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Abstract—We study the impact of chromatic dispersion
(CD) and first-order polarization-mode dispersion (PMD) on
systems using binary differential phase-shift keying (2-DPSK)
or quaternary DPSK (4-DPSK) with nonreturn-to-zero (NRZ)
or return-to-zero (RZ) formats. These signals are received using
optical preamplification, interferometric demodulation, and
direct detection. We consider the linear propagation regime and
compute optical power penalties at fixed bit-error ratio (BER).
In order to evaluate the BER precisely taking account amplifier
noise, arbitrary pulse shapes, arbitrary optical and electrical
filtering, CD, and PMD, we introduce a novel model for DPSK
systems and compute the BER using a method recently proposed
by Forestieri for ON–OFF keying (OOK) systems. We show that
when properly applied, the method yields highly accurate results
for DPSK systems. We have found that when either the NRZ or
RZ format is used, 2-DPSK exhibits lower power penalties than
OOK in the presence of CD and first-order PMD. RZ-2-DPSK,
as compared with NRZ-2-DPSK, incurs smaller penalties due
to PMD, but offers no advantage in terms of CD. 4-DPSK, as it
has twice the symbol duration of OOK or 2-DPSK for a given
bit rate, incurs much lower CD and PMD power penalties than
either of these techniques. RZ-4-DPSK is especially promising,
as it offers CD and PMD penalties significantly smaller than all
other techniques, including NRZ-4-DPSK.

Index Terms—Direct detection, differential phase-shift keying
(DPSK), interferometric demodulation, optical fiber communica-
tion, optical fiber dispersion, optical noise, polarization-mode dis-
persion (PMD).

I. INTRODUCTION

ALTHOUGH most optical fiber communication systems
currently use binary ON–OFF keying (OOK), high-ca-

pacity, long-haul transmission experiments using binary
differential phase-shift keying (2-DPSK) and quaternary DPSK
(4-DPSK) with nonreturn-to-zero (NRZ) and return-to-zero
(RZ) formats have been reported by several groups in recent
years [1]–[6]. These experiments have used Mach–Zehnder
interferometers (MZIs) to convert received DPSK signals to
intensity-modulated signals, enabling the use of direct-de-
tection receivers. In optically amplified systems, for a given
bit-error ratio (BER), 2-DPSK requires nearly 3 dB lower
optical signal-to-noise ratio (OSNR) than OOK, enabling
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extended reach. 4-DPSK offers all the advantages of mul-
tilevel encoding—increased spectral efficiency, improved
tolerance to chromatic dispersion (CD) and polarization-mode
dispersion (PMD), and relaxed component bandwidth require-
ments—without incurring a power penalty with respect to
OOK.

Experimental demonstrations have outpaced theoretical per-
formance analysis of DPSK systems, especially in relation to the
impact of CD and PMD. Reference [7] analyzed NRZ-2-DPSK
systems under CD but quantified degradation in terms of eye
penalty, as opposed to the more relevant performance measure
of power penalty. Reference [8] studied the impact of CD and
PMD on amplitude-shift keying and DPSK with coherent detec-
tion but obtained PMD penalties that seem unrealistically high
for both modulation formats. The dearth of analysis of DPSK
systems seems to arise mainly because of the difficulty of char-
acterizing the probability distribution of decision variables and
evaluating the BER in DPSK systems when intersymbol inter-
ference (ISI) arises from optical and electrical filtering and from
dispersion. The BER performance of optically amplified DPSK
systems with interferometric direct-detection receivers has been
analyzed in [9] and [10], but the method used in [9] does not
fully characterize the distribution of decision variables, while
the method of [10] is too complicated for the study of disper-
sion effects.

Recently, Forestieri has proposed a computationally efficient
method to analytically evaluate the BER in optically preampli-
fied OOK systems [11], taking account of ASE, pulse shaping,
optical and electrical filtering, and CD. This method employs a
KLSE to describe the optical noise and, in this respect, is quite
similar to early methods used to analyze square-law detectors
[12], [13]. In this paper, we show that such a method is also ap-
plicable to DPSK systems using interferometric demodulation
and direct detection and yields very accurate results. We em-
ploy this method to calculate the BERs of 2-DPSK and 4-DPSK
with NRZ and RZ formats in the presence of CD and first-order
PMD, and we evaluate the power penalties caused by these dis-
persion effects. We note that other methods have been used to
compute BERs in optical preamplified OOK systems [14], [15].
These techniques can be adapted to DPSK systems as well, as
in [16]. Nonetheless, the present paper is the first to present full
details of a BER calculation technique for DPSK and to verify
the technique using Monte Carlo simulation.

The remainder of this paper is organized as follows. In Sec-
tion II, we describe the model used for 2-DPSK and 4-DPSK
systems in the presence of CD and PMD. In Section III, we
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Fig. 1. Schematic of 2-DPSK system with optical preamplifier, delay-line interferometer, and balanced direct-detection receiver.

Fig. 2. Low-pass equivalent 2-DPSK system in the absence of PMD, assuming that a polarizer (aligned with the received signal) is inserted just before or after
the optical bandpass filter.

discuss how to apply the KLSE method to compute BERs for
these systems. In Section IV, we present power penalties caused
by CD and PMD in DPSK systems. We present conclusions in
Section V.

II. TRANSMISSION SYSTEM MODELING

A. 2-DPSK Systems

A 2-DPSK system is represented schematically in Fig. 1.
Each transmitted symbol conveys 1 bit, which is encoded in

, the phase difference between successive symbols, where
. The optical source is assumed to be a single-fre-

quency laser whose linewidth is negligible in comparison to the
symbol rate, so that laser phase noise is negligible. External
modulation is used to modulate the DPSK optical signal, as
specified in detail hereafter. The optical signal is launched into
a SMF operating in the linear regime (fiber nonlinearities are
neglected throughout this paper). In the fiber, the optical signal
is affected by CD and PMD.

The received optical signal passes into a lumped optical
amplifier, which adds ASE noise. The amplifier output is fil-
tered by an optical bandpass filter and is passed into an optical
delay-line (Mach–Zehnder) interferometer, which demodulates
the received DPSK signal. We assume that the interferometer’s
two branches are correctly phased so that its outputs yield,
respectively, the sum and difference of the received field and
the received field delayed by one symbol interval. A balanced
optical receiver yields a photocurrent proportional to the dif-
ference between the intensities at the two interferometer output
ports. This photocurrent is low-pass-filtered and sampled, and
binary decisions are performed.

Fig. 2 shows the low-pass equivalent model for a DPSK
system for the special case that PMD is absent and a polarizer
(aligned with the signal) is placed just before or after the optical
bandpass filter to remove the ASE component that is polarized
orthogonal to the signal. For the sake of clarity, we will first
develop a mathematical model for the system of Fig. 2 and
then use the results to build up a more complicated model that
describes a realistic system, which does not use a polarizer and
in which PMD may be present.

In Fig. 2, is the baseband equivalent representation of
the signal field at the fiber input which, for either 2-DPSK or
4-DPSK, can be expressed in the form

(1)

The symbol sequence is represented by where, in a
2-DPSK system, . The bit duration is , and
the symbol duration is , where 1, 2 for 2-DPSK
and 4-DPSK, respectively. The elementary pulse shape is
represented by . In this paper, we assume is given by

NRZ-DPSK

RZ-DPSK
(2)

within the symbol interval , and zero outside this in-
terval. In (2), denotes the optical energy per transmitted bit.
Note that for NRZ-DPSK, is simply a rectangular pulse,1

while for RZ-DPSK, corresponds to the output of a MZM
driven by a sinusoidal clock at the symbol rate [5]. We
note that the signal model given by (1) corresponds to that used
by Forestieri in [11], but the BER calculation method used in
[11] and in this paper does not require the signal to be modeled
in the form of (1). Rather, this method is applicable so long as
we know how to describe the Fourier spectrum of .

In Fig. 2, is the transfer function of a lossless fiber.
When PMD is absent and only CD is considered, we can express
the transfer function of the fiber as [7]

(3)

where , is the fiber CD parameter,
is the fiber length, and is the wavelength. At a wavelength

1We have also performed calculations using more realistic NRZ optical sig-
nals produced by a Mach–Zehnder modulator (MZM). The modulator electrical
drive signal is a rectangular-pulse NRZ signal that has been passed through a
fifth-order Bessel filter having bandwidth 0:85=MT . For these more realistic
NRZ optical signals, the mathematical description of the signal and the com-
putation technique become more complicated, but CD penalties are only very
slightly smaller than those for rectangular NRZ optical pulses.
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1.55 m in standard SMF, is typically of the order of
17 ps/nm/km.

The optical preamplifier in Fig. 2 is assumed to have flat gain
. We model the ASE noise as additive white Gaussian noise

(AWGN) with one-sided power spectral density in
each polarization, where is the spontaneous emission
parameter and is the photon energy [11]. We assume that
the gain is sufficiently high that ASE dominates over shot
noise and thermal noise in the receiver, allowing us to ignore
the latter two noises. In Fig. 2, represents the ASE noise as
complex circular AWGN with two-sided power spectral density

. We assume that so that
. We have assumed the fiber is lossless, which

implies that the average received energy per bit will be equal
to the transmitted energy per bit .

In Fig. 2, represents the equivalent low-pass transfer
function of the optical bandpass filter. In this paper, the op-
tical filter is either a Fabry-Pérot (FP) filter or a fiber Bragg
grating (FBG) filter. For an FP filter, is given under the
Lorentzian approximation as [17]

(4)

where is the 3-dB bandwidth (full-width at half-maximum)
of the optical filter. For an FBG filter, we have [18]

(5)

where , is the grating coupling co-
efficient, and is the grating length. We assume typical values

cm and , and adjust to obtain the desired
bandwidth.

After the bandpass filter in Fig. 2, and represent
the transfer functions of the delay-line interferometer from its
input port to its sum and difference ports, respectively. For the
interferometer shown in Fig. 1, in which one branch has a delay
equal to the bit duration , we have

(6)

In Fig. 2, represents the transfer function of the elec-
trical low-pass filter, which is always assumed to be a fifth-order
Bessel type with transfer function [19]

(7)

where , and is the 3-dB cutoff frequency.
In this paper, both and are specified in terms of the bit
rate , which is the reciprocal of the bit duration , i.e.,

Fig. 3. Low-pass equivalent 2-DPSK system when PMD is present and no
polarizer is used.

. In Fig. 2, the low-pass filter output is sampled at
the symbol rate to obtain the decision variable sequence .

We now consider first-order PMD effects. We assume that
there is negligible polarization-dependent loss so that we can
use the principal states model [20] to characterize first-order
PMD. Under this model, there exist a pair of orthorgonal input
principal states of polarization (PSPs) and , and a pair
of orthorgonal output PSPs and , where all of the PSPs
are expressed as Jones vectors. If an arbitrarily polarized field

is input to the fiber, this input field can be
projected onto the two input PSPs [21] as

(8)

where is the PMD power-splitting ratio, given by
. In terms of first-order PMD, the output field of the fiber

takes the form [21], [22]

(9)

where is the polarization-independent group delay, and
is the differential group delay (DGD) between the two PSPs.
According to (9), the fiber transfer function for first-order PMD
is given by

(10)

where we have neglected the polarization-independent group
delay . Taking account of both CD and first-order PMD, we
combine (3) and (10) to obtain the fiber transfer function

(11)
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Fig. 4. Schematic of 4-DPSK system with optical preamplifier, delay-line interferometers, and balanced direct-detection receivers.

As suggested in (10) and (11), one can consider that the signal
components in the two output PSPs propagate independently
through the fiber and, indeed, that they propagate independently
through the entire system from the modulator to the balanced
receiver. At the receiver, the fields corresponding to the two
PSPs are separately squared, and the resulting photocurrents
are summed. From this perspective, we can decompose the en-
tire system into a pair of subsystems, each corresponding to
one PSP. Hence, we model the system as shown in Fig. 3. In
Fig. 3, the upper system is modeled exactly like Fig. 2, ex-
cept we replace by and obtain sampled deci-
sion variables . Likewise, the lower system corresponds
to Fig. 2, with replaced by , and with sampled
decision variables . At the output of Fig. 3, we sum the
outputs of the two subsystems to obtain sampled decision vari-
ables . Note that the ASE components
of and are statistically independent. In what fol-
lows, we refer to the model in Fig. 3 as the “two-PSP” model
and use it in the CD and PMD power-penalty computations.
Although we consider only first-order PMD in computing the
PMD power penalty, according to [23], our analysis is a reason-
able approximation to the power penalty considering all orders
of PMD.

B. 4-DPSK Systems

The modeling of a 4-DPSK system is similar to that of
a 2-DPSK system, so we will only describe the differences
here. A 4-DPSK system is represented schematically in
Fig. 4. The baseband equivalent electric field at the fiber
input is described by (1) with pulse shape given
by (2) and with . Thus, the symbol duration is twice
the bit duration, i.e., . Each transmitted symbol conveys
two bits, encoded in four possible phase differences be-
tween successive symbols . Hence,

.
At the receiving end, two sets of interferometers, balanced

receivers, low-pass filters, and samplers are used to demodulate
and detect the in-phase (I) and quadrature (Q) components of
the signal. In each interferometer, the upper branch has a delay
equal to the symbol duration . In the I interferometer, the

lower branch has an excess phase shift of so that the transfer
functions to the sum and difference output ports are

(12)

respectively. In the Q interferometer, the lower branch has an
excess phase shift of , so that the transfer functions to the
sum and difference output ports are, respectively

(13)

With appropriate coding, as described in [3], binary decisions on
the sampled outputs of the I and Q branches yield, respectively,
the first and second bits encoded in each symbol. Thus, each
of the I and Q branches can be modeled as a separate 2-DPSK
system, as described in Section II-A, with the modifications to
the symbol duration , symbol stream , and interferom-
eter transfer functions described in this section. In order to com-
pute the BER of the 4-DPSK system, we separately compute the
BERs of each of these two 2-DPSK systems and then average
the results. Note that CD, PMD, and optical bandpass filtering
can lead to crosstalk between these two 2-DPSK systems. The
impact of this crosstalk is accounted for in the BER calculation
technique described in the following section.

III. ERROR PROBABILITY COMPUTATION

The BER calculation method employed in this paper was pro-
posed by Forestieri [11] and is referred to here as the KLSE
method. Although the technique was originally used to evaluate
the BER in optically preamplified OOK systems with arbitrary
pulse shape, optical/electrical filtering, and CD, it is applicable
to DPSK systems, provided that the input electric field can
be expressed in the form (1) or, more generally, if its Fourier
transform can be obtained. We observe that both PMD and a
delay-line interferometer can be modeled in terms of general-
ized optical filters.
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The essence of the KLSE method is as follows. The trans-
mitted bit stream is assumed to be a periodic repetition of a bi-
nary de Bruijn sequence2 [24], [25] such that the input signal
electric field can be expanded in a Fourier series. The ASE noise
is also expressed in a Fourier series using a Karhunen–Loeve ex-
pansion. With both the signal and noise expressed in this way,
the decision sample can be readily expressed and will comprise
three terms: signal, signal–ASE beat noise, and ASE–ASE beat
noise. The original contribution of Foriestieri is to express all
these terms in matrix form and, by using matrix transforma-
tion techniques, to combine both noises into one term. This term
can be expressed, in general, as a noncentral quadratic form of
Gaussian random variables and has a noncentral chi-square dis-
tribution. Thus, the moment-generating function (MGF) of the
decision sample can be obtained, and the BER can be evaluated
from it by using the inverse Laplace transform and saddle-point
integration approximation. In the interest of brevity, we will not
provide a mathematical description of the KLSE method; [11]
provides all the details required to implement this technique.3

In order to compute the BER for a 2-DPSK system, referring
to the two-PSP model shown in Fig. 3, we use the KLSE method
to obtain the MGF of the decision variables in each subsystem.
Because the ASE noises in the two PSPs are independent so are
the decision variables in the two subsystems. Hence, to obtain
the MGF of the combined decision sample, we simply multiply
the MGFs of the two subsystems. In computing the BER for a
4-DPSK system, we use this technique to compute the BER for
the I and Q signals separately and then average the two BERs.

We now make some observations about applying the KLSE
method to DPSK systems.

• Unlike an OOK system, a DPSK system uses two pho-
todetectors and, hence, the decision variables are given by
the difference between two photocurrents (after low-pass
filtering and sampling), both of which can be expressed as
quadratic forms of Gaussian random variables. Because
these two photocurrents are correlated, although the MGF
of either one can be obtained readily, it is not straightfor-
ward to find the MGF of their difference. The easiest way
to obtain the MGF of the decision variables is to combine
corresponding terms in the two photocurrents (e.g., the
two ASE–ASE noise terms) into one term before repre-
senting them in matrix form. This can be done because all
the noise terms result from the same ASE. We then write
down the combined decision variable in matrix form and,
by using matrix transformations, express it in a noncentral
quadratic form of Gaussian random variable, thereby ob-
taining its MGF.

• One must carefully choose the length of the de Bruijn
sequence. In a 2-DPSK system, to take account of the

2A binary de Bruijn sequence is the shortest circular sequence of length 2

such that every binary string of length n occurs exactly once. For example, an
8-b de Bruijn sequence is 01011100, which contains all the 3-b strings from
000 to 111, and can be used to account for ISI due to one bit on either side of
the desired bit or the preceding two bits. A binary de Bruijn sequence of length
2 can be produced by adding a 0 digit to a pseudorandom binary sequence of
length 2 � 1 at the place where there are n� 1 zeros.

3Note there exists a typographical error in [11]: in (A.12) the indexes i and
j should be swapped, i.e., i � j is to be replaced by j � i, as is evident by
comparing (A.9) with (A.10).

TABLE I
BANDWIDTHS OF OPTICAL FILTER AND ELECTRICAL FILTER

ISI caused by CD, we need to consider all possible five-
symbol patterns. As one bit is encoded into one symbol, a

-b de Bruijn sequence is found to be adequate to achieve
this goal.4 In 4-DPSK system, however, as two bits are
encoded into one symbol and there are four different sym-
bols, if we considered all five-symbol patterns, we would
need to use a -b de Bruijn sequence. As the computa-
tional complexity of the KLSE method is approximately
proportional to the squared length of the de Bruijn se-
quence, it is difficult to use such a long sequence. Hence,
in 4-DPSK systems, we generally consider shorter three-
symbol patterns and use a -b de Bruijn sequence, which
restricts us to studying weak-to-moderate CD effects (this
approximation is valid for CD penalties of at least 2 dB).
By contrast, three-symbol patterns are long enough for the
study of PMD effects, because even strong PMD (e.g.,

for 4-DPSK) only causes ISI between im-
mediately adjacent symbols.

In order to justify the applicability of the KLSE method to
DPSK systems, we compare the BERs of four DPSK systems
computed using two distinct approaches: the KLSE method
and Monte Carlo simulation [24]. These systems include
NRZ-2-DPSK, NRZ-4-DPSK, RZ-2-DPSK, and RZ-4-DPSK.
In all these systems, an FP optical bandpass filter and a
fifth-order Bessel electrical low-pass filter are used. Filter
bandwidths are selected following Table I, in which all the
bandwidths have been chosen to minimize the BER when both
CD and PMD are absent. When we compute the BER using the
KLSE method, we use a -b de Bruijn sequence for 2-DPSK
systems and a -b de Bruijn sequence for 4-DPSK systems.
When we estimate BER with Monte Carlo simulation, for all
systems we use pseudorandom bit sequence of length .
Fig. 5 shows computed BERs as a function of when
CD and PMD are absent. It is clear that the two approaches
agree quite well in all cases, justifying the authors’ use of
the KLSE method for DPSK systems. As expected, it is also
evident that, for a given BER, 2-DPSK requires a lower
than 4-DPSK, while RZ-DPSK requires a lower than
NRZ-DPSK.

The KLSE method can also be used to calculate the BER for
a DPSK system using asynchronous heterodyne reception [18].

4In a 2-DPSK system, after differential coding, a 2 -b de Bruijn bit sequence
does not yield all possible five-symbol patterns, but we find that the patterns that
are not produced make a negligible contribution to the BER. Similar results are
observed for 4-DPSK systems.
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(a) (b)

Fig. 5. Comparison of the BER versus E =N obtained using the KLSE method and Monte Carlo simulation for binary and quaternary (a) NRZ-DPSK systems
and (b) RZ-DPSK systems.

One simply needs to model the electrical delay-and-multiply
demodulator used in the asynchronous heterodyne receiver as
the “interferometer + square-law detector + subtractor” com-
bination shown in Fig. 2, which performs an equivalent de-
modulating function and permits the KLSE method to be ap-
plied. Preamplified direct detection and heterodyne reception
for DPSK have been proved to have identical performance under
certain conditions [26] and, hence, it is not surprising that the an-
alytical method designed for one scheme can be applied to the
other.

IV. DISPERSION EFFECTS

In this section, we study the impact of CD and PMD on NRZ-
and RZ-DPSK systems, using the KLSE method to compute
the BER. In all cases, the system model is the “two-PSP” model
shown in Fig. 3, which accounts for two polarizations of ASE
noise. A bit rate of 10 Gb/s is assumed in all cases. The optical
bandpass filter is either an FP filter or an FBG filter, while the
electrical low-pass filter is always a fifth-order Bessel type.
For each system type, the filter bandwidths have been selected
to minimize the BER in the absence of CD and PMD and are
indicated in Table I.5 When CD or PMD is characterized in
terms of penalties, these are the power penalties at BER,
which is the increase in energy per bit required to maintain this
BER value when dispersion is present. Note that these power
penalties can also be interpreted as optical signal-to-noise ratio
(OSNR) penalties, since we consider the linear propagation
regime. We also characterize PMD in terms of an outage
probability criterion.

5We have also considered choosing the filter bandwidths to minimize the BER
in the presence of moderate CD or PMD but have obtained values close to those
in Table I.

For reference, the power penalties for OOK using NRZ and
RZ formats caused by CD and PMD are also evaluated. In the
case of OOK, the NRZ and RZ elementary pulse shapes are
given by (2), and the KLSE method is used for the calculation
of BER.

A. Chromatic Dispersion

In order to study the impact of CD alone, we neglect PMD
by setting in (11). Fig. 6 presents the BER
power penalty of NRZ- and RZ-OOK, 2-DPSK and 4-DPSK,
versus the CD index in units of 10 Gb/s ps/nm.
We assume 1.55 m. Note that because these signals are
all chirp free, the behavior at positive and negative is sym-
metrical, and it is sufficient to consider positive . When ei-
ther the NRZ or RZ format is used, CD causes smaller power
penalties for 2-DPSK than for OOK, particularly when an FBG
filter is used. Comparing the two 2-DPSK formats, RZ-2-DPSK
and NRZ-2-DPSK exhibit similar penalties when the disper-
sion is weak [ in Fig. 6(a) and in Fig. 6(b)];
however, for stronger CD, the power penalty of RZ-2-DPSK in-
creases rapidly and becomes much larger than that of NRZ-2-
DPSK. Similar observations can be made about the NRZ-OOK
and RZ-OOK formats. Intuitively, this arises because the signal
power spectrum has a wider main lobe for RZ than for NRZ.

4-DPSK, because its symbol rate is half the bit rate and
its power spectrum is only half as wide as those of OOK
or 2-DPSK, exhibits much smaller CD power penalties than
the latter two modulation techniques. As shown in Fig. 6(a),
when an FP optical filter is used, the power penalties for
NRZ-4-DPSK are only about one fifth of those for NRZ-OOK
and NRZ-2-DPSK. RZ-4-DPSK performs even better than
NRZ-4-DPSK in combating CD. For example, when an FP
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(a) (b)

Fig. 6. Chromatic-dispersion-induced power penalty as a function of chromatic dispersion index � for NRZ- and RZ-OOK, 2-DPSK, and 4-DPSK systems with
a fifth-order Bessel electrical filter and (a) FP optical filter or (b) FBG optical filter.

filter is used, the CD power penalty for RZ-4-DPSK is only
one half that of NRZ-4-DPSK. This observation may seem
counter-intuitive because in the cases of both 2-DPSK and
OOK, RZ formats tend to be degraded more rapidly by CD
than NRZ formats. If we examine Fig. 6(a) closely, we see
that RZ-OOK has a smaller power penalty than NRZ-OOK
for , and RZ-2-DPSK has a smaller power penalty
than NRZ-2-DPSK for . For the range shown in the
figure, , 4-DPSK is in the weak-dispersion regime, so
it is indeed plausible for RZ-4-DPSK to incur smaller power
penalties than NRZ-4-DPSK in this regime. We found that for
both FP and FBG filters, the penalties for RZ-4-DPSK and
NRZ-4-DPSK cross at ,6 beyond which RZ-4-DPSK
has larger penalties than NRZ-4-DPSK. While it is difficult
to explain intuitively why the crossover occurs at much larger
values of for 4-DPSK than for 2-DPSK or OOK, we observe
that CD affects not only signal amplitude but also signal phase,
and 4-DPSK is more sensitive to phase variations than either
2-DPSK or OOK.

It is useful to compare the CD tolerance of the different
modulation schemes for a fixed power penalty of 1 dB.
Assuming an FBG optical filter is used, the values of corre-
sponding to a 1-dB power penalty for NRZ-OOK, RZ-OOK,
NRZ-2-DPSK, RZ-2-DPSK, NRZ-4-DPSK and RZ-4-DPSK
are 5.0, 4.5, 7.2, 5.8, 12.5, and 19.6 respectively. At a bit rate of
10 Gb/s, these values of correspond to transmission distances
of 29, 26, 42, 34, 74, and 115 km, respectively, assuming

17 ps/nm/km. For a fixed power penalty of 2 dB, the
corresponding values of are 7.2, 6.0, 10.3, 7.3, 19.9, and 26.4,
corresponding to transmission distances of 42, 35, 61, 43, 117,

6At these large values of � , the CD penalty is about 3 dB, and we perform
computations using a 2 -b de Bruijn sequence.

and 155 km. Note some of the values of quoted above for
4-DPSK are larger than those appearing in Fig. 6.

Comparing the eye-penalty plots in [7] (not shown in this
paper) with Fig. 6, we find the eye-penalty criterion accurately
estimates CD power penalties for NRZ-2-DPSK only when the
CD is severe . When the CD is not severe, the eye-
penalty criterion underestimates the power penalty significantly
and should not be relied upon.

B. Polarization-Mode Dispersion (PMD)

In order to observe the impact of first-order PMD clearly,
we neglect CD by setting in (11). Fig. 7 shows the

BER power penalty of NRZ- and RZ-OOK, 2-DPSK and
4-DPSK, versus the ratio of DGD to bit duration . We
assume the worst-case value of the power splitting between the
two PSPs, i.e., in (11). Comparing Fig. 7(a) with (b), we
see that the relative robustness of different modulation schemes
to PMD is largely independent of whether the optical filter is
chosen to be of FP or FBG type. Because all five modulation
schemes exhibit slightly smaller PMD penalties with FBG fil-
ters, we focus on the FBG case in the following discussion.

As seen in Fig. 7(b), NRZ-2-DPSK is slightly superior to
NRZ-OOK in terms of PMD tolerance, as it exhibits about
10% lower PMD power penalties for strong PMD. For weak
PMD, the ratio between the two power penalties is close to
unity. A similar relationship exists between RZ-2-DPSK and
RZ-OOK. 4-DPSK is much more resistant to PMD than either
2-DPSK or OOK. For example, NRZ-4-DPSK exhibits a PMD
power penalty of only about one quarter that of NRZ-2-DPSK
or NRZ-OOK in the case of weak PMD. This is to be expected,
because in NRZ-4-DPSK, the symbol duration is twice as long
as for the other two modulation schemes. RZ-DPSK, as it uses
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(a) (b)

Fig. 7. PMD-induced power penalty as a function of DGD/bit duration ratio h��i=T for NRZ- and RZ-OOK, 2-DPSK, and 4-DPSK systems, with a fifth-order
Bessel electrical filter and (a) FP optical filter or (b) FBG optical filter. The worst-case power-splitting ratio of polarization-mode dispersion is assumed, i.e.,

 = 0:5.

Fig. 8. Maximum allowable ratio of mean DGD to bit duration h��i=T as a function of outage probability, for NRZ- and RZ-OOK, 2-DPSK, and 4-DPSK
systems, with a fifth-order Bessel electrical filter and a FBG optical filter.

a shorter pulse duration, exhibits much greater PMD tolerance
than its NRZ counterparts (RZ-2-DPSK versus NRZ-2-DPSK
and RZ-4-DPSK versus NRZ-4-DPSK).

For small power penalties , given in decibels, the first-order
PMD impairment can be expressed as [21]

(14)

where, as in Section II, is the symbol duration. Recall that
for 2-DPSK and for 4-DPSK. Using the power

penalty data shown in Fig. 7(b), for NRZ-OOK, RZ-OOK,
NRZ-2-DPSK, RZ-2-DPSK, NRZ-4-DPSK, and RZ-4-DPSK
using an FBG filter, the parameter is found to be about 39,
22, 36, 19, 37 and 14, respectively. Although the values of

are similar for NRZ-2-DPSK and NRZ-4-DPSK, the latter
modulation scheme is much more tolerant to PMD, because the
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symbol duration is twice as long. A similar comparison can be
made between RZ-2-DPSK and RZ-4-DPSK.

In view of the statistical nature of PMD, instead of plotting the
power penalty versus DGD, a better way to characterize PMD
tolerance is by plotting the maximum allowable mean DGD
versus outage probability, which is the probability for the power
penalty to exceed dB. To achieve this, we combine (14) with
the Maxwellian PMD statistics and obtain a closed-form expres-
sion for the outage probability . From the expression for

, the requirement for the maximum allowable mean DGD
of the fiber can be expressed as [22]

(15)

Substituting values of the parameter given above and
assuming 1 dB, the maximum allowable values of the
ratio can be calculated and are shown as a function
of outage probability in Fig. 8. We see that when either
the NRZ or RZ format is used, 2-DPSK can tolerate a slightly
larger value of than OOK. For NRZ-4-DPSK, the
maximum allowable value of is nearly twice of that
for NRZ-2-DPSK or NRZ-OOK, which is to be expected be-
cause NRZ-4-DPSK has a symbol duration twice as long as the
other two. The PMD tolerance of RZ-2-DPSK and RZ-4-DPSK
greatly exceed their NRZ counterparts, because the RZ modula-
tion schemes use shorter pulse durations. For example, at
outage probability, the maximum allowable value of
for RZ-2-DPSK is 1.4 times of that for NRZ-2-DPSK, and
the maximum allowable value of for RZ-4-DPSK is
about 1.6 times of that for NRZ-4-DPSK (similar ratios are
found at other values of the outage probability).

V. CONCLUSION

In this paper, we have applied the BER calculation method
introduced by Forestieri for OOK systems to the case of DPSK
systems using optical preamplifiers, interferometric demodula-
tion, and direct detection. We have shown that if properly ap-
plied, this KLSE method accurately predicts the BER perfor-
mance of these DPSK systems, and we have verified its accu-
racy using Monte Carlo simulations. Using the KLSE method,
we have evaluated power penalties caused by CD and first-order
PMD with 2-DPSK and 4-DPSK using NRZ and RZ formats,
comparing these with OOK. We have found that 2-DPSK ex-
hibits less power penalties than OOK in the presence of CD and
the first-order PMD. NRZ-4-DPSK, as it has twice the symbol
duration of these other techniques for a given bit rate, incurs CD
and PMD power penalties of only about 1/4 1/3 as large as
NRZ-2-DPSK. RZ-2-DPSK, as compared with NRZ-2-DPSK,
incurs smaller penalties due to PMD, but offers no advantage in
terms of CD. RZ-4-DPSK offers CD and PMD penalties signif-
icantly smaller than all other techniques.
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