-de-
pendent gain/loss is negligible. The uncoupled GDs per section
are , which are assumed to be identical in each sec-
tion, with zero mean and variance . The statistics of strongly
coupled GDs are known to depend on the uncoupled GDs only
through [19]. Mode-dependent CD, if present, can be incor-
porated in the , andmay alter the statistics of the coupled
GDs [19]. In the numerical examples in Section IV, mode-de-
pendent CD is found to be small.

B. Group Delay Spread Statistics

Given the modal dispersion operator, following [19], [28], we
define a GD operator:

(5)

whose eigenvalues are the coupled GDs , where
we assume the ordering . Assuming a
random coupling model for the dispersion operator such as (3),
the coupled GDs are random variables. As explained in [19], for

, the GD operator is equivalent to a zero-trace Gaussian
unitary ensemble, so the statistics of the coupled GDs are given
by the statistics of the eigenvalues of the ensemble. In particular,
for , the probability density function (pdf) of unordered
coupled GDs isMaxwellian, as is known from the study of PMD
[29], [30]. In the limit of many modes, , the pdf ap-
proaches a semicircle distribution.
For all values of , the root-mean-square (rms) coupled GD

spread after independent sections is:

(6)

In aMIMO equalizer, the temporal memory required for com-
pensating MD is the peak-to-peak coupled GD spread, ,
for the model (3). Normalizing by the rms coupled GD spread,
we define the random variable:

(7)

which has pdf . For and 3, analytical expressions
for the pdf’s and are given in [19]. As ,

, since an infinite number of GD values are confined in
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Fig. 1. Empirical probability density function of the normalized peak-to-peak
group delay spread for , 12, 20 and 30 modes.

TABLE I
VALUES OF

the finite support of the semicircle distribution [19]. For inter-
mediate values of , the pdf is not known analytically,
so we have estimated numerically using realizations
of the zero-trace Gaussian unitary ensemble, which are gener-
ated following the procedure described in [26]. Empirical pdfs
for , 12, 20 and 30 are shown in Fig. 1. We have veri-
fied the accuracy of this technique by comparison to the known
analytical expressions for unordered coupled GD distributions
given in [19].
As the required temporal memory is a random variable, we

will compute the temporal memory required to equalize MD
with high probability.We define as the temporal memory,
normalized by the rms coupled GD spread, required to equalize
with probability . This is defined by:

(8)

Table I gives values of for , 12, 20 and 30. For
, values of are just below 4 for these values of ,

while for the smaller values of , values of lie between 4
and 5 for these values of . For a given , the required temporal
memory length in time units becomes:

(9)

C. Comparison of Group Delay Spread for Uncoupled and
Strongly Coupled Propagation

In Section IV, exact GD values are computed for the fiber
type used in numerical examples. Here, in order to illustrate
the effect of strong mode coupling on the required temporal
memory length, we consider a simple uncoupled GD distri-
bution, as shown in Fig. 2. Uncoupled GDs form degenerate
groups of modes, which add up to

Fig. 2. Histogram of uncoupled GDs per section of a -mode fiber, assuming
a constant spacing, , between mode groups.

modes in two polarizations, as in any
circularly symmetric fiber in the weak-guidance limit [31]. Ad-
jacent mode groups are assumed to differ in GD by a constant
spacing , as found approximately in a wave-optics analysis
of step-index fibers [32], and observed experimentally in sev-
eral different fiber types [17], [33], [34]. For the uncoupled GDs
in Fig. 2, the uncoupled peak-to-peak GD spread per section is

, while the uncoupled rms GD spread per
section is . Including sections, in
the absence of mode coupling, the required temporal memory
is times the uncoupled peak-to-peak GD spread per section,
whereas with strong mode coupling, the required temporal
memory is times the uncoupled rms GD spread per
section. Taking the ratio between these last two quantities, the
reduction of required temporal memory length by strong mode
coupling is approximately for and ,
and approaches as (independent of ).
This example illustrates that strong mode coupling and a de-

creased correlation length can substantially reduce the temporal
memory required in the MIMO equalizer.

III. COMPUTATIONAL COMPLEXITY OF EQUALIZATION

A. Multi-Input Multi-Output Equalizers and Temporal
Memory Lengths

In a coherent MDM receiver, after modal demultiplexing, a
set of dual-quadrature homodyne downconverters yields a
set of complex baseband signals. These are sampled at a rate

, where is the symbol rate and is an oversampling
ratio. In practice, a ratio is usually employed to pro-
vide immunity to sampling time errors and increase CD toler-
ance [22]. Assuming single-carrier modulation, after sampling,
DSP operations include timing recovery, interpolation, MIMO
equalization, frequency and phase estimation, symbol decisions
and error-correction decoding [6], [7], [36], [37]. We focus here
on the computational complexity of MIMO equalization, rather
than that of other DSP operations. Although the MIMO equal-
izer is an adaptive filter, we focus here on the complexity of the
filtering, rather than that of the adaptation. The computational
complexity and convergence time for adaptation are also critical
design issues, and are important topics for future research.
Possible structures for the single-carrier MIMO equalizer are

shown in Fig. 3. In Fig. 3(a), CD is compensated by a sep-
arate single-input single-output (SISO) equalizer for each of
the complex baseband signals, and MD and mode coupling
crosstalk are compensated by a MIMO equalizer. In
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Fig. 3. Single-carrier MIMO equalizer structures: (a) separate equalizers for
chromatic dispersion (CD) and modal dispersion (MD), (b) combined equalizer
for CD and MD. All inputs and outputs are complex-valued.

each CD equalizer, the number of filter taps (temporal memory
measured in sampling intervals) required for compensation with
very low power penalty [37], [38] is given by:

(10)

where denote smallest integer greater than or equal to .
In (10), the quadratic dependence on arises because the
GD spread of the discrete-time impulse response describing CD
is proportional to the bandwidth of the signal being sampled,
which scales in proportion to in a well-designed system. The
MD equalizer requires an array of filters, each with tem-
poral memory equal to , given by (9). In terms of filter
taps, each requires a temporal memory approximately given by:

(11)

In Fig. 3(b), a MIMO equalizer compensates for CD,
MD and modal crosstalk with temporal memory, measured in
filter taps given by , the sum of (10) and (11).
This follows from the observation that the convolution of two
continuous-time impulse responses has a support equal to the
sum of the individual supports.
In the following two subsections, we analyze the com-

putational complexity of the equalizer structures shown in
Fig. 3(a), (b). As in [39]–[41], we quantify complexity in terms
of complex multiplications per two-dimensional data symbol,
which is proportional to the complexity per information bit,
assuming a fixed-size signal constellation.

B. Frequency-Domain Equalization Complexity

For long impulse response durations, digital filtering can be
implemented most efficiently by frequency-domain equaliza-
tion (FDE) using the Fast Fourier Transform (FFT) algorithm
and either the overlap-save or the overlap-add method [42].
Alternatively, transmitting a cyclic prefix allows one to avoid
overlap-save or overlap-add, but decreases net throughput [43].
In Fig. 3(a), in each of the equalizers for CD, processing a

block of samples requires an FFT, frequency-domain fil-
tering with complex multiplications and an inverse FFT.
Here, for simplicity, we restrict attention to radix-2 FFT algo-
rithms, although FFTs of different radices can be computed ef-
ficiently [44], [45], albeit at the cost of an increased number of
additions and a more complex implementation. In processing
each block, these operations equalize

symbols, so the number of complex multiplications per symbol
is [42], [46]:

(12)

which is independent of . For equalization of MD, since the
equalizer size is , the number of complex multiplications
per symbol is:

(13)
In Fig. 3(b), the combined equalizer for CD and MD is

analogous to the MD equalizer in Fig. 3(a), but with temporal
memory increased and the number of complex multiplications
per symbol is:

(14)
In each frequency-domain equalizer, the FFT block length

can be any integer of power of 2 that is longer than
the corresponding temporal memory length ( , or

) and can be optimized to minimize computational
complexity given by (12), (13) or (14). It is shown that when
using an optimized FFT block length, the computational com-
plexity is relatively insensitive to the temporal memory length.
Unfortunately, as discussed in Section V, using long FFT block
lengths can increase circuit complexity and processing latency.

C. Time-Domain Equalization Complexity

Digital filtering can also be implemented using direct time-
domain convolution.
In Fig. 3(a), in each of the equalizers for CD, processing a

block of samples requires complex multiplications
and equalizes symbols, so the number of complex
multiplications per symbol is:

(15)

which is independent of . In Fig. 3(a), in the equal-
izer for MD, processing blocks of samples requires

complex multiplications and equalizes
symbols, so the number of complex multiplications per symbol
for MD compensation is:

(16)

which scales linearly with , unlike (15).
In Fig. 3(b), the combined equalizer for CD and MD is analo-

gous to theMD equalizer in Fig. 3(a), but with temporal memory
increased, so the number of complex multiplications per symbol
is:

(17)

which scales linearly with , like (16).
In time-domain equalization (TDE), increasing the temporal

memory length causes the computational complexity (15), (16)
or (17) to increase in direct proportion to the memory length.
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Fig. 4. Index profile of optimized graded-index depressed cladding (GIDC)
fiber for and modes.

TABLE II
UNCOUPLED FIBER PARAMETERS. VALUES FOR ARE FOR

STANDARD STEP-INDEX SINGLE-MODE FIBER. VALUES FOR ARE

FOR GRADED-INDEX DEPRESSED-CLADDING MULTI-MODE FIBERS WITH

IV. LONG-HAUL SYSTEM EXAMPLE

In this section, we describe a family of fibers and their un-
coupled GDs. We then consider a long-haul system with mode
coupling and study how the fiber GD spread and the equalizer
memory length and computational complexity scale with the
number of modes and the correlation length.

A. Graded-Index Depressed-Cladding Fibers

We consider a family of fibers supporting , 12, 20,
30 modes in two polarizations. We have chosen a graded-index
depressed-cladding (GIDC) index profile and numerical aper-
ture , as these enable low GD spreads over a wide
range of and, in conjunction with optimized erbium doping
profiles, enable optical amplification with low MDL [47]. At a
given , the core radius has been chosen so that over the C band,
exactly modes propagate and, at the shortest wavelength of
1530 nm, the next higher-order mode is just barely cut off. An
index profile for is shown in Fig. 4. We have used nu-
merical methods to solve for the exact modes [47], [48], without
assuming weak guidance or linearly polarized modes.
Table II summarizes key properties of the GIDC fibers. As

varies from 6 to 30, the effective area ranges from 166 to
580 , in proportion to . For all values of from 6 to
30, the mode-averaged CD is close to , and
the rms mode-dependent CD is small, in the range of
5–10% of , so mode-dependent CD is neglected here. The
uncoupled rms modal GD spread per unit length varies

Fig. 5. Multi-section model of long-haul system with inline amplifiers.

from 277 to 451 ps/km, in proportion to from
to 30, a much weaker dependence on than for the model in
Section II-A, where it scales with . It might be possible
to further optimize these index profiles to reduce the GD spread
and its dependence on , which is an important topic for future
research.
Table II also summarizes key properties of standard step-

index SMF [49] for comparison. We neglect here the GD spread
due to PMD, which is much smaller than that due to MD [35],
[50]–[52].

B. Multi-Section System Model

We consider the model long-haul system shown in Fig. 5,
comprising separated by optical ampli-
fiers, each of length , a total system length

. Each span is modeled as comprising
sections with independent modal fields, so each section has
length . The total system comprises

independent sections.
The section length is assumed just slightly longer than

the correlation length, so each individual section is in the weak-
coupling regime, and the uncoupled rms GD spread per section
is . Using (6), the end-to-end system has a
coupled rms GD spread:

(18)

By holding and constant and varying or ,
the coupled GD spread can be varied. Given a fiber with known
uncoupled rms GD spread per unit length in a system
with known coupled rms GD spread , the section length
can be chosen empirically so that (18) yields the observed value
of . Computation of the correlation length and the section
length from fundamental fiber properties, such as modal field
distributions and propagation constants, and perturbations in-
ducing mode coupling, requires further study.

C. Memory Length and Computational Complexity

We consider the family of GIDC fibers supporting , 12,
20, 30 modes described in Section IV-A in the multi-span trans-
mission system described in Section IV-B. We assume single-
carrier modulation at a symbol rate Gbaud and an over-
sampling ratio . In computing and the temporal
memory length of MD, we conservatively assume .
All results are shown as a function of and .
Fig. 6 shows the temporal memory lengths for CD and MD,
and for various . The CD memory length, ,

is equal to 1155 samples for SMF and 1476 samples
for MMF ( , 12, 20, 30). TheMDmemory length inMMF,

increases by only about 1.5-fold as increases from 6 to
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Fig. 6. Memory length (in sampling intervals) required to compensate CD or
MD, or , vs. number of sections per span, , in systems with
20 spans, each 100 km long, of GIDC fiber.

Fig. 7. Optimized FFT block length, , for separate frequency-do-
main equalization (FDE) of CD and MD vs. number of sections per span, ,
in systems with 20 spans, each 100 km long, of GIDC fiber.

30, because a 1.6-fold increase in is partly offset by a
0.9-fold decrease in Most significantly, for all values of
, as and vary, decreases from about to

about 150, demonstrating the dramatic impact of mode coupling
on temporal memory length.
Figs. 7 and 8 concern separate FDE of CD and MD. Fig. 7

shows values of the FFT block length optimized to minimize
computational complexity, . For equalizing CD, in
SMF and all MMF, , which is equal to about
14 or 11 times the respective values of . For equalizing
MD in MMF, is about 20 to 30 times the respective
value of . Fig. 8 shows the computational complexities
for separate FDE of CD and MD. The complexity for CD,

, is almost identical for SMF or MMF, about
32–33 complex multiplications/symbol. The complexity for
MD inMMF, , increases modestly with increasing
and decreases modestly with increasing .
Figs. 9 and 10 concern combined FDE of CD and MD. Fig. 9

shows values of the optimized FFT block length, . For

Fig. 8. Complex multiplications per two-dimensional symbol for separate FDE
of CD and MD, and , vs. number of sections per
span, , in systems with 20 spans, each 100 km long, of GIDC fiber.

Fig. 9. Optimized FFT block length, , for combined FDE of CD and
MD vs. number of sections per span, , in systems with 20 spans, each 100
km long, of GIDC fiber.

Fig. 10. Complex multiplications per two-dimensional symbol for FDE vs.
number of sections per span , in systems with 20 spans, each 100 km long,
of GIDC fiber. For , solid lines denote multiplications for com-
bined equalizer, , while dotted lines denote sum of multiplica-
tions for separate CD and MD equalizers, .
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Fig. 11. Complex multiplications per two-dimensional symbol for sepa-
rate time-domain equalization (TDE) of CD and MD, and

, vs. number of sections per span, , in systems with 20
spans, each 100 km long, of GIDC fiber.

SMF, independent of , , which is about 14
times . For MMF, is about 20 to 40 times the
respective value of .
Fig. 10 shows (using solid lines) the computational complexi-

ties for combined FDE of CD andMD, . InMMF,
increases modestly with increasing and de-

creases modestly with increasing . As increases, for
, ranges from about 1.6 to 1.3 times the

value for , while for , ranges from
about 3.2 to 2.9 times the value for . Fig. 10 also shows
(using dotted lines) the overall computational complexity for
separate FDE of CD and MD in MMF, which is the sum of the
complexities, . In terms of its de-
pendence on or , this exhibits the same general trends as

. But at any ,
is higher than , by a factor of about 1.6 for ,
and by a factor of about 1.3 for .
Fig. 11 shows the computational complexity for separate

TDE of CD and MD. The complexity for CD, ,
is about 2300 and 3000 complex multiplications per symbol
for SMF and MMF, respectively, which are about 72 to 90
times higher than for FDE. In MMF, the complexity for MD,

, increases by about 7.3 as increases from 6,
to 30, and decreases by nearly 300 as increases from 1
to .
In MMF, the complexity of separate TDE is always lower

than that of combined TDE ,
in contrast to FDE, which can be traced to the factor of
that appears in (16) and (17), but not in (15). For small
, , and

. For large , is comparable to ,
and is modestly larger than

. In the limit of very large ,
and .

However, the overall complexity of TDE, whether in combined
or separate form, is so high to render it practical, even with
strong mode coupling.

V. DISCUSSION

Our results clearly demonstrate the large difference in com-
putational complexity between TDE and FDE in coherentMDM
systems, as shown in [52] under different assumptions about
propagation. For MDM using , 12, 20, or 30 modes,
the complexity of combined FDE, assuming an optimized FFT
block length, can be comparable to that for polarization-multi-
plexed transmission in SMF . The complexity depends
mainly on , and depends only weakly on the strength of mode
coupling, as quantified by the section length .
In FDE, the optimum FFT block length is pro-

portional to the corresponding channel memory length, so
depends strongly on the section length . This has

major implications for the MIMO FDE, both in terms of DSP
circuit complexity and adaptation speed. As a rough measure of
overall DSP circuit complexity, we will consider the number of
complex multiplications per blocks of samples. For
SMF , the complexity is dominated byCD equalization,
and FDE requires complex multi-
plication per samples. Assuming ,
this corresponds to complex multiplications. For
MMF, the separate FDE for MD or the combined FDE for
CD+MD requires complex mul-
tiplication per samples. With strong mode coupling,
such that , . Assuming

,
and for and 30, respectively. These
values are 18 and 184 times the value for , so
it may be possible to realize a single-chip MIMO FDE.
On the other hand, with weaker mode coupling, such that

, . Assuming
,

and for and 30, respectively. These values are
690 and 6500 times the value for , so it likely would be
difficult to realize a single-chip MIMO FDE.
One of the drawbacks of frequency-domain equalization is

the block processing latency, which also affects the adaptation
time. An FFT block length implies a block processing la-
tency of seconds. Assuming and
Gbaud, with strong mode coupling, such that

and , the latency for equalizing one block is 1
. With weaker mode coupling, such that and

, the latency is 33 .
Adaptation algorithms are not analyzed in detail in this paper.

Exploiting the fact that CD exhibits minimal variation over time,
one may choose to employ fixed FDE for CD and adaptive FDE
for MD. While not minimizing the computational complexity
of equalization, this approach may minimize the computational
complexity of adaptation and facilitate faster adaptation. Two
major approaches for data-aided adaptive equalization (initially
with training sequences, then either with training sequences or
decision-directed) areMIMO least mean squares (MIMO-LMS)
and MIMO recursive least squares (MIMO-RLS) algorithms
[53]. As compared toMIMO-LMS,MIMO-RLS provides faster
convergence rates, but has higher complexity, as it requires ma-
trix inversions [54]. The number of adaptation steps required
for MIMO-RLS to converge is roughly of the order of [54].
Since each adaptation step requires equalization of blocks
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of samples, the convergence time for MIMO-RLS is
roughly . Using the latencies estimated in the
previous paragraph, for strong mode coupling ( ,

) the convergence times are roughly 36 and
900 for and 30, respectively. For weaker mode cou-
pling ( , ) the convergence times
are roughly 1.2 ms and 30 ms for and 30, respectively.
Convergence times for MIMO-LMS are expected to be at least
an order of magnitude longer than these. Clearly, mode coupling
strength can have a strong impact on adaptive FDE convergence
time. Measurements of modal field temporal variations in de-
ployed long-haul MMFs may be needed to determine adaptive
FDE convergence time requirements.
Although only single-carrier transmission is considered

in this paper, orthogonal frequency division multiplexing
(OFDM) might also be applicable in MDM systems. The
computational complexity of OFDM is identical to that of the
FDE considered here. In OFDM, the optimized block length

corresponds to the number of orthogonal carriers
(including carriers used for data transmission and zero carriers
used for oversampling).
The impact of MDL is not considered in detail in this

paper. MDL can reduce average capacity and increase
the variance of capacity, potentially causing outage [26].
Strong mode coupling, in combination with MD, enables
frequency diversity, which can reduce the variance of ca-
pacity and thus reduce outage probability [27]. The capacity
variance is reduced by a frequency diversity order [27]

. Introducing sufficient
mode coupling such that corresponds
to a frequency diversity order for the parameters
considered in this paper, which should be sufficient to make
outage probability negligible, assuming low-to-moderate MDL
values [26], [27]. Aside from reducing average capacity and
potentially causing outage, MDL also affects the statistics of the
coupled GDs. Our simulations have shown that MDL typically
narrows the GD spread. Hence, values of the temporal memory

and the computational complexity presented here should
be considered upper bounds for systems with MDL.
Methods to achieve strong mode coupling without intro-

ducing substantial MDL, whether by using mode couplers or
scramblers, or by intentional perturbation of the MMF, are
important subjects for future research.

VI. CONCLUSION

In MMF, the temporal memory length of MD scales with the
square-root of a section length over which modal fields are cor-
related, and is thus reduced significantly by strong mode cou-
pling. In coherent MDM systems, considering realistic correla-
tion lengths, the computational complexity of MIMO TDE is
extremely high. By contrast, using MIMO FDE and an opti-
mized FFT block length, the computational complexity (mea-
sured in complex multiplications per two-dimensional symbol)
can be only 1.3 to 2.9 times higher than for FDE in SMF, and
depends only weakly on the temporal memory length. Neverthe-
less, the optimized FFT block length is proportional to the tem-
poral memory length of MD. Hence, introducing strong mode

coupling to reduce the temporal memory of MD can greatly re-
duce signal processing circuit complexity, and can greatly re-
duce block processing latency, thereby reducing MIMO FDE
convergence time.
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